System Identification for MPC

Size: px
Start display at page:

Download "System Identification for MPC"

Transcription

1 System Identification for MPC Conflict of Conflux? B. Erik Ydstie, Carnegie Mellon University Course Objectives: 1. The McNamara Program for MPC 2. The Feldbaum Program for MPC 3. From Optimal Control to MPC to SYSID for Control and Back 4.Towards Tractable Optimization Formulations 5. State of Art (Challenging Problem of Integration and Software) B Erik Ydstie, CMU 1

2 System Identification (SYSID) Review Mass and Energy Balance Constraints (nonlinear) dz i dt =p i(z)+ y k =h k (z), n MV X+n DV j=1 Linear (output) error model e(t) =y(t) f i (u j,z), k =1,...,n PV G p (q 1 )u(t) i =1,...,n Model Predictive Controller Distributed Control System (DCS) Control Inputs u Interface Layer (SCADA) Measured Outputs y Setpoints y* Capture Flowsheet structure Energy and material balances - Collinearity - Uncollinearity Feed FT LT TT CT FT Used for very large systems 50 + MV/DVs 100+ CVs FT Product Cooling water return

3 Data Flow Prior Information Step-response State Space Laguerre, Tuning Parameters,.XML.TXT MPC Control ABB Honeywell Aspen Emerson Process B. Erik Ydstie, ILS Inc. 3

4 MPC SYSID Boiler Master Turbine Master Controls (Emerson/Ovation) Turbine Controls for Siemens SYSID Data from Model estimated using output error identification (global optimality) B. Erik Ydstie

5 B. Erik Ydstie

6 Prior Information: System Strucure Prior structure of G Digraph (edges in the process network) Parametric representation for each G ij (nodes) Information of collinearity structure Process Data Semi-closed loop Experiment Design N(n, m) = 400 G 25 Collinearity: SVD RGA Angles G 38 (n 1)n(m 1)m 4 = 2970, 7! 0.12 deg separation Bilinear constraints Digraph Network I/O Data 10 MV/DVs 12 CVs Problem: Define the Operator G that best matches the prior information and process data Bayes Estimation Problem with Constraints

7 Prior Information: Model Structures Polynomials used B A,B A,B,C B,F Name FIR, SR ARX, Equation error, Instrumental variables,.. ARMAX, AML OE (Output Error, Markov-Laguerre, Kautz,..) State space representations have become popular for multivariable systems after the introduction of sub-space identification. Halfway Conclusion: The components are in place for systematic SYSID Software is lacking Quite difficult to do due to non-stationary disturbances Theory not that easy to understand completely Comprehensive Software solutions not available yet. B. Erik Ydstie, ILS Inc. 7

8 The Admissibility Problem rank [ B AB A B A B] 2 n-1 = n Reachability: Any state can be reached in a finite amount of time B( q) y ( t) = u( t) A( q) Observability: Any state can be determined in a finite amount of time éc ê ê CA rankêca ê ê ê ëca 2 n-1 ù ú ú ú ú ú ú û = n A(q) and B(q) no common factors = Observable+Controllable (Co-prime) A(q) and B(q) no common unstable factors = Detectable+Stabilizable Detectable: Stabilizable: Any unstable state is observable Any unstable state is reachable The FIR / Markov-Laguerre Models are automatically stabilizable 8

9 MISO Identification NX u(k)u(k i) N k=1 MV7 is most excited MV2 is least excited Cond(F) = O(1) Excitation MV 1 D MV2 A MV3 A MV 4 A MV 5 A MV 6 A CV 3 Prior (blue) Update (red) Data (yellow) Data is persistently excited from a SISO case. We get (Ljung, Wahlberg, Forsell) Bias and Variance: Bias Variance B. Erik Ydstie, ILS Inc. 9

10 Generating Multivariable Input Signals u 1 y 1 System u 2 Same results hold as long as PE and independent noise and disturbance sequences. Results based law of large numbers, difficult to achieve using PRBS type excitation. y 2 Orthogonal inputs: 1 N NX u(k)u(k i) =V (N) T V (N i) =R(N) = k=1 R>0, i =0 0, i 6= 0 Input sequences must be independent in time wrt to the network [0.2019] Mass balance constraints in the process apple B. Erik Ydstie, ILS Inc. 10

