Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Size: px
Start display at page:

Download "Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence"

Transcription

1 Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

2 General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects Learning DAGs from observational data IDA algorithm Further problems 2

3 Overview DAGs and conditional (in)dependence Directed acyclic graphs Factorization of the joint density Markov property d-separation 3

4 Graph terminology A graph G = V, E consists of vertices (nodes) V and edges E There is at most one edge between every pair of vertices Two vertices are adjacent if there is an edge between them If all edges are directed (i j), the graph is called directed A path between i and j is a sequence of distinct vertices (i,, j) such that successive vertices are adjacent A directed path from i to j is a path between i and j where all edges are pointing towards j, i.e., i j. A non-directed path from i to j is a path from i to j that is not directed. A cycle is a path (i, j,, k) plus an edge between k and i A directed cycle is a directed path (i, j,, k) from i to k, plus an edge k i A directed acyclic graph (DAG) is a directed graph without directed cycles 4

5 Example Which of the following are (directed) paths? (4,2,1,3) (3,4,2,1,4,5) (3,4,2,1) 3,4,5 a directed path from 3 to 5 (1,2,4,1) is a cycle, but not a directed cycle This graph is a DAG not a path: 1 and 3 are not adjacent not a path: vertices are not distinct a path, but not a directed path Adding the edge 5 2 yields a directed cycle 2,4,5,2. The graph is no longer a DAG. 5

6 Graph terminology If i j, then i is a parent of j, and j is a child of i If there is a directed path from i to j, then i is an ancestor of j and j is a descendant of i. Each vertex is also an ancestor and descendant of itself. The sets of parents, children, descendants and ancestors of i in G are denoted by pa(i, G), ch(i, G), desc(i, G), an i, G. We omit G if the graph is clear from the context. We write sets of variables in bold face All definitions are applied disjunctively to sets. Example: pa S = k S pa(k) The non-descendants of S are the complement of desc S : nondesc S V desc(s) 6

7 Example is a parent of 4, and 4 is a child of 1 1 is an ancestor of 5, and 5 is a descendant of 1 ch(4) = {5} desc(4) = {4,5} pa(4) = {1,2,3} an(4) = {1,2,3,4} pa 2,4 = 1 1,2,3 = 1,2,3 desc 2,3 = 2,4,5 3,4,5 = 2,3,4,5 nondesc 2,3 = 1,2,3,4,5 2,3,4,5 = {1} 7

8 DAGs and random variables Each vertex represents a random variable: we use i to denote both the vertex i and the random variable X i An edge denotes a relationship between the pair of variables (we will make this more precise later) 8

9 Factorization of the joint density Suppose we have p binary random variables. Then specifying the joint distribution requires a probability table of size 2 p. Can we do this more efficiently? We always have: f x 1,, x p = f x 1 f x 2 x 1 f(x p x 1, x p 1 ) A set of variables pa(j) is said to be the Markovian parents of X j if it is a minimal subset of {X 1, X j 1 } such that f x j x 1,, x j 1 = f(x j pa j ). p Then f x 1,, x p = j=1 f(x j pa j ) We can draw a DAG accordingly 9

10 Examples (X 1, X 2, X 3 ) and X 1 X 3 X 2 is only (conditional) independence: f x 1 x 2, x 3 = f x 1 x 2 and f x 3 x 1, x 2 = f(x 3 x 2 ) Then Or Or f x 1, x 2, x 3 = f x 1 f x 2 x 1 f x 3 x 1, x 2 = f x 1 f x 2 x 1 f x 3 x 2 DAG: f x 3, x 2, x 1 = f x 3 f x 2 x 3 f x 1 x 2, x 3 = f x 3 f x 2 x 3 f x 1 x 2 DAG: f x 1, x 3, x 2 = f x 1 f x 3 x 1 f x 2 x 1, x 3 DAG:

11 Example First order Markov chain: f X 1,, X p = f X 1 f X 2 X 1 f X p X 1,, X p 1 = f X 1 f X 2 X 1 f(x p X p 1 ) DAG: 1 2 p 11

12 Bayesian network A Bayesian network is pair (G, f), where f factorizes according to G: p f x 1,, x p = f(x j pa j, G ) j=1 Bayesian networks can be used for: Estimation of the joint density from lower order conditional densities (if the parent sets are small) Reading off conditional independencies from the DAG Probabilistic reasoning (expert systems) Causal inference 12

