Markov Chain Monte Carlo Methods

Size: px
Start display at page:

Download "Markov Chain Monte Carlo Methods"

Transcription

1 Markov Chain Monte Carlo Methods p. /36 Markov Chain Monte Carlo Methods Michel Bierlaire Transport and Mobility Laboratory

2 Markov Chain Monte Carlo Methods p. 2/36 Markov Chains Andrey Markov, , Russian mathematician.

3 Markov Chain Monte Carlo Methods p. 3/36 Markov Chains Glossary: Stochastic process: X t, t = 0,,...,, collection of r.v. with same support, or states space {,...,i,...,j}. Markov process: (short memory) Pr(X t = i X 0,...,X t ) = Pr(X t = i X t ) Homogeneous Markov process: Pr(X t = j X t = i) = Pr(X t+k = j X t +k = i) = P ij t, k 0. Transition matrix: P R J J. Properties: J P ij =, i =,...,J, P ij 0, i, j, j=

4 Markov Chain Monte Carlo Methods p. /36 Markov Chains If state j can be reached from state i with non zero probability, we say that i communicates with j. Two states that communicate belong to the same class. A Markov chain is irreducible if it contains only one class.

5 Markov Chain Monte Carlo Methods p. 5/36 Markov Chains Pij t is the probability that the process reaches state j from i after t steps. Consider all t such that Pii t > 0. The largest common divisor d is called the period of state i. A state with period is aperiodic. If P ii > 0, state i is aperiodic. The period is the same for all states in the same class. Therefore, if the chain is irreducible, if one state is aperiodic, they all are.

6 Markov Chain Monte Carlo Methods p. 6/36 A periodic chain P = , d = 3.

7 Markov Chain Monte Carlo Methods p. 7/36 Markov Chains Stationary probabilities: unique solution of the system π j = J π i p ij, j =,...,J. () i= J π j =. j= Solution exists for any irreducible chain.

8 Markov Chain Monte Carlo Methods p. 8/36 Markov Chains Consider the following system of equations: x i P ij = x j P ji, i j, J x i = (2) i= We sum over i: J x i P ij = x j i= J P ji = x j. i= If (2) has a solution, it is also a solution of (). As π is the unique solution of () then x = π. π i P ij = π j P ji, i j The chain is said time reversible

9 Markov Chain Monte Carlo Methods p. 9/36 Example A machine can be in states with respect to wear perfect condition, partially damaged, seriously damaged, completely useless. The degradation process can be modeled by an irreducible aperiodic homogeneous Markov process, with the following transition matrix: P =

10 Markov Chain Monte Carlo Methods p. 0/36 Example Stationary distribution: ( 5 8,, 3 32, ) 32 ( 5 8,, 3 32, ) = ( 5 8,, 3 32, ) 32 Machine in perfect condition 5 days out of 8, in average. Repair occurs in average every 32 days From now on: Markov process = irreducible aperiodic homogeneous Markov process

11 Markov Chain Monte Carlo Methods p. /36 Stationary distributions Property: π j = lim t Pr(X t = j) j =,...,J. Ergodicity: Let f be any function on the state space. Then, with probability, lim T T T f(x t ) = t= J π j f(j). j= Computing the expectation of a function of the stationary states is the same as to take the average of the values along a trajectory of the process.

12 Markov Chain Monte Carlo Methods p. 2/36 Simulation We want to simulate a r.v. X with pmf Pr(X = j) = p j. We generate a Markov process with limiting probabilities p j (how?) We simulate the evolution of the process. p j = π j = lim t Pr(X t = j) j =,...,J.

13 Markov Chain Monte Carlo Methods p. 3/36 Example: T = Pr(Xt = j) t

14 Markov Chain Monte Carlo Methods p. /36 Example: T = Pr(Xt = j) t

15 Markov Chain Monte Carlo Methods p. 5/36 Example: T = Pr(Xt = j) t

16 Markov Chain Monte Carlo Methods p. 6/36 Simulation Assume that we are interested in simulating E[f(X)] = J f(j)p j. j= We use ergodicity to estimate it with T T f(x t ). t= We should drop early states (see above example). Better estimate: T T+k t=+k f(x t ).