11 Closed Loop System: Closed Loop Identification y(t) =G c 0(q 1 )u(t)+h0(q c 1 )v(t) G c 0(q 1 )=S0(q c 1 )G 0 (q 1 ) H0(q c 1 )=S0(q c 1 )H 0 (q 1 ) Excitation Process Issues for closed loop identification: MPC S0(q c 1 1 Model parameterization )= 1+G 0 (q 1 )K(q 1 ) Algorithm and mathematical approach Filters to shape bias and variance Excitation (complete theory for SISO, Lacking for MIMO, some progress for Networks Extension to multivariable case (treated very superficially in most books and papers) Methods that may fail: Regression type models (equation error, instrumental variables) Subspace methods Compensation methods (direct and indirect) Correlation/spectral methods Use output error methods for identification (open and closed loop) B. Erik Ydstie, ILS Inc. 11

12 Integration of SYSID with MPC: The Decision Problem Model and Desired Performance Objectives Robert McNamara,1960, (CEO Ford, US Secretary of State) Control/Plan Process Measure 1. Defining clear business objectives (Stable/Robust Performance) 2. Developing plans to achieve the objectives (Predictive Control) 3. Systematically monitoring progress against the plan (Feedback, Filter) 4. Adapt objectives/plans as new needs and opportunities arise (Identification) Repeated Identification -> Iterative Learning -> Adaptive Control 12

13 The McNamara Program for MPC Performance Objectives Model and Desired Performance Objectives MPC Design/Identify/Adapt MPC Process Measure Evaluate Critic Current Practice Predictive Model 1. Measure, evaluate and critique (Gap analysis) 2. Control strategies (Optimal Control/Model Predictive Control/H infinity ) 3. Identification, Learning, Adaptation a) Adapt Controllers (directly or indirectly) b) Adapt Performance Objectives (closed loop, Q,R/move suppression) The Decision problem is driven by Uncertainty (more than accurate models) Numerous Practical and Theoretical Challenges Remain MPC provides a fruitful Paradigm to Study these Challenges 13

14 min u2u,y2y The Feldbaum (1961) Program 1X (y(t + i + 1) y(t + i + 1) ) 2 + ru(t + i) 2 i=1 Optimal (Certainty Equivalent, LQ Optimal Control, 1980 to MPC) Caution (Robust H 1 Control, 1980 ) * Probing (System ID / Adaptation, 1980 ) Each field well advanced, but poorly integrated (Especially on the software side) * min u(t+i) TX ˆx(t + i) T Qˆx(t + i)+u(t + i) T Ru(t + i) i=0 {z } Finite Horizon Cost Subject to: +ˆx(t + i) T P ˆx(t + i) {z } Terminal Cost ˆx(t + 1) = Aˆx(t) + Bu(t) ˆx(t + i) min apple ˆx(t + i) apple ˆx(t + i) max u(t + i) min apple u(t + i) apple u(t + i) max B Erik Ydstie, CMU 14

15 From LQ to MPC and Back Again Step 1: Formulate a (linear) model x(t + 1) = Ax(t)+Bu f (t)+ke(t) ŷ(t) = T x(t)+du f (t)+e(t) Step 2: Split Objective in Two and use Predictions from Model X T 1 min u2u,ŷ2y i=0 (ŷ(t + i + 1) y(t + i + 1) ) 2 + ru(t + i) 2 {z } Model Predictive Control + 1X i=t (ŷ(t + i + 1) y(t + i + 1) ) 2 + ru(t + i) 2 {z } LQ Control Step 3: Ignore last part Step 4: Solve QP and use first control. Step 3: Repeat Step 4 (and hope for the best) x(t + T ) T P T x(t + T ) Theory for robust stability and performance B Erik Ydstie, CMU 15

16 MPC and SYSID: Learn from the Past and Control Into the Future Step 2B: Split Objective in Three and use Past Information min 2 i=0 min u2u,ŷ2y NX (ŷ(t i) y(t i) ) 2 +( 0 ) T F 0 ( 0 ) {z } SYSID Bayes 1X (ŷ(t + i + 1) y(t + i + 1) ) 2 + ru(t + i) 2 {z } i=1 Robust MPC Model Identified from Past Data Control Into the Future Adaptive Control Iterative Control Closed Loop Identification Identification for Control +++ Basic Idea: Controller works while data is collected (0) 7! (t 1 ) 7! (t 2 ),... B Erik Ydstie, CMU 16