13 Bayesian network A Bayesian network is pair (G, f), where f factorizes according to G: p f x 1,, x p = f(x j pa j, G ) j=1 Bayesian networks can be used for: Estimation of the joint density from low order conditional densities (if the parent sets are small) Reading off conditional independencies from the DAG Probabilistic reasoning (expert systems) Causal inference 13

14 Reading off conditional independencies: Markov property Markov model: 1 2 t 1 t t + 1. The future is independent of the past given the present: X t+1 X t 1, X t 2,, X 1 X t In Bayesian networks, we have a similar Markov property. Let S be any collection of nodes. Then S is independent of its nondescendants given its parents: S nondesc S pa S pa(s) 14

15 Example Markov property smoking yellow teeth tar in lungs asbestos cancer Note: pa yellow teeth = smoking cancer nondesc(yellow teeth) Hence, yellow teeth cancer smoking in any distribution that factorizes according to this DAG 15

16 Graph terminology The skeleton of a graph is the graph obtained by removing all arrowheads A node i is a collider on a path if the path contains i (the arrows collide at i). Otherwise, it is a non-collider on the path Examples: 4 is a collider on the path (3,4,1) 4 is a non-collider on the path (3,4,5) Collider status depends is relative to a path 16

17 Reading off conditional independencies: d-separation The Markov property cannot be used to read off arbitrary conditional (in)dependencies. For this we have d-separation. A path between i to j is blocked by a set S if at least one of the following holds: There is a non-collider on the path that is in S; or There is a collider on the path such that neither this collider nor any of its descendants are in S. A path that is not blocked is d-connecting. If all paths between i to j are blocked by S, then i and j are d- separated by S. Otherwise they are d-connected given S. In any distribution that factorizes according to a DAG: if i and j are d-separated by S in the DAG, then X i and X j are conditionally independent given S in the distribution 17

18 Examples d-separation smoking yellow teeth tar in lungs asbestos cancer Denote d-separation by. Which of the following hold? yellow teeth cancer smoking tar asbestos tar asbestos cancer yellow teeth asbestos cancer yes yes no no 18

19 Bayesian network A Bayesian network is pair (G, f), where f factorizes according to G: p f x 1,, x p = f(x j pa j, G ) j=1 Bayesian networks can be used for: Estimation of the joint density from low order conditional densities (if the parent sets are small) Reading off conditional independencies from the DAG Probabilistic reasoning (expert systems); see R-code Causal inference 19

20 Bayesian network A Bayesian network is pair (G, f), where f factorizes according to G: p f x 1,, x p = f(x j pa j, G ) j=1 Bayesian networks can be used for: Estimation of the joint density from low order conditional densities (if the parent sets are small) Reading off conditional independencies from the DAG Probabilistic reasoning (expert systems) Causal inference: next topic 20

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution NETWORK ANALYSIS Lourens Waldorp PROBABILITY AND GRAPHS The objective is to obtain a correspondence between the intuitive pictures (graphs) of variables of interest and the probability distributions of

More information

Introduction to Causal Calculus

Introduction to Causal Calculus Introduction to Causal Calculus Sanna Tyrväinen University of British Columbia August 1, 2017 1 / 1 2 / 1 Bayesian network Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes represent random

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Causal Inference & Reasoning with Causal Bayesian Networks

Causal Inference & Reasoning with Causal Bayesian Networks Causal Inference & Reasoning with Causal Bayesian Networks Neyman-Rubin Framework Potential Outcome Framework: for each unit k and each treatment i, there is a potential outcome on an attribute U, U ik,

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network.

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network. ecall from last time Lecture 3: onditional independence and graph structure onditional independencies implied by a belief network Independence maps (I-maps) Factorization theorem The Bayes ball algorithm

More information

Causality in Econometrics (3)

Causality in Econometrics (3) Graphical Causal Models References Causality in Econometrics (3) Alessio Moneta Max Planck Institute of Economics Jena moneta@econ.mpg.de 26 April 2011 GSBC Lecture Friedrich-Schiller-Universität Jena

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Markov properties for directed graphs

Markov properties for directed graphs Graphical Models, Lecture 7, Michaelmas Term 2009 November 2, 2009 Definitions Structural relations among Markov properties Factorization G = (V, E) simple undirected graph; σ Say σ satisfies (P) the pairwise

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Motivation. Bayesian Networks in Epistemology and Philosophy of Science Lecture. Overview. Organizational Issues

