Reasoning Under Uncertainty: Variable Elimination

Size: px
Start display at page:

Download "Reasoning Under Uncertainty: Variable Elimination"

Transcription

1 Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7 Textbook 10.5 Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 1

2 Lecture Overview 1 Recap 2 Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 2

3 Factors and Assigning Variables A factor is a representation of a function from a tuple of random variables into a number. A factor denotes a distribution over the given tuple of variables in some (unspecified) context We can make new factors out of an existing factor Our first operation: assign some or all of the variables of a factor. f(x 1 = v 1, X 2,..., X j ), where v 1 dom(x 1 ), is a factor on X 2,..., X j. f(x 1 = v 1, X 2 = v 2,..., X j = v j ) is a number that is the value of f when each X i has value v i. The former is also written as f(x 1, X 2,..., X j ) X1 = v 1,...,X j = v j Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 3

4 Summing out variables Our second operation: we can sum out a variable, say X 1 with domain {v 1,..., v k }, from factor f(x 1,..., X j ), resulting in a factor on X 2,..., X j defined by: ( X 1 f)(x 2,..., X j ) = f(x 1 = v 1,..., X j ) + + f(x 1 = v k,..., X j ) Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 4

5 Multiplying factors Our third operation: factors can be multiplied together. The product of factor f 1 (X, Y ) and f 2 (Y, Z), where Y are the variables in common, is the factor (f 1 f 2 )(X, Y, Z) defined by: (f 1 f 2 )(X, Y, Z) = f 1 (X, Y )f 2 (Y, Z). Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 5

6 Lecture Overview 1 Recap 2 Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 6

7 Probability of a conjunction Suppose the variables of the belief network are X 1,..., X n. What we want to compute: the factor P (X q, X o1 = v 1,..., X oj = v j ) We can compute P (X q, X o1 = v 1,..., X oj = v j ) by summing out the variables X s1,..., X sk = {X 1,..., X n } \ {X q, X o1,..., X oj }. We sum out these variables one at a time the order in which we do this is called our elimination ordering. P (X q, X o1 = v 1,..., X oj = v j ) = P (X 1,..., X n ) Xo1 = v 1,...,X oj = v j. X sk X s1 Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 7

8 Probability of a conjunction What we know: the factors P (X i px i ). Using the chain rule and the definition of a belief network, we can write P (X 1,..., X n ) as n i=1 P (X i px i ). Thus: P (X q, X o1 = v 1,..., X oj = v j ) = P (X 1,..., X n ) Xo1 = v 1,...,X oj = v j. X sk X s1 = n P (X i px i ) Xo1 = v 1,...,X oj = v j. X sk X s1 i=1 Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 8

9 Computing sums of products Computation in belief networks thus reduces to computing the sums of products. It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently? Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 9

10 Computing sums of products Computation in belief networks thus reduces to computing the sums of products. It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently? factor out the a and then the h giving a(b + c + d + h(e + f + g)) this takes only 7 multiplications or additions Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 9

11 Computing sums of products Computation in belief networks thus reduces to computing the sums of products. It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently? factor out the a and then the h giving a(b + c + d + h(e + f + g)) this takes only 7 multiplications or additions How can we compute X s1 n i=1 P (X i px i ) efficiently? Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 9

12 Computing sums of products Computation in belief networks thus reduces to computing the sums of products. It takes 14 multiplications or additions to evaluate the expression ab + ac + ad + aeh + afh + agh. How can this expression be evaluated more efficiently? factor out the a and then the h giving a(b + c + d + h(e + f + g)) this takes only 7 multiplications or additions ( How can we compute n X s1 i=1 P (X i px i ) efficiently? Factor out those terms that don t involve X s1 : )( ) P (X i px i ) P (X i px i ) i X s1 {X i} px i (terms that do not involve X si ) X s1 i X s1 {X i} px i (terms that involve X si ) Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 9

