Birth-death chain. X n. X k:n k,n 2 N k apple n. X k: L 2 N. x 1:n := x 1,...,x n. E n+1 ( x 1:n )=E n+1 ( x n ), 8x 1:n 2 X n.

Size: px
Start display at page:

Download "Birth-death chain. X n. X k:n k,n 2 N k apple n. X k: L 2 N. x 1:n := x 1,...,x n. E n+1 ( x 1:n )=E n+1 ( x n ), 8x 1:n 2 X n."

Transcription

1

2 Birth-death chains Birth-death chain special type of Markov chain Finite state space X := {0,...,L}, with L 2 N X n X k:n k,n 2 N k apple n Random variable and a sequence of variables, with and A sequence can be infinite as well X k: Sequence of state values x 1:n := x 1,...,x n in X n Markov condition E n+1 ( x 1:n )=E n+1 ( x n ), 8x 1:n 2 X n where for E n+1 ( x n ) is the expectation operator with p.m.f p time-homogeneous P = p(x n+1 x n ) 0 1 r 0 p q 1 r 1 p B q L 1 r L 1 p L 1 A 0 0 q L r L

3 Imprecise birth-death chains Consider a matrix P with p.m.f. not precisely known For every i 2 X, the p.m.f. of the i row belong to a credal set M i and consists of elements f i of the form f i ( j)= 8 q i if j = i 1 >< if j = i r i p i if j = i + 1 >: 0 otherwise i 2 X \{0,L} f 0 ( j)= 8 >< r 0 if j = 0 p 0 if j = 1 >: 0 otherwise f L ( j)= 8 >< q L if j = L 1 r L if j = L >: 0 otherwise Positivity assumption: r 0, p 0,r L,q L and q i,r i, p i for all i 2 X \{0,L} strictly positive

4 Imprecise Markov condition Lower and upper expectations of real-valued function f on X E( f i) := min E fi ( f )= min f i ( j) f ( j) f i 2M i f i 2M i E( f i) := max f i 2M i E fi ( f )= max f i 2M i  j2x  j2x f i ( j) f ( j) and for all x 1:n 2 X n, the imprecise Markov condition is E n+1 ( x 1:n )=E n+1 ( x n ) := E( x n )

5 Global uncertainty models Based on the notion of submartingales, we derive global uncertainty models These models satisfy a version of the Law of Iterated expectation X For every n 2 N and every real-valued function g on X N E n+1:1 (g(x n+1:1 ) i) =E n+2:1 (g(x n+2:1 ) i). (time-homogeneity) By defining f 0 on X by f 0 (i 0 ) := E n+2: (g(i 0,X n+2: ) i 0 ) for all i 0 2 X, then E n+1: (g(x n+1: ) i)=e n+1 ( f 0 i)=e( f 0 i)

6 First passage time The first passage time from i to j with i, j 2 X is ( 1 X n+1 = j t i! j (i,x n+1: ) := 1 + t Xn+1! j(x n+1,x n+2: ) X n+1 6= j = 1 + I j c(x n+1 )t Xn+1! j(x n+1,x n+2: ) where I j c is the indicator function of j c := X \{j} For i = j, we have the return time Due to time-homogeneity t i! j,n := E n+1: (t i! j (i,x n+1: ) i) and t i! j,n := E n+1: (t i! j (i,x n+1: ) i) will be denoted by t i! j and t i! j t i! j t i! j Due to positivity assumption and are real-valued and strictly positive and have the form t i! j = 1 + E(I j ct! j i) and t i! j = 1 + E(I j ct! j i)

7 Lower expected upward first passage time The first passage time from i to j with i, j 2 X and i < j t 0!1 = 1 p 0 For all i 2 X \{0,L}, we have that min {q i t i 1!i p i t i!i+1 } = 1 f i 2M i M i For all satisfying the positivity assumption, with i 2 X \{0,L}, and c a real constant, then min {qc pµ} is strictly decreasing in µ f i 2M i