17 SYSID and MPC - Conflict or Conflux? Adapted from Polderman (1986) Definition: An Identification Based Control is said to be Self-Tuning if SYSID gives the correct control Set of Identified Models : Set of Parameters with correct controls : Control and Estimation are Self Tuningif : G H H G Exampe: LTI System: u y(t) = ay(t 1) + bu(t 1) e(t) =y(t) ŷ(t) y System Model - + Linear feedback: u(t) =K(â, ˆb)y(t) Question: Will system satisfy performance specifications when the same control is applied to both systems? (The question of (Roust Lagrange) stability for closed loop identification and control was addressed by 1995)

18 Analysis: Assume model output matches plant output G = {â, ˆb : ay(t 1) bk( )x(t) {z } y(t) =ây(t 1) ˆbK( )x(t) } {z } ŷ(t) An infinite number of solutions. These depend on K. Example 1: One step ahead predictive control b The admissible set Solve for u(t) : y(t + 1) = ay(t)+bu(t) a u(t) = â ˆb y(t) G = Get correct control even if parameter estimates are off. â, ˆb : a b = â ˆb Thm: Any identifier that minimizes prediction error is self tuning when used with minimum variance control. Admissibility Problem (close to singularity gives large, oscillatory controls) (Problem of direction ) B Erik Ydstie, CMU 18

19 The set that gives correct controls H = â, ˆb : a b y(t)) = â ˆb y(t) H G b Example 2: Pole placement control (Vogel and Edgar, Find gains so that : y(t) =a 0 y(t 1), 0 <a 0 < 1 u(t) = â a 0 ˆb Admissible set y(t) a H = â, ˆb : H G a a 0 b y(t)) = â a 0 ˆb y(t) Thm: Any identifier that minimizes prediction error is self tuning when used with pole-placement. In this case Admissibility is more Complex as we require: Observability and Controllability Can be expressed as Bilinear Constraints in SYSID problem. B Erik Ydstie, CMU It is going well so far!! 19

20 Example 3: Model Predictive Control min (y (t + 1)2 + ru(t)2 ) + py(t + 1)2 u u(t) = ba r + b2 5 G= H= H ( a, b : a a, b : a = (b a a0 b b ) y(t)) = r + b 2 ) a a0 ˆ ba b y(t) H 6 G unless : 0 r = 0 and/or G a = a, b = b H Thm: MPC does NOT satisfy the self-tuning principle. B Erik Ydstie, CMU 20

21 Problem: Information in the Past is Not Connected to Future Information Additional means are needed to get optimal controls for MPC. Persistent Excitation to Converge Controls More Complex Controls to Align sets G and H? Intelligent Excitation (SYSID for Control, Dual Control) B Erik Ydstie, CMU 21

22 From Feldbaum to MPC and Back min u2u,y2y TX (y(t + i) y(t + i) ) 2 + ru(t + i) 2 + i=1 {z } Model Predictive Control 1X i=t +1 (y(t + i) y(t + i) ) 2 + ru(t + i) 2 {z } LQ Control min u2u,ŷ2y TX (ŷ(t + i) y(t + i) ) 2 + ru(t + i) 2 + x(t + i) T F (t + i) 1 x(t + i) +x(t)p T x(t) {z } {z } Robust CE AMPC Information Gathering i=1 ŷ(t + i) F (t + i) Maximum Likelihood Estimate Fisher Information Matrix Challenges (identification using past data is the easiest): Solve a robust control problem on line (structured and unstructured uncertainty) Back out control signals from forward propagation of Fisher matrix What to do with the arrival cost B Erik Ydstie, CMU 22

23 Special Case (TA Heirung/ J Morinelly) Fix the transition matrix A (step-response/kautz model) Solve CE (rather than robust H infinity ) control problem (caution related to parameter uncertainty only) Ignore arrival cost Computationally Expensive and Untested