13 Summing out a variable efficiently To sum out a variable X sj from a product f 1,..., f k of factors: Partition the factors into those that don t contain X sj, say f 1,..., f i, those that contain X sj, say f i+1,..., f k We know: f 1 f k = (f 1 f i ) f i+1 f k. X sj Xsj ( ) f Xsj i+1 f k is a new factor; let s call it f. Now we have X sj f 1 f k = f 1 f i f. Store f explicitly, and discard f i+1,..., f k. Now we ve summed out X sj. Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 10

14 Variable elimination algorithm To compute P (X q X o1 = v 1... X oj = v j ): Construct a factor for each conditional probability. Set the observed variables to their observed values. For each of the other variables X si {X s1,..., X sk }, sum out X si Multiply the remaining factors. Normalize by dividing the resulting factor f(x q ) by X q f(x q ). Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 11

15 Lecture Overview 1 Recap 2 Variable Elimination 3 Variable Elimination Example Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 12

16 Variable elimination example A Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H) = A,B,C,D,E,F,I P (A, B, C, D, E, F, G, H, I) P (G, H) = A,B,C,D,E,F,I P (A) P (B A) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) B D F C E G H I Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

17 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H) = A,B,C,D,E,F,I P (A) P (B A) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) Eliminate A: P (G, H) = B,C,D,E,F,I f1(b) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) A f 1(B) := a dom(a) P (A = a) P (B A = a) B D F C E G H I Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

18 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H) = B,C,D,E,F,I f1(b) P (C) P (D B, C) P (E C) P (F D) P (G F, E) P (H G) P (I G) Eliminate C: P (G, H) = B,D,E,F,I f1(b) f2(b, D, E) P (F D) P (G F, E) P (H G) P (I G) A B D F C E f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) G H I Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

19 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H) = B,D,E,F,I f1(b) f2(b, D, E) P (F D) P (G F, E) P (H G) P (I G) Eliminate E: P (G, H) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) P (H G) P (I G) A B D F C E f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) G H I Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

20 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) P (H G) P (I G) Observe H = h 1: P (G, H = h 1) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) f4(g) P (I G) A B D F C E f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) G H I Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

21 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = B,D,F,I f1(b) f3(b, D, F, G) P (F D) f4(g) P (I G) Eliminate I: P (G, H = h 1) = B,D,F f1(b) f3(b, D, F, G) P (F D) f4(g) f5(g) A B D F C E f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) f 5(G) := i dom(i) P (I = i G) G H I Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

22 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = B,D,F f1(b) f3(b, D, F, G) P (F D) f4(g) f5(g) Eliminate B: P (G, H = h 1) = D,F f6(d, F, G) P (F D) f4(g) f5(g) A B D F C E f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) f 5(G) := i dom(i) P (I = i G) f 6(D, F, G) := b dom(b) f1(b = b) f3(b = b, D, F, G) G H I Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

23 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = D,F f6(d, F, G) P (F D) f4(g) f5(g) Eliminate D: P (G, H = h 1) = F f7(f, G) f4(g) f5(g) A B D F H G C E I f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) f 5(G) := i dom(i) P (I = i G) f 6(D, F, G) := b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

24 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = F f7(f, G) f4(g) f5(g) Eliminate F : P (G, H = h 1) = f 8(G) f 4(G) f 5(G) A B D F H G C E I f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) f 5(G) := i dom(i) P (I = i G) f 6(D, F, G) := b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) f 8(G) := f dom(f ) f7(f = f, G) Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

25 Variable elimination example Compute P (G H = h 1 ). Elimination order: A, C, E, H, I, B, D, F P (G, H = h 1) = f 8(G) f 4(G) f 5(G) Normalize: P (G H = h 1) = P (G,H = h 1 ) g dom(g) P (G,H = h 1) A B D F H G C E I f 1(B) := a dom(a) P (A = a) P (B A = a) f 2(B, D, E) := c dom(c) P (C = c) P (D B, C = c) P (E C = c) f 3(B, D, F, G) := e dom(e) f2(b, D, E = e) P (G F, E = e) f 4(G) := P (H = h 1 G) f 5(G) := i dom(i) P (I = i G) f 6(D, F, G) := b dom(b) f1(b = b) f3(b = b, D, F, G) f 7(F, G) := d dom(d) f6(d = d, F, G) P (F D = d) f 8(G) := f dom(f ) f7(f = f, G) Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 13