8 Lower expected upward first passage time min {q i t i 1!i p i t i!i+1 } = 1 f i 2M i We can calculate t i!i+1 recursively Using a bisection method, as long as we have calculated t i 1!i Moreover, For all i 2 X \{0,L}, s.t i + 1 < j, we have that t i! j = t i!i+1 + t i+1! j For all i 2 X, such that i < j, we have that t i! j = j 1 Â k=i t k!k+1

9 Lower expected downward first passage time The first passage time from i to j with i, j 2 X and i > j Similarly to the upward case t L!L 1 = 1 q L For all i 2 X \{0,L}, we have that min { q i t i!i 1 + p i t i+1!i } = 1 f i 2M i i 1 For all i 2 X, such that i > j, we have that t i! j = Â t k+1!k k= j

10 Lower expected return time The first passage time from i to j with i, j 2 X and i = j Combining the results from expected upward with these of downward first passage times t 0!0 = 1 + min f 0 2M 0 {p 0 t 1!0 } = 1 + p 0 t 1!0 t L!L = 1 + min f L 2M L {q L t L 1!L } = 1 + q L t L 1!L and for all i 2 X \{0,L} t i!i = 1 + min f i 2M i {q i t i 1!i + p i t i+1!i }

11 Linear vacuous mixtures The set M i is a subset of the simplex S X For any i 2 X, S Xi is the subset of S X containing p.m.f. f i Given precise f0,f L,f and e i 2 [0,1) for any i i 2 X M 0 = (1 e 0 )f 0 + e 0f 0 0 : f S X 0 M L = (1 e L )f L + e Lf 0 L : f 0 L 2 S X L and for all i 2 X \{0,L} M i = (1 e i )f i + e i f 0 i : f 0 i 2 S X i

12 Linear vacuous mixtures We can also define q i :=(1 e i )q i and q i :=(1 e i )q i + e i for all i 2 X \{0} p i :=(1 e i )p i and p i :=(1 e i )p i + e i for all i 2 X \{L} Expected lower upward, downward first passage and return times t i!i+1 = Â i k=0 ì =k+1 q` i m=k p m t i!i 1 = Â L k=i k 1 `=i p` k m=i q m t i!i = 1 + q i t i 1!i + p i t i+1!i

13 Linear vacuous mixtures Consider state space X := {0,...,4}, e i = e = 0.4 and Q q P = B A then, for all i 2 X \{0,L} p r Q we calculate lower and upper expected return times i i!i i!i

14 General example Consider state space X := {0,...,4} M 0 is determined by p 0 2 [0.15,0.4] and M L by q L 2 [0.2,0.6] For all i 2 X \{0,L}, M i is characterised by triplets of the form Q q (q i,r i, p i ) (0.65, 0.15, 0.2), (0.6, 0.25, 0.15), (0.5, 0.4, 0.1), (0.43, 0.45, 0.12), (0.33, 0.5, 0.17), (0.27, 0.43, 0.3), (0.25, 0.35, 0.4), (0.3, 0.25, 0.45), (0.4, 0.17, 0.43), (0.55, 0.1, 0.35) ) p r lower and upper expected upward and downward first passage times 0! ! ! ! ! ! ! ! ! !3 5 1! !2 12 2! ! ! !

15 Conclusions and future work Simple methods for computing lower and upper expected first passage and return times Applying similar methods to other type of chains, e.g. Bonus-Malus systems Applying similar methods to continuous time systems

Calculating Bounds on Expected Return and First Passage Times in Finite-State Imprecise Birth-Death Chains

Calculating Bounds on Expected Return and First Passage Times in Finite-State Imprecise Birth-Death Chains 9th International Symposium on Imprecise Probability: Theories Applications, Pescara, Italy, 2015 Calculating Bounds on Expected Return First Passage Times in Finite-State Imprecise Birth-Death Chains

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

P(X 0 = j 0,... X nk = j k )