17 Markov Chain Monte Carlo Methods p. 7/36 Metropolis-Hastings Nicholas Metropolis W. Keith Hastings

18 Markov Chain Monte Carlo Methods p. 8/36 Metropolis-Hastings Let b j, j =,...,J be positive numbers. Let B = j b j. Let π j = b j /B. We want to simulate a r.v. with pmf π j. Consider a Markov process on {,...,J} with transition probability Q. Define another Markov process with the same states in the following way: Assume the process is in state i, that is X t = i, Simulate the (candidate) next state j according to Q. Define { j with probability α ij X t+ = i with probability α ij

19 Markov Chain Monte Carlo Methods p. 9/36 Metropolis-Hastings Transition probability P : P ij = Q ij α ij if i j P ii = Q ii α ii + l i Q il( α il ) otherwise Must verify the property: = j P ij = P ii + j i P ij = Q ii α ii + l i Q il( α il ) + j i Q ijα ij = Q ii α ii + l i Q il l i Q ilα il + j i Q ijα ij = Q ii α ii + l i Q il As j Q ij =, we have α ii =.

20 Markov Chain Monte Carlo Methods p. 20/36 Metropolis-Hastings Stationary distribution and time reversibility: π i P ij = π j P ji, i j that is It is satisfied if or π i Q ij α ij = π j Q ji α ji, i j α ij = π jq ji π i Q ij and α ji = π i Q ij π j Q ji = α ji and α ij =

21 Markov Chain Monte Carlo Methods p. 2/36 Metropolis-Hastings Therefore α ij = min ( ) πj Q ji, π i Q ij Remember: π j = b j /B. Therefore α ij = min ( ) bj BQ ji, b i BQ ij = min ( ) bj Q ji, b i Q ij The normalization constant B does not play a role in the computation of α ij. In summary: Given Q and b j defining α as above creates a Markov process characterized by P with stationary distribution π.

22 Markov Chain Monte Carlo Methods p. 22/36 Metropolis-Hastings Algorithm:. Choose a Markov process characterized by Q. 2. Initialize the chain with a state i: t = 0, X 0 = i. 3. Simulate the (candidate) next state j based on Q.. Let r be a draw from U[0, [. ( ) 5. Compare r with bj Q α ij = min ji b i Q ij,. If r < b jq ji b i Q ij then X t+ = j, else X t+ = i. 6. Increase t by one. 7. Goto step 3.

23 Markov Chain Monte Carlo Methods p. 23/36 Example Q = b =(20,8, 3, ) π =( 5 8,, 3 32, 32 ) Run MH for 0000 iterations. Collect statistics after 000. Accept: [288, 532, 80, 283] Reject: [0, 952, 705, 2239] Simulated: [0.627, 0.250, 0.095, 0.028] Target: [0.625, 0.250, , ]

24 Markov Chain Monte Carlo Methods p. 2/36 Gibbs sampling Let X = (X, X 2,...,X n ) be a random vector with pmf (or pdf) p(x). Assume we can draw from the marginals: Pr(X i X j = x j, j i), i =,...,n. Markov process. Assume current state is x. Draw randomly (equal probability) a coordinate i. Draw r from the ith marginal. New state: y = (x,...,x i, r, x i+,...,x n ).

25 Markov Chain Monte Carlo Methods p. 25/36 Gibbs sampling Transition probability: Q xy = n Pr(Xi = r X j = x j, j i) = p(y) n Pr(X j = x j, j i) Metropolis-Hastings: α xy = min ( ) p(y)qyx, p(x)q xy = min The candidate state is always accepted. ( ) p(y)p(x) p(x)p(y), =

26 Markov Chain Monte Carlo Methods p. 26/36 Example: bivariate normal distribution ( X Y ) N (( µ X µ Y ), ( σ 2 X ρσ X σ Y ρσ X σ Y σ 2 Y )) Marginal distribution: Y (X = x) N ( µ Y + σ Y σ X ρ(x µ X ), ( ρ 2 )σ 2 Y ) Apply Gibbs sampling to draw from: N (( 0 0 ), ( )) Note: just for illustration. Should use Cholesky factor.

27 Markov Chain Monte Carlo Methods p. 27/36 Example: pdf

28 Markov Chain Monte Carlo Methods p. 28/36 Example: draws from Gibbs sampling 3 Draws from Gibbs sampling

29 Markov Chain Monte Carlo Methods p. 29/36 Simulated annealing Application of the Metropolis-Hastings algorithm to optimization. Name comes from analogy with annealing in metallurgy, involving heating and controlled cooling of a material to reduce its defects. Optimization problem: min f(x) x F where the feasible set F is a finite set of vectors. Let X be the set of optimal solutions, that is X = {x F f(x) f(y), y F} and f(x ) = f, x X. Consider the pmf on F p λ (x) = y F e λf(x) e λf(y), λ > 0.