26 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 14

27 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 14

28 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Can we use our knowledge of conditional independence to make this calculation even simpler? Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 14

29 What good was Conditional Independence? That s great... but it looks incredibly painful for large graphs. And... why did we bother learning conditional independence? Does it help us at all? yes we use the chain rule decomposition right at the beginning Can we use our knowledge of conditional independence to make this calculation even simpler? yes there are some variables that we don t have to sum out intuitively, they re the ones that are pre-summed-out in our tables example: summing out I on the previous slide Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 14

30 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 15

31 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. alarm fire smoke Can we justify that on a threenode graph Fire, Alarm, and Smoke when we ask for: P (F ire)? Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 15

32 One Last Trick One last trick to simplify calculations: we can repeatedly eliminate all leaf nodes that are neither observed nor queried, until we reach a fixed point. alarm fire smoke Can we justify that on a threenode graph Fire, Alarm, and Smoke when we ask for: P (F ire)? P (F ire Alarm)? Reasoning Under Uncertainty: Variable Elimination CPSC 322 Uncertainty 7, Slide 15

Reasoning Under Uncertainty: Belief Network Inference

Reasoning Under Uncertainty: Belief Network Inference Reasoning Under Uncertainty: Belief Network Inference CPSC 322 Uncertainty 5 Textbook 10.4 Reasoning Under Uncertainty: Belief Network Inference CPSC 322 Uncertainty 5, Slide 1 Lecture Overview 1 Recap

More information

Reasoning Under Uncertainty: Conditional Probability

Reasoning Under Uncertainty: Conditional Probability Reasoning Under Uncertainty: Conditional Probability CPSC 322 Uncertainty 2 Textbook 6.1 Reasoning Under Uncertainty: Conditional Probability CPSC 322 Uncertainty 2, Slide 1 Lecture Overview 1 Recap 2

More information

Propositional Logic: Bottom-Up Proofs

Propositional Logic: Bottom-Up Proofs Propositional Logic: Bottom-Up Proofs CPSC 322 Logic 3 Textbook 5.2 Propositional Logic: Bottom-Up Proofs CPSC 322 Logic 3, Slide 1 Lecture Overview 1 Recap 2 Bottom-Up Proofs 3 Soundness of Bottom-Up

More information

Computer Science CPSC 322. Lecture 23 Planning Under Uncertainty and Decision Networks

Computer Science CPSC 322. Lecture 23 Planning Under Uncertainty and Decision Networks Computer Science CPSC 322 Lecture 23 Planning Under Uncertainty and Decision Networks 1 Announcements Final exam Mon, Dec. 18, 12noon Same general format as midterm Part short questions, part longer problems

More information

Logic: Resolution Proofs; Datalog

Logic: Resolution Proofs; Datalog Logic: ; Datalog CPSC 322 Logic 5 Textbook 5.2; 12.2 Logic: ; Datalog CPSC 322 Logic 5, Slide 1 Lecture Overview 1 Recap 2 Logic: ; Datalog CPSC 322 Logic 5, Slide 2 Proofs A proof is a mechanically derivable

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 11 Oct, 3, 2016 CPSC 422, Lecture 11 Slide 1 422 big picture: Where are we? Query Planning Deterministic Logics First Order Logics Ontologies

More information

Department of Computer Science Undergraduate Events More

Department of Computer Science Undergraduate Events More Department o Computer Science Undergraduate Eents More details @ https://www.cs.ubc.ca/students/undergrad/lie/upcoming-eents Masters o Management in Operations Research Ino Session Date: Tues. No 20 Time:

More information

Reasoning Under Uncertainty: Introduction to Probability

Reasoning Under Uncertainty: Introduction to Probability Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Uncertainty 1 Textbook 6.1 Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Uncertainty 1, Slide 1 Lecture Overview 1

More information

Reasoning Under Uncertainty: Bayesian networks intro

Reasoning Under Uncertainty: Bayesian networks intro Reasoning Under Uncertainty: Bayesian networks intro Alan Mackworth UBC CS 322 Uncertainty 4 March 18, 2013 Textbook 6.3, 6.3.1, 6.5, 6.5.1, 6.5.2 Lecture Overview Recap: marginal and conditional independence

More information

Cognitive Systems 300: Probability and Causality (cont.)