24 So What are the Issues? Data Rich But Information Poor Systems (Nature is not a kind adversary) MPC and SYSID - Conflict or Conflux? How to represent/parametrize the system How to excite the system How to manage changing models Directionality Complexity Software 24

25 Conclusions MPC is not self tuning There is a strong" inter-action between control and identification Different ways to solve the problem More complex control External Excitation (setpoints/inputs) Identification for control Need to Retune Controller when model changes Collinearity issue is not well understood Very Large scale Applications are challenging MPC Maintenance is still challenging 25

26 4756 lines of assembly code (1983) 15 lines of MATLAB code (2014) Golden Opportunities Pitt CMU

Adaptive Robust Control

Adaptive Robust Control Adaptive Robust Control Adaptive control: modifies the control law to cope with the fact that the system and environment are uncertain. Robust control: sacrifices performance by guaranteeing stability

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

CBE495 LECTURE IV MODEL PREDICTIVE CONTROL

CBE495 LECTURE IV MODEL PREDICTIVE CONTROL What is Model Predictive Control (MPC)? CBE495 LECTURE IV MODEL PREDICTIVE CONTROL Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University * Some parts are from

More information

Dynamic measurement: application of system identification in metrology

Dynamic measurement: application of system identification in metrology 1 / 25 Dynamic measurement: application of system identification in metrology Ivan Markovsky Dynamic measurement takes into account the dynamical properties of the sensor 2 / 25 model of sensor as dynamical

More information

Identification of ARX, OE, FIR models with the least squares method

Identification of ARX, OE, FIR models with the least squares method Identification of ARX, OE, FIR models with the least squares method CHEM-E7145 Advanced Process Control Methods Lecture 2 Contents Identification of ARX model with the least squares minimizing the equation

More information

On Identification of Cascade Systems 1

On Identification of Cascade Systems 1 On Identification of Cascade Systems 1 Bo Wahlberg Håkan Hjalmarsson Jonas Mårtensson Automatic Control and ACCESS, School of Electrical Engineering, KTH, SE-100 44 Stockholm, Sweden. (bo.wahlberg@ee.kth.se

More information

FRTN 15 Predictive Control

FRTN 15 Predictive Control Department of AUTOMATIC CONTROL FRTN 5 Predictive Control Final Exam March 4, 27, 8am - 3pm General Instructions This is an open book exam. You may use any book you want, including the slides from the

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Recursive Identification in Closed-Loop and Adaptive Control Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Overview Guy Dumont Department of Electrical and Computer Engineering University of British Columbia Lectures: Thursday 09h00-12h00 Location: PPC 101 Guy Dumont (UBC) EECE 574

More information

Identification in closed-loop, MISO identification, practical issues of identification

Identification in closed-loop, MISO identification, practical issues of identification Identification in closed-loop, MISO identification, practical issues of identification CHEM-E7145 Advanced Process Control Methods Lecture 4 Contents Identification in practice Identification in closed-loop

More information

f-domain expression for the limit model Combine: 5.12 Approximate Modelling What can be said about H(q, θ) G(q, θ ) H(q, θ ) with

f-domain expression for the limit model Combine: 5.12 Approximate Modelling What can be said about H(q, θ) G(q, θ ) H(q, θ ) with 5.2 Approximate Modelling What can be said about if S / M, and even G / G? G(q, ) H(q, ) f-domain expression for the limit model Combine: with ε(t, ) =H(q, ) [y(t) G(q, )u(t)] y(t) =G (q)u(t) v(t) We know

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Lecture 7: Discrete-time Models. Modeling of Physical Systems. Preprocessing Experimental Data.

Lecture 7: Discrete-time Models. Modeling of Physical Systems. Preprocessing Experimental Data. ISS0031 Modeling and Identification Lecture 7: Discrete-time Models. Modeling of Physical Systems. Preprocessing Experimental Data. Aleksei Tepljakov, Ph.D. October 21, 2015 Discrete-time Transfer Functions

More information

12. Prediction Error Methods (PEM)

12. Prediction Error Methods (PEM) 12. Prediction Error Methods (PEM) EE531 (Semester II, 2010) description optimal prediction Kalman filter statistical results computational aspects 12-1 Description idea: determine the model parameter