30 Markov Chain Monte Carlo Methods p. 30/36 Simulated annealing Equivalently p λ (x) = p λ (x) = e λf(x) y F e λf(y) e λ(f f(x)) y F eλ(f f(y)) As f f(x) 0, when λ, we have lim p λ(x) = δ(x X ) λ X, where δ(x X ) = { if x X 0 otherwise.

31 Markov Chain Monte Carlo Methods p. 3/36 Example F = {, 2, 3} f(f) = {0,, 0} p λ () = p λ (2) = p λ (3) = 2 + e λ e λ 2 + e λ 2 + e λ

32 Markov Chain Monte Carlo Methods p. 32/36 Example 0.8 p λ () = p λ (3) p λ (2) λ

33 Markov Chain Monte Carlo Methods p. 33/36 Simulated annealing If λ is large, we generate a Markov chain with stationary distribution p λ (x). The mass is concentrated on optimal solutions. As the normalizing constant is not needed, only e λ(f f(x)) is used. Construction of the Markov process through the concept of neighborhood. A neighbor y of x is obtained by simple modifications of x. The Markov process will proceed from neighbors to neighbors. The neighborhood structure must be designed such that the chain is irreducible, that is the whole space F must be covered. It must be designed also such that the size of the neighborhood is reasonably small.

34 Markov Chain Monte Carlo Methods p. 3/36 Neighborhood Examples of neighborhoods: x and y are neighbors if they differ only in one coordinate. x and y are neighbors if two elements are interchanged. Denote N(x) the set of neighbors of x. Define a Markov process where the next state is a randomly drawn neighbor. Transition probability: Q xy = N(x) Metropolis Hastings: α xy = min ( ) p(y)qyx, p(x)q xy = min ( e λf(y) ) N(x) e λf(x) N(y),

35 Markov Chain Monte Carlo Methods p. 35/36 Notes The neighborhood structure can always be arranged so that each vector has the same number of neighbors. In this case, α xy = min ( ) e λf(y) e, λf(x) If y is better than x, the next state is automatically accepted. Otherwise, it is accepted with a probability that depends on λ. If λ is high, the probability is small. When λ is small, it is easy to escape from local optima.

36 Markov Chain Monte Carlo Methods p. 36/36 Notes In practice, it may be better to enumerate F (MH is asymptotic while F is finite). It is therefore usually used as a heuristic, where the value of λ is changed over time. For instance λ k = C ln( + k), C > 0. The heuristic returns the best solution encountered during the process.

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Simulation - Lectures - Part III Markov chain Monte Carlo

Simulation - Lectures - Part III Markov chain Monte Carlo Simulation - Lectures - Part III Markov chain Monte Carlo Julien Berestycki Part A Simulation and Statistical Programming Hilary Term 2018 Part A Simulation. HT 2018. J. Berestycki. 1 / 50 Outline Markov

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

MSc MT15. Further Statistical Methods: MCMC. Lecture 5-6: Markov chains; Metropolis Hastings MCMC. Notes and Practicals available at

MSc MT15. Further Statistical Methods: MCMC. Lecture 5-6: Markov chains; Metropolis Hastings MCMC. Notes and Practicals available at MSc MT15. Further Statistical Methods: MCMC Lecture 5-6: Markov chains; Metropolis Hastings MCMC Notes and Practicals available at www.stats.ox.ac.uk\ nicholls\mscmcmc15 Markov chain Monte Carlo Methods

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Markov chain Monte Carlo Lecture 9

Markov chain Monte Carlo Lecture 9 Markov chain Monte Carlo Lecture 9 David Sontag New York University Slides adapted from Eric Xing and Qirong Ho (CMU) Limitations of Monte Carlo Direct (unconditional) sampling Hard to get rare events

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 9: Markov Chain Monte Carlo 9.1 Markov Chain A Markov Chain Monte

More information

Stochastic optimization Markov Chain Monte Carlo

Stochastic optimization Markov Chain Monte Carlo Stochastic optimization Markov Chain Monte Carlo Ethan Fetaya Weizmann Institute of Science 1 Motivation Markov chains Stationary distribution Mixing time 2 Algorithms Metropolis-Hastings Simulated Annealing

More information

SC7/SM6 Bayes Methods HT18 Lecturer: Geoff Nicholls Lecture 2: Monte Carlo Methods Notes and Problem sheets are available at http://www.stats.ox.ac.uk/~nicholls/bayesmethods/ and via the MSc weblearn pages.