Motivation. Bayesian Networks in Epistemology and Philosophy of Science Lecture. Overview. Organizational Issues Bayesian Networks in Epistemology and Philosophy of Science Lecture 1: Bayesian Networks Center for Logic and Philosophy of Science Tilburg University, The Netherlands Formal Epistemology Course Northern

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Identifiability assumptions for directed graphical models with feedback

Identifiability assumptions for directed graphical models with feedback Biometrika, pp. 1 26 C 212 Biometrika Trust Printed in Great Britain Identifiability assumptions for directed graphical models with feedback BY GUNWOONG PARK Department of Statistics, University of Wisconsin-Madison,

More information

Preliminaries Bayesian Networks Graphoid Axioms d-separation Wrap-up. Bayesian Networks. Brandon Malone

Preliminaries Bayesian Networks Graphoid Axioms d-separation Wrap-up. Bayesian Networks. Brandon Malone Preliminaries Graphoid Axioms d-separation Wrap-up Much of this material is adapted from Chapter 4 of Darwiche s book January 23, 2014 Preliminaries Graphoid Axioms d-separation Wrap-up 1 Preliminaries

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Last Lecture Refresher Lecture Plan Directed

More information

Data Mining 2018 Bayesian Networks (1)

Data Mining 2018 Bayesian Networks (1) Data Mining 2018 Bayesian Networks (1) Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Data Mining 1 / 49 Do you like noodles? Do you like noodles? Race Gender Yes No Black Male 10

More information

Reasoning Under Uncertainty: Belief Network Inference

Reasoning Under Uncertainty: Belief Network Inference Reasoning Under Uncertainty: Belief Network Inference CPSC 322 Uncertainty 5 Textbook 10.4 Reasoning Under Uncertainty: Belief Network Inference CPSC 322 Uncertainty 5, Slide 1 Lecture Overview 1 Recap

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks

Intelligent Systems: Reasoning and Recognition. Reasoning with Bayesian Networks Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017 Lesson 13 24 march 2017 Reasoning with Bayesian Networks Naïve Bayesian Systems...2 Example

More information

Conditional Independence

Conditional Independence Conditional Independence Sargur Srihari srihari@cedar.buffalo.edu 1 Conditional Independence Topics 1. What is Conditional Independence? Factorization of probability distribution into marginals 2. Why

More information

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 2: Directed Graphical Models Theo Rekatsinas 1 Questions Questions? Waiting list Questions on other logistics 2 Section 1 1. Intro to Bayes Nets 3 Section

More information

Lecture 5: Bayesian Network

Lecture 5: Bayesian Network Lecture 5: Bayesian Network Topics of this lecture What is a Bayesian network? A simple example Formal definition of BN A slightly difficult example Learning of BN An example of learning Important topics

More information

TDT70: Uncertainty in Artificial Intelligence. Chapter 1 and 2

TDT70: Uncertainty in Artificial Intelligence. Chapter 1 and 2 TDT70: Uncertainty in Artificial Intelligence Chapter 1 and 2 Fundamentals of probability theory The sample space is the set of possible outcomes of an experiment. A subset of a sample space is called

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Bayesian Networks

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Bayesian Networks STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Bayesian Networks Representing Joint Probability Distributions 2 n -1 free parameters Reducing Number of Parameters: Conditional Independence

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 1: Introduction to Graphical Models Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ epartment of ngineering University of ambridge, UK

More information

COMP538: Introduction to Bayesian Networks

COMP538: Introduction to Bayesian Networks COMP538: Introduction to Bayesian Networks Lecture 2: Bayesian Networks Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering Hong Kong University of Science and Technology Fall

More information

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014 10-708: Probabilistic Graphical Models 10-708, Spring 2014 1 : Introduction Lecturer: Eric P. Xing Scribes: Daniel Silva and Calvin McCarter 1 Course Overview In this lecture we introduce the concept of

More information

Introduction to Artificial Intelligence. Unit # 11

Introduction to Artificial Intelligence. Unit # 11 Introduction to Artificial Intelligence Unit # 11 1 Course Outline Overview of Artificial Intelligence State Space Representation Search Techniques Machine Learning Logic Probabilistic Reasoning/Bayesian

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Motivação Grandes

More information

Bayesian Networks. Machine Learning, Fall Slides based on material from the Russell and Norvig AI Book, Ch. 14

Bayesian Networks. Machine Learning, Fall Slides based on material from the Russell and Norvig AI Book, Ch. 14 Bayesian Networks Machine Learning, Fall 2010 Slides based on material from the Russell and Norvig AI Book, Ch. 14 1 Administrativia Bayesian networks The inference problem: given a BN, how to make predictions