P(X 0 = j 0,... X nk = j k ) Introduction to Probability Example Sheet 3 - Michaelmas 2006 Michael Tehranchi Problem. Let (X n ) n 0 be a homogeneous Markov chain on S with transition matrix P. Given a k N, let Z n = X kn. Prove that

More information

Matrix analytic methods. Lecture 1: Structured Markov chains and their stationary distribution

Matrix analytic methods. Lecture 1: Structured Markov chains and their stationary distribution 1/29 Matrix analytic methods Lecture 1: Structured Markov chains and their stationary distribution Sophie Hautphenne and David Stanford (with thanks to Guy Latouche, U. Brussels and Peter Taylor, U. Melbourne

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

On Successive Lumping of Large Scale Systems

On Successive Lumping of Large Scale Systems On Successive Lumping of Large Scale Systems Laurens Smit Rutgers University Ph.D. Dissertation supervised by Michael Katehakis, Rutgers University and Flora Spieksma, Leiden University April 18, 2014

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter Key References: Interpolation 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter 6. 2. Press, W. et. al. Numerical Recipes in C, Cambridge: Cambridge University Press. Chapter 3

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdlhandlenet/1887/39637 holds various files of this Leiden University dissertation Author: Smit, Laurens Title: Steady-state analysis of large scale systems : the successive

More information

CHAOS AND STABILITY IN SOME RANDOM DYNAMICAL SYSTEMS. 1. Introduction

CHAOS AND STABILITY IN SOME RANDOM DYNAMICAL SYSTEMS. 1. Introduction ØÑ Å Ø Ñ Ø Ð ÈÙ Ð Ø ÓÒ DOI: 10.2478/v10127-012-0008-x Tatra Mt. Math. Publ. 51 (2012), 75 82 CHAOS AND STABILITY IN SOME RANDOM DYNAMICAL SYSTEMS Katarína Janková ABSTRACT. Nonchaotic behavior in the sense

More information

Lecture 4: State Estimation in Hidden Markov Models (cont.)

Lecture 4: State Estimation in Hidden Markov Models (cont.) EE378A Statistical Signal Processing Lecture 4-04/13/2017 Lecture 4: State Estimation in Hidden Markov Models (cont.) Lecturer: Tsachy Weissman Scribe: David Wugofski In this lecture we build on previous

More information

The SIS and SIR stochastic epidemic models revisited

The SIS and SIR stochastic epidemic models revisited The SIS and SIR stochastic epidemic models revisited Jesús Artalejo Faculty of Mathematics, University Complutense of Madrid Madrid, Spain jesus_artalejomat.ucm.es BCAM Talk, June 16, 2011 Talk Schedule

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Stochastic Processes Theory for Applications Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv Swgg&sfzoMj ybr zmjfr%cforj owf fmdy xix Acknowledgements xxi 1 Introduction and review

More information

http://www.math.uah.edu/stat/markov/.xhtml 1 of 9 7/16/2009 7:20 AM Virtual Laboratories > 16. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 1. A Markov process is a random process in which the future is

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

ON COMPOUND POISSON POPULATION MODELS

ON COMPOUND POISSON POPULATION MODELS ON COMPOUND POISSON POPULATION MODELS Martin Möhle, University of Tübingen (joint work with Thierry Huillet, Université de Cergy-Pontoise) Workshop on Probability, Population Genetics and Evolution Centre

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

Transformations and Expectations

Transformations and Expectations Transformations and Expectations 1 Distributions of Functions of a Random Variable If is a random variable with cdf F (x), then any function of, say g(), is also a random variable. Sine Y = g() is a function

More information

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Alessandro Antonucci Marco Zaffalon IDSIA, Istituto Dalle Molle di Studi sull

More information

Hidden Markov Models. Hosein Mohimani GHC7717

Hidden Markov Models. Hosein Mohimani GHC7717 Hidden Markov Models Hosein Mohimani GHC7717 hoseinm@andrew.cmu.edu Fair et Casino Problem Dealer flips a coin and player bets on outcome Dealer use either a fair coin (head and tail equally likely) or