More information

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018

Math 456: Mathematical Modeling. Tuesday, April 9th, 2018 Math 456: Mathematical Modeling Tuesday, April 9th, 2018 The Ergodic theorem Tuesday, April 9th, 2018 Today 1. Asymptotic frequency (or: How to use the stationary distribution to estimate the average amount

More information

Convergence Rate of Markov Chains

Convergence Rate of Markov Chains Convergence Rate of Markov Chains Will Perkins April 16, 2013 Convergence Last class we saw that if X n is an irreducible, aperiodic, positive recurrent Markov chain, then there exists a stationary distribution

More information

Markov Chain Monte Carlo, Numerical Integration

Markov Chain Monte Carlo, Numerical Integration Markov Chain Monte Carlo, Numerical Integration (See Statistics) Trevor Gallen Fall 2015 1 / 1 Agenda Numerical Integration: MCMC methods Estimating Markov Chains Estimating latent variables 2 / 1 Numerical

More information

Quantifying Uncertainty

Quantifying Uncertainty Sai Ravela M. I. T Last Updated: Spring 2013 1 Markov Chain Monte Carlo Monte Carlo sampling made for large scale problems via Markov Chains Monte Carlo Sampling Rejection Sampling Importance Sampling

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

CSC 446 Notes: Lecture 13

CSC 446 Notes: Lecture 13 CSC 446 Notes: Lecture 3 The Problem We have already studied how to calculate the probability of a variable or variables using the message passing method. However, there are some times when the structure

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Assaf Weiner Tuesday, March 13, 2007 1 Introduction Today we will return to the motif finding problem, in lecture 10

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos Contents Markov Chain Monte Carlo Methods Sampling Rejection Importance Hastings-Metropolis Gibbs Markov Chains

More information

CS281A/Stat241A Lecture 22

CS281A/Stat241A Lecture 22 CS281A/Stat241A Lecture 22 p. 1/4 CS281A/Stat241A Lecture 22 Monte Carlo Methods Peter Bartlett CS281A/Stat241A Lecture 22 p. 2/4 Key ideas of this lecture Sampling in Bayesian methods: Predictive distribution

More information

Lecture 6: Markov Chain Monte Carlo

Lecture 6: Markov Chain Monte Carlo Lecture 6: Markov Chain Monte Carlo D. Jason Koskinen koskinen@nbi.ku.dk Photo by Howard Jackman University of Copenhagen Advanced Methods in Applied Statistics Feb - Apr 2016 Niels Bohr Institute 2 Outline

More information

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version)

A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) A quick introduction to Markov chains and Markov chain Monte Carlo (revised version) Rasmus Waagepetersen Institute of Mathematical Sciences Aalborg University 1 Introduction These notes are intended to

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Chapter 5 Markov Chain Monte Carlo MCMC is a kind of improvement of the Monte Carlo method By sampling from a Markov chain whose stationary distribution is the desired sampling distributuion, it is possible

More information

Simulated Annealing for Constrained Global Optimization

Simulated Annealing for Constrained Global Optimization Monte Carlo Methods for Computation and Optimization Final Presentation Simulated Annealing for Constrained Global Optimization H. Edwin Romeijn & Robert L.Smith (1994) Presented by Ariel Schwartz Objective

More information

Bayesian Methods with Monte Carlo Markov Chains II

Bayesian Methods with Monte Carlo Markov Chains II Bayesian Methods with Monte Carlo Markov Chains II Henry Horng-Shing Lu Institute of Statistics National Chiao Tung University hslu@stat.nctu.edu.tw http://tigpbp.iis.sinica.edu.tw/courses.htm 1 Part 3

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Ch5. Markov Chain Monte Carlo

Ch5. Markov Chain Monte Carlo ST4231, Semester I, 2003-2004 Ch5. Markov Chain Monte Carlo In general, it is very difficult to simulate the value of a random vector X whose component random variables are dependent. In this chapter we

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

The Markov Chain Monte Carlo Method

The Markov Chain Monte Carlo Method The Markov Chain Monte Carlo Method Idea: define an ergodic Markov chain whose stationary distribution is the desired probability distribution. Let X 0, X 1, X 2,..., X n be the run of the chain. The Markov

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo 1 Motivation 1.1 Bayesian Learning Markov Chain Monte Carlo Yale Chang In Bayesian learning, given data X, we make assumptions on the generative process of X by introducing hidden variables Z: p(z): prior