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

Introduction to System Identification and Adaptive Control

Introduction to System Identification and Adaptive Control Introduction to System Identification and Adaptive Control A. Khaki Sedigh Control Systems Group Faculty of Electrical and Computer Engineering K. N. Toosi University of Technology May 2009 Introduction

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller

More information

System Identification for Process Control: Recent Experiences and a Personal Outlook

System Identification for Process Control: Recent Experiences and a Personal Outlook System Identification for Process Control: Recent Experiences and a Personal Outlook Yucai Zhu Eindhoven University of Technology Eindhoven, The Netherlands and Tai-Ji Control Best, The Netherlands Contents

More information

Stochastic and Adaptive Optimal Control

Stochastic and Adaptive Optimal Control Stochastic and Adaptive Optimal Control Robert Stengel Optimal Control and Estimation, MAE 546 Princeton University, 2018! Nonlinear systems with random inputs and perfect measurements! Stochastic neighboring-optimal

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

Module 08 Observability and State Estimator Design of Dynamical LTI Systems Module 08 Observability and State Estimator Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha November

More information

Using Neural Networks for Identification and Control of Systems

Using Neural Networks for Identification and Control of Systems Using Neural Networks for Identification and Control of Systems Jhonatam Cordeiro Department of Industrial and Systems Engineering North Carolina A&T State University, Greensboro, NC 27411 jcrodrig@aggies.ncat.edu

More information

Observability. It was the property in Lyapunov stability which allowed us to resolve that

Observability. It was the property in Lyapunov stability which allowed us to resolve that Observability We have seen observability twice already It was the property which permitted us to retrieve the initial state from the initial data {u(0),y(0),u(1),y(1),...,u(n 1),y(n 1)} It was the property

More information

Performance assessment of MIMO systems under partial information

Performance assessment of MIMO systems under partial information Performance assessment of MIMO systems under partial information H Xia P Majecki A Ordys M Grimble Abstract Minimum variance (MV) can characterize the most fundamental performance limitation of a system,

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström PREDICTIO ERROR METHODS Torsten Söderström Department of Systems and Control, Information Technology, Uppsala University, Uppsala, Sweden Keywords: prediction error method, optimal prediction, identifiability,

More information

IDENTIFICATION FOR CONTROL

IDENTIFICATION FOR CONTROL IDENTIFICATION FOR CONTROL Raymond A. de Callafon, University of California San Diego, USA Paul M.J. Van den Hof, Delft University of Technology, the Netherlands Keywords: Controller, Closed loop model,

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

More information

Modeling and Identification of Dynamic Systems (vimmd312, 2018)

Modeling and Identification of Dynamic Systems (vimmd312, 2018) Modeling and Identification of Dynamic Systems (vimmd312, 2018) Textbook background of the curriculum taken. In parenthesis: material not reviewed due to time shortage, but which is suggested to be read

More information

Lazy learning for control design

Lazy learning for control design Lazy learning for control design Gianluca Bontempi, Mauro Birattari, Hugues Bersini Iridia - CP 94/6 Université Libre de Bruxelles 5 Bruxelles - Belgium email: {gbonte, mbiro, bersini}@ulb.ac.be Abstract.

More information

Adaptive Dual Control

Adaptive Dual Control Adaptive Dual Control Björn Wittenmark Department of Automatic Control, Lund Institute of Technology Box 118, S-221 00 Lund, Sweden email: bjorn@control.lth.se Keywords: Dual control, stochastic control,

More information

INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk

INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN. Leonid Lyubchyk CINVESTAV Department of Automatic Control November 3, 20 INVERSE MODEL APPROACH TO DISTURBANCE REJECTION AND DECOUPLING CONTROLLER DESIGN Leonid Lyubchyk National Technical University of Ukraine Kharkov

More information

Iterative Learning Control (ILC)

Iterative Learning Control (ILC) Department of Automatic Control LTH, Lund University ILC ILC - the main idea Time Domain ILC approaches Stability Analysis Example: The Milk Race Frequency Domain ILC Example: Marine Vibrator Material:

More information

2 Introduction of Discrete-Time Systems

2 Introduction of Discrete-Time Systems 2 Introduction of Discrete-Time Systems This chapter concerns an important subclass of discrete-time systems, which are the linear and time-invariant systems excited by Gaussian distributed stochastic