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Discrete Probability Refresher

Discrete Probability Refresher ECE 1502 Information Theory Discrete Probability Refresher F. R. Kschischang Dept. of Electrical and Computer Engineering University of Toronto January 13, 1999 revised January 11, 2006 Probability theory

More information

Boundary Problems for One and Two Dimensional Random Walks

Boundary Problems for One and Two Dimensional Random Walks Western Kentucky University TopSCHOLAR Masters Theses & Specialist Projects Graduate School 5-2015 Boundary Problems for One and Two Dimensional Random Walks Miky Wright Western Kentucky University, miky.wright768@topper.wku.edu

More information

ON THE INTEGRATION OF UNBOUNDED FUNCTIONS*

ON THE INTEGRATION OF UNBOUNDED FUNCTIONS* 1932.] INTEGRATION OF UNBOUNDED FUNCTIONS 123 ON THE INTEGRATION OF UNBOUNDED FUNCTIONS* BY W. M. WHYBURN 1. Introduction. The author has shown f that F. Riesz' treatment of intégration} leads in every

More information

Math 141: Lecture 11

Math 141: Lecture 11 Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods Bob Hough October 12, 2016 Bob Hough Math 141: Lecture 11 October 12, 2016 1 / 36 First Fundamental Theorem of Calculus

More information

Hybrid HMM/MLP models for time series prediction

Hybrid HMM/MLP models for time series prediction Bruges (Belgium), 2-23 April 999, D-Facto public., ISBN 2-649-9-X, pp. 455-462 Hybrid HMM/MLP models for time series prediction Joseph Rynkiewicz SAMOS, Université Paris I - Panthéon Sorbonne Paris, France

More information

IB Math SL Year 2 Name: Date: 8-1 Rate of Change and Motion

IB Math SL Year 2 Name: Date: 8-1 Rate of Change and Motion Name: Date: 8-1 Rate of Change and Motion Today s Goals: How can I calculate and interpret constant rate of change? How can I calculate and interpret instantaneous rate of change? How can we use derivatives

More information

The integers. Chapter 3

The integers. Chapter 3 Chapter 3 The integers Recall that an abelian group is a set A with a special element 0, and operation + such that x +0=x x + y = y + x x +y + z) =x + y)+z every element x has an inverse x + y =0 We also

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

A SIGNAL THEORETIC INTRODUCTION TO RANDOM PROCESSES

A SIGNAL THEORETIC INTRODUCTION TO RANDOM PROCESSES A SIGNAL THEORETIC INTRODUCTION TO RANDOM PROCESSES ROY M. HOWARD Department of Electrical Engineering & Computing Curtin University of Technology Perth, Australia WILEY CONTENTS Preface xiii 1 A Signal

More information

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models Advanced Machine Learning Lecture 10 Mixture Models II 30.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ Announcement Exercise sheet 2 online Sampling Rejection Sampling Importance

More information

Lecture 6 Simplex method for linear programming

Lecture 6 Simplex method for linear programming Lecture 6 Simplex method for linear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

ABSTRACT. Department of Mathematics. interesting results. A graph on n vertices is represented by a polynomial in n

ABSTRACT. Department of Mathematics. interesting results. A graph on n vertices is represented by a polynomial in n ABSTRACT Title of Thesis: GRÖBNER BASES WITH APPLICATIONS IN GRAPH THEORY Degree candidate: Angela M. Hennessy Degree and year: Master of Arts, 2006 Thesis directed by: Professor Lawrence C. Washington

More information

Introduction to Algebraic and Geometric Topology Week 3

Introduction to Algebraic and Geometric Topology Week 3 Introduction to Algebraic and Geometric Topology Week 3 Domingo Toledo University of Utah Fall 2017 Lipschitz Maps I Recall f :(X, d)! (X 0, d 0 ) is Lipschitz iff 9C > 0 such that d 0 (f (x), f (y)) apple