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models, Spring 2015 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Yi Cheng, Cong Lu 1 Notation Here the notations used in this course are defined:

More information

Bayesian Networks to design optimal experiments. Davide De March

Bayesian Networks to design optimal experiments. Davide De March Bayesian Networks to design optimal experiments Davide De March davidedemarch@gmail.com 1 Outline evolutionary experimental design in high-dimensional space and costly experimentation the microwell mixture

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Using Graphs to Describe Model Structure. Sargur N. Srihari

Using Graphs to Describe Model Structure. Sargur N. Srihari Using Graphs to Describe Model Structure Sargur N. srihari@cedar.buffalo.edu 1 Topics in Structured PGMs for Deep Learning 0. Overview 1. Challenge of Unstructured Modeling 2. Using graphs to describe

More information

Causal Directed Acyclic Graphs

Causal Directed Acyclic Graphs Causal Directed Acyclic Graphs Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Causal DAGs Stat186/Gov2002 Fall 2018 1 / 15 Elements of DAGs (Pearl. 2000.

More information

Bayesian networks. Independence. Bayesian networks. Markov conditions Inference. by enumeration rejection sampling Gibbs sampler

Bayesian networks. Independence. Bayesian networks. Markov conditions Inference. by enumeration rejection sampling Gibbs sampler Bayesian networks Independence Bayesian networks Markov conditions Inference by enumeration rejection sampling Gibbs sampler Independence if P(A=a,B=a) = P(A=a)P(B=b) for all a and b, then we call A and

More information

Learning Semi-Markovian Causal Models using Experiments

Learning Semi-Markovian Causal Models using Experiments Learning Semi-Markovian Causal Models using Experiments Stijn Meganck 1, Sam Maes 2, Philippe Leray 2 and Bernard Manderick 1 1 CoMo Vrije Universiteit Brussel Brussels, Belgium 2 LITIS INSA Rouen St.

More information

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges

Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges Supplementary material to Structure Learning of Linear Gaussian Structural Equation Models with Weak Edges 1 PRELIMINARIES Two vertices X i and X j are adjacent if there is an edge between them. A path

More information

Arrowhead completeness from minimal conditional independencies

Arrowhead completeness from minimal conditional independencies Arrowhead completeness from minimal conditional independencies Tom Claassen, Tom Heskes Radboud University Nijmegen The Netherlands {tomc,tomh}@cs.ru.nl Abstract We present two inference rules, based on

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Many slides adapted from B. Schiele, S. Roth, Z. Gharahmani Machine Learning Lecture 14 Undirected Graphical Models & Inference 23.06.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

Bayesian Networks for Causal Analysis

Bayesian Networks for Causal Analysis Paper 2776-2018 Bayesian Networks for Causal Analysis Fei Wang and John Amrhein, McDougall Scientific Ltd. ABSTRACT Bayesian Networks (BN) are a type of graphical model that represent relationships between

More information

Towards an extension of the PC algorithm to local context-specific independencies detection

Towards an extension of the PC algorithm to local context-specific independencies detection Towards an extension of the PC algorithm to local context-specific independencies detection Feb-09-2016 Outline Background: Bayesian Networks The PC algorithm Context-specific independence: from DAGs to

More information

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Introduction to Bayes Nets CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Introduction Review probabilistic inference, independence and conditional independence Bayesian Networks - - What

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Parametrizations of Discrete Graphical Models

Parametrizations of Discrete Graphical Models Parametrizations of Discrete Graphical Models Robin J. Evans www.stat.washington.edu/ rje42 10th August 2011 1/34 Outline 1 Introduction Graphical Models Acyclic Directed Mixed Graphs Two Problems 2 Ingenuous

More information

Learning Multivariate Regression Chain Graphs under Faithfulness

Learning Multivariate Regression Chain Graphs under Faithfulness Sixth European Workshop on Probabilistic Graphical Models, Granada, Spain, 2012 Learning Multivariate Regression Chain Graphs under Faithfulness Dag Sonntag ADIT, IDA, Linköping University, Sweden dag.sonntag@liu.se

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Markov Independence (Continued)

Markov Independence (Continued) Markov Independence (Continued) As an Undirected Graph Basic idea: Each variable V is represented as a vertex in an undirected graph G = (V(G), E(G)), with set of vertices V(G) and set of edges E(G) the