Cognitive Systems 300: Probability and Causality (cont.) Cognitive Systems 300: Probability and Causality (cont.) David Poole and Peter Danielson University of British Columbia Fall 2013 1 David Poole and Peter Danielson Cognitive Systems 300: Probability and

More information

Reasoning Under Uncertainty: Introduction to Probability

Reasoning Under Uncertainty: Introduction to Probability Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23 March 12, 2007 Textbook 9 Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23, Slide 1 Lecture Overview

More information

Computer Science CPSC 322. Lecture 18 Marginalization, Conditioning

Computer Science CPSC 322. Lecture 18 Marginalization, Conditioning Computer Science CPSC 322 Lecture 18 Marginalization, Conditioning Lecture Overview Recap Lecture 17 Joint Probability Distribution, Marginalization Conditioning Inference by Enumeration Bayes Rule, Chain

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Reasoning under Uncertainty: Intro to Probability

Reasoning under Uncertainty: Intro to Probability Reasoning under Uncertainty: Intro to Probability Computer Science cpsc322, Lecture 24 (Textbook Chpt 6.1, 6.1.1) March, 15, 2010 CPSC 322, Lecture 24 Slide 1 To complete your Learning about Logics Review

More information

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Alan Mackworth UBC CS 322 Uncertainty 2 March 13, 2013 Textbook 6.1.3 Lecture Overview Recap: Probability & Possible World Semantics

More information

Propositional Logic: Semantics and an Example

Propositional Logic: Semantics and an Example Propositional Logic: Semantics and an Example CPSC 322 Logic 2 Textbook 5.2 Propositional Logic: Semantics and an Example CPSC 322 Logic 2, Slide 1 Lecture Overview 1 Recap: Syntax 2 Propositional Definite

More information

Probabilistic Models

Probabilistic Models Bayes Nets 1 Probabilistic Models Models describe how (a portion of) the world works Models are always simplifications May not account for every variable May not account for all interactions between variables

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Many slides adapted from B. Schiele, S. Roth, Z. Gharahmani Machine Learning Lecture 14 Undirected Graphical Models & Inference 23.06.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

More information

Decision Theory Intro: Preferences and Utility

Decision Theory Intro: Preferences and Utility Decision Theory Intro: Preferences and Utility CPSC 322 Lecture 29 March 22, 2006 Textbook 9.5 Decision Theory Intro: Preferences and Utility CPSC 322 Lecture 29, Slide 1 Lecture Overview Recap Decision

More information

Definition: For nonempty sets X and Y, a function, f, from X to Y is a relation that associates with each element of X exactly one element of Y.

Definition: For nonempty sets X and Y, a function, f, from X to Y is a relation that associates with each element of X exactly one element of Y. Functions Definition: A relation is a correspondence between two sets. If x and y are two elements in these sets and if a relation exists between x and y, then we say that x corresponds to y or that y

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets: Independence Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Reasoning under Uncertainty: Intro to Probability

Reasoning under Uncertainty: Intro to Probability Reasoning under Uncertainty: Intro to Probability Computer Science cpsc322, Lecture 24 (Textbook Chpt 6.1, 6.1.1) Nov, 2, 2012 CPSC 322, Lecture 24 Slide 1 Tracing Datalog proofs in AIspace You can trace