More information

9.1 Linear Programs in canonical form

9.1 Linear Programs in canonical form 9.1 Linear Programs in canonical form LP in standard form: max (LP) s.t. where b i R, i = 1,..., m z = j c jx j j a ijx j b i i = 1,..., m x j 0 j = 1,..., n But the Simplex method works only on systems

More information

1 Basics of probability theory

1 Basics of probability theory Examples of Stochastic Optimization Problems In this chapter, we will give examples of three types of stochastic optimization problems, that is, optimal stopping, total expected (discounted) cost problem,

More information

An Extended Algorithm for Finding Global Maximizers of IPH Functions in a Region with Unequal Constrains

An Extended Algorithm for Finding Global Maximizers of IPH Functions in a Region with Unequal Constrains Applied Mathematical Sciences, Vol. 6, 2012, no. 93, 4601-4608 An Extended Algorithm for Finding Global Maximizers of IPH Functions in a Region with Unequal Constrains H. Mohebi and H. Sarhadinia Department

More information

Classes of Polish spaces under effective Borel isomorphism

Classes of Polish spaces under effective Borel isomorphism Classes of Polish spaces under effective Borel isomorphism Vassilis Gregoriades TU Darmstadt October 203, Vienna The motivation It is essential for the development of effective descriptive set theory to

More information

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University)

Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) Summary: A Random Walks View of Spectral Segmentation, by Marina Meila (University of Washington) and Jianbo Shi (Carnegie Mellon University) The authors explain how the NCut algorithm for graph bisection

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Markov Chains and Hidden Markov Models. COMP 571 Luay Nakhleh, Rice University

Markov Chains and Hidden Markov Models. COMP 571 Luay Nakhleh, Rice University Markov Chains and Hidden Markov Models COMP 571 Luay Nakhleh, Rice University Markov Chains and Hidden Markov Models Modeling the statistical properties of biological sequences and distinguishing regions

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

Irregular Birth-Death process: stationarity and quasi-stationarity

Irregular Birth-Death process: stationarity and quasi-stationarity Irregular Birth-Death process: stationarity and quasi-stationarity MAO Yong-Hua May 8-12, 2017 @ BNU orks with W-J Gao and C Zhang) CONTENTS 1 Stationarity and quasi-stationarity 2 birth-death process

More information

Study # 1 11, 15, 19

Study # 1 11, 15, 19 Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+

More information

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix ECCV Workshop on Vision and Modeling of Dynamic Scenes, Copenhagen, Denmark, May 2002 Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Dept of EECS, UC Berkeley Berkeley,

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET CALCULUS Berkant Ustaoğlu CRYPTOLOUNGE.NET Secant 1 Definition Let f be defined over an interval I containing u. If x u and x I then f (x) f (u) Q = x u is the difference quotient. Also if h 0, such that

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

MARKOV MODEL WITH COSTS In Markov models we are often interested in cost calculations.

MARKOV MODEL WITH COSTS In Markov models we are often interested in cost calculations. MARKOV MODEL WITH COSTS In Markov models we are often interested in cost calculations. inventory model: storage costs manpower planning model: salary costs machine reliability model: repair costs We will

More information

ERRATA AND SUGGESTION SHEETS Advanced Calculus, Second Edition

ERRATA AND SUGGESTION SHEETS Advanced Calculus, Second Edition ERRATA AND SUGGESTION SHEETS Advanced Calculus, Second Edition Prof. Patrick Fitzpatrick February 6, 2013 Page 11, line 38: b 2 < r should be b 2 < c Page 13, line 1: for... number a and b, write... numbers

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1 ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP HONG GYUN KIM Abstract. I studied the construction of an algebraically trivial, but topologically non-trivial map by Hopf map p : S 3 S 2 and a