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

In many cases, it is easier (and numerically more stable) to compute

In many cases, it is easier (and numerically more stable) to compute In many cases, it is easier (and numerically more stable) to compute r u (x, y) := log p u (y) + log q u (y, x) log p u (x) log q u (x, y), and then accept if U k < exp ( r u (X k 1, Y k ) ) and reject

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

Markov and Gibbs Random Fields

Markov and Gibbs Random Fields Markov and Gibbs Random Fields Bruno Galerne bruno.galerne@parisdescartes.fr MAP5, Université Paris Descartes Master MVA Cours Méthodes stochastiques pour l analyse d images Lundi 6 mars 2017 Outline The

More information

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Neural Networks and Learning Machines (Haykin) Lecture Notes on Self-learning Neural Algorithms Byoung-Tak Zhang School of Computer Science

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

I. Bayesian econometrics

I. Bayesian econometrics I. Bayesian econometrics A. Introduction B. Bayesian inference in the univariate regression model C. Statistical decision theory D. Large sample results E. Diffuse priors F. Numerical Bayesian methods

More information

MODIFIED METROPOLIS-HASTINGS ALGORITHM WITH DELAYED REJECTION FOR HIGH-DIMENSIONAL RELIABILITY ANALYSIS

MODIFIED METROPOLIS-HASTINGS ALGORITHM WITH DELAYED REJECTION FOR HIGH-DIMENSIONAL RELIABILITY ANALYSIS SEECCM 2009 2nd South-East European Conference on Computational Mechanics An IACM-ECCOMAS Special Interest Conference M. Papadrakakis, M. Kojic, V. Papadopoulos (eds.) Rhodes, Greece, 22-24 June 2009 MODIFIED

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

9 Markov chain Monte Carlo integration. MCMC

9 Markov chain Monte Carlo integration. MCMC 9 Markov chain Monte Carlo integration. MCMC Markov chain Monte Carlo integration, or MCMC, is a term used to cover a broad range of methods for numerically computing probabilities, or for optimization.

More information

Advanced Sampling Algorithms

Advanced Sampling Algorithms + Advanced Sampling Algorithms + Mobashir Mohammad Hirak Sarkar Parvathy Sudhir Yamilet Serrano Llerena Advanced Sampling Algorithms Aditya Kulkarni Tobias Bertelsen Nirandika Wanigasekara Malay Singh

More information

Hill climbing: Simulated annealing and Tabu search

Hill climbing: Simulated annealing and Tabu search Hill climbing: Simulated annealing and Tabu search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Hill climbing Instead of repeating local search, it is

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Markov chains. Randomness and Computation. Markov chains. Markov processes

Markov chains. Randomness and Computation. Markov chains. Markov processes Markov chains Randomness and Computation or, Randomized Algorithms Mary Cryan School of Informatics University of Edinburgh Definition (Definition 7) A discrete-time stochastic process on the state space

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 Sequential parallel tempering With the development of science and technology, we more and more need to deal with high dimensional systems. For example, we need to align a group of protein or DNA sequences

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states.

Definition A finite Markov chain is a memoryless homogeneous discrete stochastic process with a finite number of states. Chapter 8 Finite Markov Chains A discrete system is characterized by a set V of states and transitions between the states. V is referred to as the state space. We think of the transitions as occurring

More information

Markov Chain Monte Carlo. Simulated Annealing.

Markov Chain Monte Carlo. Simulated Annealing. Aula 10. Simulated Annealing. 0 Markov Chain Monte Carlo. Simulated Annealing. Anatoli Iambartsev IME-USP Aula 10. Simulated Annealing. 1 [RC] Stochastic search. General iterative formula for optimizing

More information

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC)

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) Markov Chains (2) Outlines Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) 2 pj ( n) denotes the pmf of the random variable p ( n) P( X j) j We will only be concerned with homogenous

More information

Markov Processes. Stochastic process. Markov process

Markov Processes. Stochastic process. Markov process Markov Processes Stochastic process movement through a series of well-defined states in a way that involves some element of randomness for our purposes, states are microstates in the governing ensemble

More information

ELEC633: Graphical Models

ELEC633: Graphical Models ELEC633: Graphical Models Tahira isa Saleem Scribe from 7 October 2008 References: Casella and George Exploring the Gibbs sampler (1992) Chib and Greenberg Understanding the Metropolis-Hastings algorithm

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

5. Simulated Annealing 5.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 5. Simulated Annealing 5.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Real Annealing and Simulated Annealing Metropolis Algorithm Template of SA A Simple Example References