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 14: Bayes Nets II Independence 3/9/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 14: Bayes Nets 10/14/2008 Dan Klein UC Berkeley 1 1 Announcements Midterm 10/21! One page note sheet Review sessions Friday and Sunday (similar) OHs on

More information

Unit #10 : Graphs of Antiderivatives, Substitution Integrals

Unit #10 : Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 573: Artificial Intelligence Autumn 2012 Bayesian Networks Dan Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer Outline Probabilistic models (and inference)

More information

Probabilistic Reasoning: Graphical Models

Probabilistic Reasoning: Graphical Models Probabilistic Reasoning: Graphical Models Christian Borgelt Intelligent Data Analysis and Graphical Models Research Unit European Center for Soft Computing c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Lecture 7 - Separable Equations

Lecture 7 - Separable Equations Lecture 7 - Separable Equations Separable equations is a very special type of differential equations where you can separate the terms involving only y on one side of the equation and terms involving only

More information

CS 188: Artificial Intelligence Fall 2009

CS 188: Artificial Intelligence Fall 2009 CS 188: Artificial Intelligence Fall 2009 Lecture 14: Bayes Nets 10/13/2009 Dan Klein UC Berkeley Announcements Assignments P3 due yesterday W2 due Thursday W1 returned in front (after lecture) Midterm

More information

Solve the equation for c: 8 = 9c (c + 24). Solve the equation for x: 7x (6 2x) = 12.

Solve the equation for c: 8 = 9c (c + 24). Solve the equation for x: 7x (6 2x) = 12. 1 Solve the equation f x: 7x (6 2x) = 12. 1a Solve the equation f c: 8 = 9c (c + 24). Inverse Operations 7x (6 2x) = 12 Given 7x 1(6 2x) = 12 Show distributing with 1 Change subtraction to add (-) 9x =

More information

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas Bayesian Networks Vibhav Gogate The University of Texas at Dallas Intro to AI (CS 4365) Many slides over the course adapted from either Dan Klein, Luke Zettlemoyer, Stuart Russell or Andrew Moore 1 Outline

More information

Probability and Time: Hidden Markov Models (HMMs)

Probability and Time: Hidden Markov Models (HMMs) Probability and Time: Hidden Markov Models (HMMs) Computer Science cpsc322, Lecture 32 (Textbook Chpt 6.5.2) Nov, 25, 2013 CPSC 322, Lecture 32 Slide 1 Lecture Overview Recap Markov Models Markov Chain

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 16: Bayes Nets IV Inference 3/28/2011 Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

Announcements. Solution to Assignment 3 is posted Assignment 4 is available. c D. Poole and A. Mackworth 2017 CPSC 322 Lecture 8 1 / 25

Announcements. Solution to Assignment 3 is posted Assignment 4 is available. c D. Poole and A. Mackworth 2017 CPSC 322 Lecture 8 1 / 25 Announcements Solution to Assignment 3 is posted Assignment 4 is available c D. Poole and A. Mackworth 2017 CPSC 322 Lecture 8 1 / 25 Review: So far... Constraint satisfaction problems defined in terms

More information

Unit #10 : Graphs of Antiderivatives; Substitution Integrals

Unit #10 : Graphs of Antiderivatives; Substitution Integrals Unit #10 : Graphs of Antiderivatives; Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Equations and Solutions

Equations and Solutions Section 2.1 Solving Equations: The Addition Principle 1 Equations and Solutions ESSENTIALS An equation is a number sentence that says that the expressions on either side of the equals sign, =, represent

More information

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

56 CHAPTER 3. POLYNOMIAL FUNCTIONS 56 CHAPTER 3. POLYNOMIAL FUNCTIONS Chapter 4 Rational functions and inequalities 4.1 Rational functions Textbook section 4.7 4.1.1 Basic rational functions and asymptotes As a first step towards understanding

More information

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10). MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and

More information

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas Bayesian Networks Vibhav Gogate The University of Texas at Dallas Intro to AI (CS 6364) Many slides over the course adapted from either Dan Klein, Luke Zettlemoyer, Stuart Russell or Andrew Moore 1 Outline