More information

Optimal control and estimation

Optimal control and estimation Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

Process Modelling, Identification, and Control

Process Modelling, Identification, and Control Jan Mikles Miroslav Fikar 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Process Modelling, Identification, and

More information

Ten years of progress in Identification for Control. Outline

Ten years of progress in Identification for Control. Outline Ten years of progress in Identification for Control Design and Optimization of Restricted Complexity Controllers Grenoble Workshop, 15-16 January, 2003 Michel Gevers CESAME - UCL, Louvain-la-Neuve, Belgium

More information

Data mining for system identi cation

Data mining for system identi cation LERTEKNIK REG AU T O MA RO T IC C O N T L applications to process André Carvalho Bittencourt Automatic Control, Linköping Sweden Outline 1. Problem formulation. Theoretical guiding principles Modeling

More information

Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES. Professor Dae Ryook Yang

Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES. Professor Dae Ryook Yang Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems, K.U. Leuven Workshop on Observation and Estimation Ben Gurion University, July 3, 2004 p./2 Joint

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Lecture 6: Deterministic Self-Tuning Regulators

Lecture 6: Deterministic Self-Tuning Regulators Lecture 6: Deterministic Self-Tuning Regulators Feedback Control Design for Nominal Plant Model via Pole Placement Indirect Self-Tuning Regulators Direct Self-Tuning Regulators c Anton Shiriaev. May, 2007.

More information

Control Systems Lab - SC4070 System Identification and Linearization

Control Systems Lab - SC4070 System Identification and Linearization Control Systems Lab - SC4070 System Identification and Linearization Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.:015-2788131 TU Delft, February 13, 2015 (slides

More information

6 OUTPUT FEEDBACK DESIGN

6 OUTPUT FEEDBACK DESIGN 6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple

More information

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

More information

The Rationale for Second Level Adaptation

The Rationale for Second Level Adaptation The Rationale for Second Level Adaptation Kumpati S. Narendra, Yu Wang and Wei Chen Center for Systems Science, Yale University arxiv:1510.04989v1 [cs.sy] 16 Oct 2015 Abstract Recently, a new approach

More information

OPTIMAL CONTROL AND ESTIMATION

OPTIMAL CONTROL AND ESTIMATION OPTIMAL CONTROL AND ESTIMATION Robert F. Stengel Department of Mechanical and Aerospace Engineering Princeton University, Princeton, New Jersey DOVER PUBLICATIONS, INC. New York CONTENTS 1. INTRODUCTION

More information

Closed Loop Identification (L26)

Closed Loop Identification (L26) Stochastic Adaptive Control (02421) www.imm.dtu.dk/courses/02421 Niels Kjølstad Poulsen Build. 303B, room 016 Section for Dynamical Systems Dept. of Applied Mathematics and Computer Science The Technical

More information

Further Results on Model Structure Validation for Closed Loop System Identification

Further Results on Model Structure Validation for Closed Loop System Identification Advances in Wireless Communications and etworks 7; 3(5: 57-66 http://www.sciencepublishinggroup.com/j/awcn doi:.648/j.awcn.735. Further esults on Model Structure Validation for Closed Loop System Identification

More information

Synthesis via State Space Methods

Synthesis via State Space Methods Chapter 18 Synthesis via State Space Methods Here, we will give a state space interpretation to many of the results described earlier. In a sense, this will duplicate the earlier work. Our reason for doing

More information

Time-Invariant Linear Quadratic Regulators!

Time-Invariant Linear Quadratic Regulators! Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 17 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Identification of MIMO linear models: introduction to subspace methods

Identification of MIMO linear models: introduction to subspace methods Identification of MIMO linear models: introduction to subspace methods Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali Politecnico di Milano marco.lovera@polimi.it State space identification

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

EI6801 Computer Control of Processes Dept. of EIE and ICE

EI6801 Computer Control of Processes Dept. of EIE and ICE Unit I DISCRETE STATE-VARIABLE TECHNIQUE State equation of discrete data system with sample and hold State transition equation Methods of computing the state transition matrix Decomposition of discrete

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant Boris M. Mirkin and Per-Olof Gutman Faculty of Agricultural Engineering Technion Israel Institute of Technology Haifa 3, Israel