More information

Stochastic Models: Markov Chains and their Generalizations

Stochastic Models: Markov Chains and their Generalizations Scuola di Dottorato in Scienza ed Alta Tecnologia Dottorato in Informatica Universita di Torino Stochastic Models: Markov Chains and their Generalizations Gianfranco Balbo e Andras Horvath Outline Introduction

More information

Math 530 Lecture Notes. Xi Chen

Math 530 Lecture Notes. Xi Chen Math 530 Lecture Notes Xi Chen 632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA E-mail address: xichen@math.ualberta.ca 1991 Mathematics Subject Classification. Primary

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Intrinsic Noise in Nonlinear Gene Regulation Inference

Intrinsic Noise in Nonlinear Gene Regulation Inference Intrinsic Noise in Nonlinear Gene Regulation Inference Chao Du Department of Statistics, University of Virginia Joint Work with Wing H. Wong, Department of Statistics, Stanford University Transcription

More information

Discrete time Markov chains. Discrete Time Markov Chains, Definition and classification. Probability axioms and first results

Discrete time Markov chains. Discrete Time Markov Chains, Definition and classification. Probability axioms and first results Discrete time Markov chains Discrete Time Markov Chains, Definition and classification 1 1 Applied Mathematics and Computer Science 02407 Stochastic Processes 1, September 5 2017 Today: Short recap of

More information

Math Numerical Analysis Mid-Term Test Solutions

Math Numerical Analysis Mid-Term Test Solutions Math 400 - Numerical Analysis Mid-Term Test Solutions. Short Answers (a) A sufficient and necessary condition for the bisection method to find a root of f(x) on the interval [a,b] is f(a)f(b) < 0 or f(a)

More information

A Markov chain approach to quality control

A Markov chain approach to quality control A Markov chain approach to quality control F. Bartolucci Istituto di Scienze Economiche Università di Urbino www.stat.unipg.it/ bart Preliminaries We use the finite Markov chain imbedding approach of Alexandrou,

More information

A&S 320: Mathematical Modeling in Biology

A&S 320: Mathematical Modeling in Biology A&S 320: Mathematical Modeling in Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.ms.uky.edu/~dmu228/as320/ Spring 2016 David Murrugarra (University of Kentucky) A&S

More information

A DUALITY THEOREM FOR NON-LINEAR PROGRAMMING* PHILIP WOLFE. The RAND Corporation

A DUALITY THEOREM FOR NON-LINEAR PROGRAMMING* PHILIP WOLFE. The RAND Corporation 239 A DUALITY THEOREM FOR N-LINEAR PROGRAMMING* BY PHILIP WOLFE The RAND Corporation Summary. A dual problem is formulated for the mathematical programming problem of minimizing a convex function under

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

Stochastic Shortest Path Problems

Stochastic Shortest Path Problems Chapter 8 Stochastic Shortest Path Problems 1 In this chapter, we study a stochastic version of the shortest path problem of chapter 2, where only probabilities of transitions along different arcs can

More information

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods Markov Chain Monte Carlo Methods p. /36 Markov Chain Monte Carlo Methods Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Markov Chain Monte Carlo Methods p. 2/36 Markov Chains

More information

Chapter 5: Integer Compositions and Partitions and Set Partitions

Chapter 5: Integer Compositions and Partitions and Set Partitions Chapter 5: Integer Compositions and Partitions and Set Partitions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Fall 2017 1 / 46 5.1. Compositions A strict

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

On the Relationship between Sum-Product Networks and Bayesian Networks

On the Relationship between Sum-Product Networks and Bayesian Networks On the Relationship between Sum-Product Networks and Bayesian Networks International Conference on Machine Learning, 2015 Han Zhao Mazen Melibari Pascal Poupart University of Waterloo, Waterloo, ON, Canada

More information

Budapest University of Tecnology and Economics. AndrásVetier Q U E U I N G. January 25, Supported by. Pro Renovanda Cultura Hunariae Alapítvány