More information

Robert Collins CSE586, PSU Intro to Sampling Methods

Robert Collins CSE586, PSU Intro to Sampling Methods Robert Collins Intro to Sampling Methods CSE586 Computer Vision II Penn State Univ Robert Collins A Brief Overview of Sampling Monte Carlo Integration Sampling and Expected Values Inverse Transform Sampling

More information

Sampling Methods (11/30/04)

Sampling Methods (11/30/04) CS281A/Stat241A: Statistical Learning Theory Sampling Methods (11/30/04) Lecturer: Michael I. Jordan Scribe: Jaspal S. Sandhu 1 Gibbs Sampling Figure 1: Undirected and directed graphs, respectively, with

More information

The Monte Carlo Method

The Monte Carlo Method The Monte Carlo Method Example: estimate the value of π. Choose X and Y independently and uniformly at random in [0, 1]. Let Pr(Z = 1) = π 4. 4E[Z] = π. { 1 if X Z = 2 + Y 2 1, 0 otherwise, Let Z 1,...,

More information

Essentials on the Analysis of Randomized Algorithms

Essentials on the Analysis of Randomized Algorithms Essentials on the Analysis of Randomized Algorithms Dimitris Diochnos Feb 0, 2009 Abstract These notes were written with Monte Carlo algorithms primarily in mind. Topics covered are basic (discrete) random

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Introduction to Markov Chain Monte Carlo & Gibbs Sampling

Introduction to Markov Chain Monte Carlo & Gibbs Sampling Introduction to Markov Chain Monte Carlo & Gibbs Sampling Prof. Nicholas Zabaras Sibley School of Mechanical and Aerospace Engineering 101 Frank H. T. Rhodes Hall Ithaca, NY 14853-3801 Email: zabaras@cornell.edu

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Eckehard Olbrich MPI MiS Leipzig Potsdam WS 2007/08 Olbrich (Leipzig) 26.10.2007 1 / 18 Overview 1 Summary

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

The Ising model and Markov chain Monte Carlo

The Ising model and Markov chain Monte Carlo The Ising model and Markov chain Monte Carlo Ramesh Sridharan These notes give a short description of the Ising model for images and an introduction to Metropolis-Hastings and Gibbs Markov Chain Monte

More information

Session 3A: Markov chain Monte Carlo (MCMC)

Session 3A: Markov chain Monte Carlo (MCMC) Session 3A: Markov chain Monte Carlo (MCMC) John Geweke Bayesian Econometrics and its Applications August 15, 2012 ohn Geweke Bayesian Econometrics and its Session Applications 3A: Markov () chain Monte

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

Simulation of point process using MCMC

Simulation of point process using MCMC Simulation of point process using MCMC Jakob G. Rasmussen Department of Mathematics Aalborg University Denmark March 2, 2011 1/14 Today When do we need MCMC? Case 1: Fixed number of points Metropolis-Hastings,

More information

INTRODUCTION TO MARKOV CHAIN MONTE CARLO

INTRODUCTION TO MARKOV CHAIN MONTE CARLO INTRODUCTION TO MARKOV CHAIN MONTE CARLO 1. Introduction: MCMC In its simplest incarnation, the Monte Carlo method is nothing more than a computerbased exploitation of the Law of Large Numbers to estimate

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

RANDOM TOPICS. stochastic gradient descent & Monte Carlo

RANDOM TOPICS. stochastic gradient descent & Monte Carlo RANDOM TOPICS stochastic gradient descent & Monte Carlo MASSIVE MODEL FITTING nx minimize f(x) = 1 n i=1 f i (x) Big! (over 100K) minimize 1 least squares 2 kax bk2 = X i 1 2 (a ix b i ) 2 minimize 1 SVM

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

MCMC and Gibbs Sampling. Sargur Srihari

MCMC and Gibbs Sampling. Sargur Srihari MCMC and Gibbs Sampling Sargur srihari@cedar.buffalo.edu 1 Topics 1. Markov Chain Monte Carlo 2. Markov Chains 3. Gibbs Sampling 4. Basic Metropolis Algorithm 5. Metropolis-Hastings Algorithm 6. Slice

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

Monte Carlo importance sampling and Markov chain

Monte Carlo importance sampling and Markov chain Monte Carlo importance sampling and Markov chain If a configuration in phase space is denoted by X, the probability for configuration according to Boltzman is ρ(x) e βe(x) β = 1 T (1) How to sample over

More information