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

Functions. Chapter Continuous Functions

Functions. Chapter Continuous Functions Chapter 3 Functions 3.1 Continuous Functions A function f is determined by the domain of f: dom(f) R, the set on which f is defined, and the rule specifying the value f(x) of f at each x dom(f). If f is

More information

Reasoning Under Uncertainty: More on BNets structure and construction

Reasoning Under Uncertainty: More on BNets structure and construction Reasoning Under Uncertainty: More on BNets structure and construction Computer Science cpsc322, Lecture 28 (Textbook Chpt 6.3) June, 15, 2017 CPSC 322, Lecture 28 Slide 1 Belief networks Recap By considering

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Lecture 8. Probabilistic Reasoning CS 486/686 May 25, 2006

Lecture 8. Probabilistic Reasoning CS 486/686 May 25, 2006 Lecture 8 Probabilistic Reasoning CS 486/686 May 25, 2006 Outline Review probabilistic inference, independence and conditional independence Bayesian networks What are they What do they mean How do we create

More information

Decomposition. Rudolf Kruse, Alexander Dockhorn Bayesian Networks 81

Decomposition. Rudolf Kruse, Alexander Dockhorn Bayesian Networks 81 Decomposition Rudolf Kruse, Alexander Dockhorn Bayesian Networks 81 Object Representation Property Car family body Property Hatchback Motor Radio Doors Seat cover 2.8 L Type 4 Leather, 150kW alpha Type

More information

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III Bayesian Networks Announcements: Drop deadline is this Sunday Nov 5 th. All lecture notes needed for T3 posted (L13,,L17). T3 sample

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Oct, 21, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models CPSC

More information

Bayesian Networks: Independencies and Inference

Bayesian Networks: Independencies and Inference Bayesian Networks: Independencies and Inference Scott Davies and Andrew Moore Note to other teachers and users of these slides. Andrew and Scott would be delighted if you found this source material useful

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 2 Prof. Hanna Wallach wallach@cs.umass.edu January 26, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

System of Linear Equations. Slide for MA1203 Business Mathematics II Week 1 & 2

System of Linear Equations. Slide for MA1203 Business Mathematics II Week 1 & 2 System of Linear Equations Slide for MA1203 Business Mathematics II Week 1 & 2 Function A manufacturer would like to know how his company s profit is related to its production level. How does one quantity

More information

To find an approximate value of the integral, the idea is to replace, on each subinterval

To find an approximate value of the integral, the idea is to replace, on each subinterval Module 6 : Definition of Integral Lecture 18 : Approximating Integral : Trapezoidal Rule [Section 181] Objectives In this section you will learn the following : Mid point and the Trapezoidal methods for

More information

Probabilistic Models. Models describe how (a portion of) the world works

Probabilistic Models. Models describe how (a portion of) the world works Probabilistic Models Models describe how (a portion of) the world works Models are always simplifications May not account for every variable May not account for all interactions between variables All models

More information

Artificial Intelligence Bayes Nets: Independence

Artificial Intelligence Bayes Nets: Independence Artificial Intelligence Bayes Nets: Independence Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter

More information

Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs

Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs Computer Science cpsc322, Lecture 20 (Textbook Chpt 5.1.2-5.2.2 ) June, 6, 2017 CPSC 322, Lecture 20 Slide 1 Lecture Overview

More information

CS 188: Artificial Intelligence. Our Status in CS188

CS 188: Artificial Intelligence. Our Status in CS188 CS 188: Artificial Intelligence Probability Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. 1 Our Status in CS188 We re done with Part I Search and Planning! Part II: Probabilistic Reasoning

More information

Indicate the answer choice that best completes the statement or answers the question.

Indicate the answer choice that best completes the statement or answers the question. Name: 9th Grade Final Test Review160 pts Class: Date: Indicate the answer choice that best completes the statement or answers the question. Use the Distributive Property to write each expression as an

More information

Bayesian belief networks. Inference.