More information

A New Subspace Identification Method for Open and Closed Loop Data

A New Subspace Identification Method for Open and Closed Loop Data A New Subspace Identification Method for Open and Closed Loop Data Magnus Jansson July 2005 IR S3 SB 0524 IFAC World Congress 2005 ROYAL INSTITUTE OF TECHNOLOGY Department of Signals, Sensors & Systems

More information

Exam. 135 minutes, 15 minutes reading time

Exam. 135 minutes, 15 minutes reading time Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Subspace-based Identification

Subspace-based Identification of Infinite-dimensional Multivariable Systems from Frequency-response Data Department of Electrical and Electronics Engineering Anadolu University, Eskişehir, Turkey October 12, 2008 Outline 1 2 3 4 Noise-free

More information

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification 1. Consider the time series x(k) = β 1 + β 2 k + w(k) where β 1 and β 2 are known constants

More information

Fundamental Principles of Process Control

Fundamental Principles of Process Control Fundamental Principles of Process Control Motivation for Process Control Safety First: people, environment, equipment The Profit Motive: meeting final product specs minimizing waste production minimizing

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

IEOR 265 Lecture 14 (Robust) Linear Tube MPC

IEOR 265 Lecture 14 (Robust) Linear Tube MPC IEOR 265 Lecture 14 (Robust) Linear Tube MPC 1 LTI System with Uncertainty Suppose we have an LTI system in discrete time with disturbance: x n+1 = Ax n + Bu n + d n, where d n W for a bounded polytope

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski. Solutions to Problem Set 1 1. Massachusetts Institute of Technology

6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski. Solutions to Problem Set 1 1. Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Solutions to Problem Set 1 1 Problem 1.1T Consider the

More information

System Identification

System Identification System Identification Lecture : Statistical properties of parameter estimators, Instrumental variable methods Roy Smith 8--8. 8--8. Statistical basis for estimation methods Parametrised models: G Gp, zq,

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER Exercise 54 Consider the system: ẍ aẋ bx u where u is the input and x the output signal (a): Determine a state space realization (b): Is the

More information

Stochastic Optimal Control!

Stochastic Optimal Control! Stochastic Control! Robert Stengel! Robotics and Intelligent Systems, MAE 345, Princeton University, 2015 Learning Objectives Overview of the Linear-Quadratic-Gaussian (LQG) Regulator Introduction to Stochastic

More information

COMBINED ADAPTIVE CONTROLLER FOR UAV GUIDANCE

COMBINED ADAPTIVE CONTROLLER FOR UAV GUIDANCE COMBINED ADAPTIVE CONTROLLER FOR UAV GUIDANCE B.R. Andrievsky, A.L. Fradkov Institute for Problems of Mechanical Engineering of Russian Academy of Sciences 61, Bolshoy av., V.O., 199178 Saint Petersburg,

More information

Full State Feedback for State Space Approach

Full State Feedback for State Space Approach Full State Feedback for State Space Approach State Space Equations Using Cramer s rule it can be shown that the characteristic equation of the system is : det[ si A] 0 Roots (for s) of the resulting polynomial

More information

Contents lecture 6 2(17) Automatic Control III. Summary of lecture 5 (I/III) 3(17) Summary of lecture 5 (II/III) 4(17) H 2, H synthesis pros and cons:

Contents lecture 6 2(17) Automatic Control III. Summary of lecture 5 (I/III) 3(17) Summary of lecture 5 (II/III) 4(17) H 2, H synthesis pros and cons: Contents lecture 6 (7) Automatic Control III Lecture 6 Linearization and phase portraits. Summary of lecture 5 Thomas Schön Division of Systems and Control Department of Information Technology Uppsala

More information

Industrial Model Predictive Control

Industrial Model Predictive Control Industrial Model Predictive Control Emil Schultz Christensen Kongens Lyngby 2013 DTU Compute-M.Sc.-2013-49 Technical University of Denmark DTU Compute Matematiktovet, Building 303B, DK-2800 Kongens Lyngby,