Budapest University of Tecnology and Economics. AndrásVetier Q U E U I N G. January 25, Supported by. Pro Renovanda Cultura Hunariae Alapítvány Budapest University of Tecnology and Economics AndrásVetier Q U E U I N G January 25, 2000 Supported by Pro Renovanda Cultura Hunariae Alapítvány Klebelsberg Kunó Emlékére Szakalapitvány 2000 Table of

More information

Birth-Death Processes

Birth-Death Processes Birth-Death Processes Birth-Death Processes: Transient Solution Poisson Process: State Distribution Poisson Process: Inter-arrival Times Dr Conor McArdle EE414 - Birth-Death Processes 1/17 Birth-Death

More information

Modelling Complex Queuing Situations with Markov Processes

Modelling Complex Queuing Situations with Markov Processes Modelling Complex Queuing Situations with Markov Processes Jason Randal Thorne, School of IT, Charles Sturt Uni, NSW 2795, Australia Abstract This article comments upon some new developments in the field

More information

14 Branching processes

14 Branching processes 4 BRANCHING PROCESSES 6 4 Branching processes In this chapter we will consider a rom model for population growth in the absence of spatial or any other resource constraints. So, consider a population of

More information

Algebraic geometry of the ring of continuous functions

Algebraic geometry of the ring of continuous functions Algebraic geometry of the ring of continuous functions Nicolas Addington October 27 Abstract Maximal ideals of the ring of continuous functions on a compact space correspond to points of the space. For

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

120 CHAPTER 1. RATES OF CHANGE AND THE DERIVATIVE. Figure 1.30: The graph of g(x) =x 2/3.

120 CHAPTER 1. RATES OF CHANGE AND THE DERIVATIVE. Figure 1.30: The graph of g(x) =x 2/3. 120 CHAPTER 1. RATES OF CHANGE AND THE DERIVATIVE Figure 1.30: The graph of g(x) =x 2/3. We shall return to local extrema and monotonic functions, and look at them in more depth in Section 3.2. 1.5.1 Exercises

More information

Two-Dimensional Systems and Z-Transforms

Two-Dimensional Systems and Z-Transforms CHAPTER 3 Two-Dimensional Systems and Z-Transforms In this chapter we look at the -D Z-transform. It is a generalization of the -D Z-transform used in the analysis and synthesis of -D linear constant coefficient

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

Birth-death chain models (countable state)

Birth-death chain models (countable state) Countable State Birth-Death Chains and Branching Processes Tuesday, March 25, 2014 1:59 PM Homework 3 posted, due Friday, April 18. Birth-death chain models (countable state) S = We'll characterize the

More information

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin.

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin. TT & L Gl v l q T l q TK v i f i ' i i T K L G ' T G!? Ti 10 (Pik 3) -F- L P ki - ik T ffl i zzll ik Fi Pikl x i f l $3 (li 2) i f i i i - i f i jlñ i 84 6 - f ki i Fi 6 T i ffl i 10 -i i fi & i i ffl

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

5 Mutual Information and Channel Capacity

5 Mutual Information and Channel Capacity 5 Mutual Information and Channel Capacity In Section 2, we have seen the use of a quantity called entropy to measure the amount of randomness in a random variable. In this section, we introduce several

More information

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY J. Korean Math. Soc. 45 (2008), No. 4, pp. 1101 1111 ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY Jong-Il Baek, Mi-Hwa Ko, and Tae-Sung

More information

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a TE Linear Algebra and Numerical Methods Tutorial Set : Two Hours. (a) Show that the product AA T is a symmetric matrix. (b) Show that any square matrix A can be written as the sum of a symmetric matrix

More information

Structured Markov Chains

Structured Markov Chains Structured Markov Chains Ivo Adan and Johan van Leeuwaarden Where innovation starts Book on Analysis of structured Markov processes (arxiv:1709.09060) I Basic methods Basic Markov processes Advanced Markov

More information