Bayesian belief networks. Inference. Lecture 13 Bayesian belief networks. Inference. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Midterm exam Monday, March 17, 2003 In class Closed book Material covered by Wednesday, March 12 Last

More information

CSE 473: Artificial Intelligence Probability Review à Markov Models. Outline

CSE 473: Artificial Intelligence Probability Review à Markov Models. Outline CSE 473: Artificial Intelligence Probability Review à Markov Models Daniel Weld University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Outline. CSE 473: Artificial Intelligence Spring Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 473: Artificial Intelligence Spring Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 473: rtificial Intelligence Spring 2012 ayesian Networks Dan Weld Outline Probabilistic models (and inference) ayesian Networks (Ns) Independence in Ns Efficient Inference in Ns Learning Many slides

More information

Bayes Nets: Independence

Bayes Nets: Independence Bayes Nets: Independence [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Bayes Nets A Bayes

More information

Lecture 6 January 15, 2014

Lecture 6 January 15, 2014 Advanced Graph Algorithms Jan-Apr 2014 Lecture 6 January 15, 2014 Lecturer: Saket Sourah Scrie: Prafullkumar P Tale 1 Overview In the last lecture we defined simple tree decomposition and stated that for

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

Markov Networks.

Markov Networks. Markov Networks www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts Markov network syntax Markov network semantics Potential functions Partition function

More information

Logic: Bottom-up & Top-down proof procedures

Logic: Bottom-up & Top-down proof procedures Logic: Bottom-up & Top-down proof procedures Alan Mackworth UBC CS 322 Logic 3 March 4, 2013 P & M Textbook 5.2 Lecture Overview Recap: Soundness, Completeness, Bottom-up proof procedure Bottom-up Proof

More information

Announcements. CS 188: Artificial Intelligence Spring Probability recap. Outline. Bayes Nets: Big Picture. Graphical Model Notation

Announcements. CS 188: Artificial Intelligence Spring Probability recap. Outline. Bayes Nets: Big Picture. Graphical Model Notation CS 188: Artificial Intelligence Spring 2010 Lecture 15: Bayes Nets II Independence 3/9/2010 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore Current

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Probability Steve Tanimoto University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Directional Derivatives and the Gradient

Directional Derivatives and the Gradient Unit #20 : Directional Derivatives and the Gradient Goals: To learn about dot and scalar products of vectors. To introduce the directional derivative and the gradient vector. To learn how to compute the

More information

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides CSE 494/598 Lecture-6: Latent Semantic Indexing LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Homework-1 and Quiz-1 Project part-2 released

More information

Our Status. We re done with Part I Search and Planning!

Our Status. We re done with Part I Search and Planning! Probability [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Our Status We re done with Part

More information

Reasoning Under Uncertainty: More on BNets structure and construction

Reasoning Under Uncertainty: More on BNets structure and construction Reasoning Under Uncertainty: More on BNets structure and construction Jim Little Nov 10 2014 (Textbook 6.3) Slide 1 Belief networks Recap By considering causal dependencies, we order variables in the joint.

More information

Product rule. Chain rule

Product rule. Chain rule Probability Recap CS 188: Artificial Intelligence ayes Nets: Independence Conditional probability Product rule Chain rule, independent if and only if: and are conditionally independent given if and only

More information

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Important. Need a more in depth preview? Get ALL the premium chapter 1 tutorials FREE

Important. Need a more in depth preview? Get ALL the premium chapter 1 tutorials FREE MATH1505.com We Make Math Easy. PREVIEW Homework ~ Tutorials ~ Past Tests Important Math 1505 is a HUGE course. Many students fear the course, but you don t need to, you ve got us! Your keys to success

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 24 Prof. Hanna Wallach wallach@cs.umass.edu April 24, 2012 Reminders Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/ Eighth

More information

MAT01B1: Maximum and Minimum Values

MAT01B1: Maximum and Minimum Values MAT01B1: Maximum and Minimum Values Dr Craig 14 August 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20 12h55 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

O.K. But what if the chicken didn t have access to a teleporter.