More information

LQR and H 2 control problems

LQR and H 2 control problems LQR and H 2 control problems Domenico Prattichizzo DII, University of Siena, Italy MTNS - July 5-9, 2010 D. Prattichizzo (Siena, Italy) MTNS - July 5-9, 2010 1 / 23 Geometric Control Theory for Linear

More information

A Mathematica Toolbox for Signals, Models and Identification

A Mathematica Toolbox for Signals, Models and Identification The International Federation of Automatic Control A Mathematica Toolbox for Signals, Models and Identification Håkan Hjalmarsson Jonas Sjöberg ACCESS Linnaeus Center, Electrical Engineering, KTH Royal

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

Closed loop Identification of Four Tank Set up Using Direct Method

Closed loop Identification of Four Tank Set up Using Direct Method Closed loop Identification of Four Tan Set up Using Direct Method Mrs. Mugdha M. Salvi*, Dr.(Mrs) J. M. Nair** *(Department of Instrumentation Engg., Vidyavardhini s College of Engg. Tech., Vasai, Maharashtra,

More information

Analog Signals and Systems and their properties

Analog Signals and Systems and their properties Analog Signals and Systems and their properties Main Course Objective: Recall course objectives Understand the fundamentals of systems/signals interaction (know how systems can transform or filter signals)

More information

Cautious Data Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark

Cautious Data Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark Prof. Michel Verhaegen Delft Center for Systems and Control Delft University of Technology the Netherlands November 28, 2011 Prof.

More information

IDENTIFICATION OF A TWO-INPUT SYSTEM: VARIANCE ANALYSIS

IDENTIFICATION OF A TWO-INPUT SYSTEM: VARIANCE ANALYSIS IDENTIFICATION OF A TWO-INPUT SYSTEM: VARIANCE ANALYSIS M Gevers,1 L Mišković,2 D Bonvin A Karimi Center for Systems Engineering and Applied Mechanics (CESAME) Université Catholique de Louvain B-1348 Louvain-la-Neuve,

More information

Steady State Kalman Filter

Steady State Kalman Filter Steady State Kalman Filter Infinite Horizon LQ Control: ẋ = Ax + Bu R positive definite, Q = Q T 2Q 1 2. (A, B) stabilizable, (A, Q 1 2) detectable. Solve for the positive (semi-) definite P in the ARE:

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

Didier HENRION henrion

Didier HENRION   henrion POLYNOMIAL METHODS FOR ROBUST CONTROL PART I.1 ROBUST STABILITY ANALYSIS: SINGLE PARAMETER UNCERTAINTY Didier HENRION www.laas.fr/ henrion henrion@laas.fr Pont Neuf over river Garonne in Toulouse June

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

More information

Controllability, Observability, Full State Feedback, Observer Based Control

Controllability, Observability, Full State Feedback, Observer Based Control Multivariable Control Lecture 4 Controllability, Observability, Full State Feedback, Observer Based Control John T. Wen September 13, 24 Ref: 3.2-3.4 of Text Controllability ẋ = Ax + Bu; x() = x. At time

More information

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS BALANCING-RELATED Peter Benner Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz Computational Methods with Applications Harrachov, 19 25 August 2007

More information

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Abstract As in optimal control theory, linear quadratic (LQ) differential games (DG) can be solved, even in high dimension,

More information

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

10 Transfer Matrix Models

10 Transfer Matrix Models MIT EECS 6.241 (FALL 26) LECTURE NOTES BY A. MEGRETSKI 1 Transfer Matrix Models So far, transfer matrices were introduced for finite order state space LTI models, in which case they serve as an important

More information

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model On a Data Assimilation Method coupling, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model 2016 SIAM Conference on Uncertainty Quantification Basile Marchand 1, Ludovic

More information

Progress in MPC Identification: A Case Study on Totally Closed-Loop Plant Test

Progress in MPC Identification: A Case Study on Totally Closed-Loop Plant Test Progress in MPC Identification: A Case Study on Totally Closed-Loop Plant Test Yucai Zhu Grensheuvel 10, 5685 AG Best, The Netherlands Phone +31.499.465692, fax +31.499.465693, y.zhu@taijicontrol.com Abstract:

More information

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles HYBRID PREDICTIVE OUTPUT FEEDBACK STABILIZATION OF CONSTRAINED LINEAR SYSTEMS Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information