More information

Naïve Bayes Classifiers

Naïve Bayes Classifiers Naïve Bayes Classifiers Example: PlayTennis (6.9.1) Given a new instance, e.g. (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong ), we want to compute the most likely hypothesis: v NB

More information

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III Bayesian Networks Announcements: Drop deadline is this Sunday Nov 5 th. All lecture notes needed for T3 posted (L13,,L17). T3 sample

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 16 Undirected Graphs Undirected Separation Inferring Marginals & Conditionals Moralization Junction Trees Triangulation Undirected Graphs Separation

More information

Introduction to Bayesian Networks. Probabilistic Models, Spring 2009 Petri Myllymäki, University of Helsinki 1

Introduction to Bayesian Networks. Probabilistic Models, Spring 2009 Petri Myllymäki, University of Helsinki 1 Introduction to Bayesian Networks Probabilistic Models, Spring 2009 Petri Myllymäki, University of Helsinki 1 On learning and inference Assume n binary random variables X1,...,X n A joint probability distribution

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Cognitive Systems 300: Probability and Causality (cont.)

Cognitive Systems 300: Probability and Causality (cont.) Cognitive Systems 300: Probability and Causality (cont.) David Poole and Peter Danielson University of British Columbia Fall 2013 1 David Poole and Peter Danielson Cognitive Systems 300: Probability and

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Introduction to Bayesian Networks

Introduction to Bayesian Networks Introduction to Bayesian Networks The two-variable case Assume two binary (Bernoulli distributed) variables A and B Two examples of the joint distribution P(A,B): B=1 B=0 P(A) A=1 0.08 0.02 0.10 A=0 0.72

More information

Representation of undirected GM. Kayhan Batmanghelich

Representation of undirected GM. Kayhan Batmanghelich Representation of undirected GM Kayhan Batmanghelich Review Review: Directed Graphical Model Represent distribution of the form ny p(x 1,,X n = p(x i (X i i=1 Factorizes in terms of local conditional probabilities

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

Faithfulness of Probability Distributions and Graphs

Faithfulness of Probability Distributions and Graphs Journal of Machine Learning Research 18 (2017) 1-29 Submitted 5/17; Revised 11/17; Published 12/17 Faithfulness of Probability Distributions and Graphs Kayvan Sadeghi Statistical Laboratory University

More information

Review: Bayesian learning and inference

Review: Bayesian learning and inference Review: Bayesian learning and inference Suppose the agent has to make decisions about the value of an unobserved query variable X based on the values of an observed evidence variable E Inference problem:

More information

Learning causal network structure from multiple (in)dependence models

Learning causal network structure from multiple (in)dependence models Learning causal network structure from multiple (in)dependence models Tom Claassen Radboud University, Nijmegen tomc@cs.ru.nl Abstract Tom Heskes Radboud University, Nijmegen tomh@cs.ru.nl We tackle the

More information

Causal Reasoning with Ancestral Graphs

Causal Reasoning with Ancestral Graphs Journal of Machine Learning Research 9 (2008) 1437-1474 Submitted 6/07; Revised 2/08; Published 7/08 Causal Reasoning with Ancestral Graphs Jiji Zhang Division of the Humanities and Social Sciences California

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

Causal Models. Macartan Humphreys. September 4, Abstract Notes for G8412. Some background on DAGs and questions on an argument.

Causal Models. Macartan Humphreys. September 4, Abstract Notes for G8412. Some background on DAGs and questions on an argument. Causal Models Macartan Humphreys September 4, 2018 Abstract Notes for G8412. Some background on DAGs and questions on an argument. 1 A note on DAGs DAGs directed acyclic graphs are diagrams used to represent

More information

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Bayesian networks: Representation

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Bayesian networks: Representation STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas Bayesian networks: Representation Motivation Explicit representation of the joint distribution is unmanageable Computationally:

More information

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Proceedings of Machine Learning Research vol 73:21-32, 2017 AMBN 2017 Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Jose M. Peña Linköping University Linköping (Sweden) jose.m.pena@liu.se

More information

Probabilistic Causal Models

Probabilistic Causal Models Probabilistic Causal Models A Short Introduction Robin J. Evans www.stat.washington.edu/ rje42 ACMS Seminar, University of Washington 24th February 2011 1/26 Acknowledgements This work is joint with Thomas

More information

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Alessandro Antonucci Marco Zaffalon IDSIA, Istituto Dalle Molle di Studi sull

More information

4.1 Notation and probability review

4.1 Notation and probability review Directed and undirected graphical models Fall 2015 Lecture 4 October 21st Lecturer: Simon Lacoste-Julien Scribe: Jaime Roquero, JieYing Wu 4.1 Notation and probability review 4.1.1 Notations Let us recall