O.K. But what if the chicken didn t have access to a teleporter. The intermediate value theorem, and performing algebra on its. This is a dual topic lecture. : The Intermediate value theorem First we should remember what it means to be a continuous function: A function

More information

Computing Minmax; Dominance

Computing Minmax; Dominance Computing Minmax; Dominance CPSC 532A Lecture 5 Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 1 Lecture Overview 1 Recap 2 Linear Programming 3 Computational Problems Involving Maxmin 4 Domination

More information

Addendum to Lesson 10: Compositions of Rigid Motions

Addendum to Lesson 10: Compositions of Rigid Motions 171 Addendum to Lesson 10: Compositions of Rigid Motions The Classification Theorem for Rigid Motions of a Plane tells us that there are four and only four types of rigid motions of a plane: translations,

More information

Bayesian Networks. 7. Approximate Inference / Sampling

Bayesian Networks. 7. Approximate Inference / Sampling Bayesian Networks Bayesian Networks 7. Approximate Inference / Sampling Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems

More information

Mathematics E-15 Seminar on Limits Suggested Lesson Topics

Mathematics E-15 Seminar on Limits Suggested Lesson Topics Mathematics E-15 Seminar on Limits Suggested Lesson Topics Lesson Presentation Guidelines Each lesson should last approximately 45 minutes. This will leave us with some time at the end for constructive

More information

Probabilistic Graphical Models. Rudolf Kruse, Alexander Dockhorn Bayesian Networks 153

Probabilistic Graphical Models. Rudolf Kruse, Alexander Dockhorn Bayesian Networks 153 Probabilistic Graphical Models Rudolf Kruse, Alexander Dockhorn Bayesian Networks 153 The Big Objective(s) In a wide variety of application fields two main problems need to be addressed over and over:

More information

Lecture 22: Integration by parts and u-substitution

Lecture 22: Integration by parts and u-substitution Lecture 22: Integration by parts and u-substitution Victoria LEBED, lebed@maths.tcd.ie MA1S11A: Calculus with Applications for Scientists December 1, 2017 1 Integration vs differentiation From our first

More information

x 4 D: (4, ); g( f (x)) = 1

x 4 D: (4, ); g( f (x)) = 1 Honors Math 4 Describing Functions One Giant Review Name Answer Key 1. Let f (x) = x, g(x) = 6x 3, h(x) = x 3 a. f (g(h(x))) = 2x 3 b. h( f (g(x))) = 1 3 6x 3 c. f ( f ( f (x))) = x 1 8 2. Let f (x) =

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 20 Sep 2011

More information

Lecture 13: Introduction to Neural Networks

Lecture 13: Introduction to Neural Networks Lecture 13: Introduction to Neural Networks Instructor: Aditya Bhaskara Scribe: Dietrich Geisler CS 5966/6966: Theory of Machine Learning March 8 th, 2017 Abstract This is a short, two-line summary of

More information

Limits: An Intuitive Approach

Limits: An Intuitive Approach Limits: An Intuitive Approach SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter. of the recommended textbook (or the equivalent chapter in your alternative

More information

CSE 473: Artificial Intelligence Autumn 2011

CSE 473: Artificial Intelligence Autumn 2011 CSE 473: Artificial Intelligence Autumn 2011 Bayesian Networks Luke Zettlemoyer Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Outline Probabilistic models

More information

Functions as Relations

Functions as Relations Functions as Relations Definition Recall that if A and B are sets, then a relation from A to B is a subset of A B. A function from A to B is a relation f from A to B with the following properties (i) The

More information

Variable Elimination (VE) Barak Sternberg

Variable Elimination (VE) Barak Sternberg Variable Elimination (VE) Barak Sternberg Basic Ideas in VE Example 1: Let G be a Chain Bayesian Graph: X 1 X 2 X n 1 X n How would one compute P X n = k? Using the CPDs: P X 2 = x = x Val X1 P X 1 = x

More information