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net Bayesian Networks aka belief networks, probabilistic networks A BN over variables {X 1, X 2,, X n } consists of: a DAG whose nodes are the variables a set of PTs (Pr(X i Parents(X i ) ) for each X i P(a)

More information

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 4/8/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

Summary of the Bayes Net Formalism. David Danks Institute for Human & Machine Cognition

Summary of the Bayes Net Formalism. David Danks Institute for Human & Machine Cognition Summary of the Bayes Net Formalism David Danks Institute for Human & Machine Cognition Bayesian Networks Two components: 1. Directed Acyclic Graph (DAG) G: There is a node for every variable D: Some nodes

More information

Graphical Models. Chapter Conditional Independence and Factor Models

Graphical Models. Chapter Conditional Independence and Factor Models Chapter 21 Graphical Models We have spent a lot of time looking at ways of figuring out how one variable (or set of variables) depends on another variable (or set of variables) this is the core idea in

More information

Directed acyclic graphs with edge-specific bounds

Directed acyclic graphs with edge-specific bounds Biometrika (2012), 99,1,pp. 115 126 doi: 10.1093/biomet/asr059 C 2011 Biometrika Trust Advance Access publication 20 December 2011 Printed in Great Britain Directed acyclic graphs with edge-specific bounds

More information

Artificial Intelligence Bayes Nets: Independence

Artificial Intelligence Bayes Nets: Independence Artificial Intelligence Bayes Nets: Independence Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter

More information

Lecture 17: May 29, 2002

Lecture 17: May 29, 2002 EE596 Pat. Recog. II: Introduction to Graphical Models University of Washington Spring 2000 Dept. of Electrical Engineering Lecture 17: May 29, 2002 Lecturer: Jeff ilmes Scribe: Kurt Partridge, Salvador

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Kyu-Baek Hwang and Byoung-Tak Zhang Biointelligence Lab School of Computer Science and Engineering Seoul National University Seoul 151-742 Korea E-mail: kbhwang@bi.snu.ac.kr

More information

Automatic Causal Discovery

Automatic Causal Discovery Automatic Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour Dept. of Philosophy & CALD Carnegie Mellon 1 Outline 1. Motivation 2. Representation 3. Discovery 4. Using Regression for Causal

More information

Axioms of Probability? Notation. Bayesian Networks. Bayesian Networks. Today we ll introduce Bayesian Networks.

Axioms of Probability? Notation. Bayesian Networks. Bayesian Networks. Today we ll introduce Bayesian Networks. Bayesian Networks Today we ll introduce Bayesian Networks. This material is covered in chapters 13 and 14. Chapter 13 gives basic background on probability and Chapter 14 talks about Bayesian Networks.

More information

Building Bayesian Networks. Lecture3: Building BN p.1

Building Bayesian Networks. Lecture3: Building BN p.1 Building Bayesian Networks Lecture3: Building BN p.1 The focus today... Problem solving by Bayesian networks Designing Bayesian networks Qualitative part (structure) Quantitative part (probability assessment)

More information

Directed acyclic graphs and the use of linear mixed models

Directed acyclic graphs and the use of linear mixed models Directed acyclic graphs and the use of linear mixed models Siem H. Heisterkamp 1,2 1 Groningen Bioinformatics Centre, University of Groningen 2 Biostatistics and Research Decision Sciences (BARDS), MSD,

More information

Part I Qualitative Probabilistic Networks

Part I Qualitative Probabilistic Networks Part I Qualitative Probabilistic Networks In which we study enhancements of the framework of qualitative probabilistic networks. Qualitative probabilistic networks allow for studying the reasoning behaviour

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Franz Pernkopf, Robert Peharz, Sebastian Tschiatschek Graz University of Technology, Laboratory of Signal Processing and Speech Communication Inffeldgasse

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Equivalence in Non-Recursive Structural Equation Models

Equivalence in Non-Recursive Structural Equation Models Equivalence in Non-Recursive Structural Equation Models Thomas Richardson 1 Philosophy Department, Carnegie-Mellon University Pittsburgh, P 15213, US thomas.richardson@andrew.cmu.edu Introduction In the

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables N-1 Experiments Suffice to Determine the Causal Relations Among N Variables Frederick Eberhardt Clark Glymour 1 Richard Scheines Carnegie Mellon University Abstract By combining experimental interventions

More information