Frequency-Controlled Current-Fed Resonant Converter with No Input Ripple Current

Size: px
Start display at page:

Download "Frequency-Controlled Current-Fed Resonant Converter with No Input Ripple Current"

Transcription

1 energes Artcle Frequency-Controlled Current-Fed Resonnt Converter wth No Input Rpple Current Bor-Ren Ln * Gun-Hong Ln Deprtment Electrcl Engneerng, Ntonl Yunln Unversty Scence echnology, Yunln 640, wn; M @yuntech.edu.tw * Correspondence: lnr@yuntech.edu.tw; el.: Receved: 5 Jnury 018; Accepted: 9 Ferury 018; Pulshed: 11 Ferury 018 Astrct: hs pper studes -controlled -fed resonnt crcut. he dopted drect (DC)-to-DC converter contns two oost crcuts resonnt crcut on prmry sde. Frst, two oost crcuts re connected n prllel to cheve voltge step-up reduce nput rpple y usng nterleved pulse-wdth modulton. herefore, sze rtng oost nductors re decresed n proposed converter. Second, oost voltge s connected to resonnt crcut to relze mechnsm zero-voltge swtchng ll ctve swtches zero- swtchng ll dodes. wo oost crcuts resonnt crcut use sme power devces n order to lessen swtch counts. he voltge douler topology s dopted on secondry sde (hgh-voltge sde). herefore, voltge rtng dodes on hgh-voltge sde s clmped t output voltge. he feslty studed crcut s confrmed y expermentl tests wth 1 kw prototype crcut. Keywords: -fed resonnt converter; control; rpple ; oost converter 1. Introducton Due to ncresed glol wrmng clmng temperture ssues, renewle energy sources hve een developed to produce clen energy. A fuel cell s knd renewle energy source tht converts chemcl energy to electrc drect (DC) or lterntng (AC) power. A solr cell s or source renewle energy to convert photovoltc (P) energy to electrc DC or AC power. he outputs fuel cell stcks P pnels re low voltge. For connectng fuel cell stcks P pnels to AC grds or DC grds [1,], voltge oost crcut n solton trnsformer re necessry. he hgh-voltge oost converters cn e voltge source type [3,4] or source type [5 7] crcut topologes. Normlly, nput rpple source converters s much smller thn voltge source converters. However, mn prolems hgh-voltge oost converters opertng under hgh swtchng re serous core losses swtchng losses. Power converters wth st-swtchng turn-on or turn-f chrcterstcs hve een proposed studed to overcome se prolems. Duty cycle control [8 13] control schemes [14 16] re normlly used to regulte lod voltge lso reduce swtchng losses under zero-voltge or zero-. he dvntges duty cycle control wth fxed swtchng re esy mplementton wth commercl ntegrted crcuts mny vlle crcut topologes. However, drwck se topologes s poor crcut effcency t low lod, due to hrd swtchng t low output power. Resonnt converters [14 16] wth modulton hve developed to cheve dvntges low swtchng losses t whole lod rnge hgh effcency under low lod condtons. wo oost converters two full-rdge resonnt converters wth nterleved pulse-wdth modulton (PWM) re dopted n [5] to otn hgh voltge gn less nput rpple for electrc vehcle (E) hyrd electrc vehcle (HE) pplctons. However, more power devces (10 power swtches) re used n ths crcut topology such tht cost s ncresed rellty s reduced. Energes 018, 11, 413; do: /en

2 Energes 018, 11, hs pper proposes studes smple voltge-oost -fed resonnt DC/DC crcut. he studed converter hs two voltge oost crcuts, -controlled full-rdge crcut voltge douler rectfer. he voltge oost crcuts full-rdge crcut use sme ctve devces so tht totl ctve devces re decresed. Interleved PWM s dpted to control two voltge oost crcuts. Due to nterleved PWM operton wth one-hlf cycle phse shft, nput rpple proposed converter s reduced to zero. Snce full-rdge crcut s controlled y modulton, mechnsm zero-voltge swtchng ll ctve swtches zero- swtchng ll dodes cn e relzed t whole lod rnge. herefore, turn-on swtchng losses ctve swtches turn-f swtchng losses or reverse recovery losses dodes re decresed. A voltge douler crcut topology s used on secondry sde (hgh-voltge sde) n order to lmt voltge stress dode t lod voltge. In Secton, crcut dgrm structure studed crcut topology re presented dscussed. he crcut operton s presented n Secton 3. he crcut performnce desgn exmples re provded n Secton 4. Fnlly, feslty developed crcut s verfed y 1 kw prototype crcut n Secton 5, followed y conclusons.. Proposed Converter Fgure 1 gves crcut schemtc studed converter. n s nput voltge, o s output voltge, Q 1 ~Q 4 re ctve swtches, L 1 L re oost nductors, C s oost cpctor, C r L r re resonnt cpctor nductor, s n solton trnsformer, D 1 D re fst recovery dodes, C o re output cpctors. On secondry sde (hgh-voltge sde), voltge douler rectfer s employed to lmt voltge rtng fst recovery dodes for hgh voltge output pplctons. he proposed crcut ncludes two nterleved oost converters ( n, Q 1 ~Q 4, L 1, L C ) full-rdge resonnt converter (C, Q 1 ~Q 4, L r, C r,, D 1, D, C o ) to cheve hgh voltge gn, no nput rpple st swtchng ctve swtches. In Fgure 1, two voltge oost converters re operted y usng nterleved PWM to cheve voltge step-up. Snce duty cycle ech ctve swtches Q 1 ~Q 4 s 0.5, t cn otn = n. Snce gted sgnls two voltge oost converters re phse-shfted y one-hlf swtchng perod, oost nductor rpple s L1 L1 re cncelled ech or so tht nput rpple n = L1 + L = 0. herefore, no rpple ( n = 0) s relzed t nput sde. In Fgure 1c, full-rdge resonnt crcut s operted y control to produce nerly snusodl voltge on resonnt tnk y L r, C r. Due to resonnt tnk full-rdge crcut eng worked t nductve lod, zero-voltge swtchng Q 1 ~Q 4 s relzed t whole lod. Frequency modulton s used to control lod voltge. he studed converter cn e used n ttery chrger/dschrger wth swtches on hgh-voltge termnl n proposed converter low-voltge nput renewle energy source such s solr cell pnel.

3 crcut s operted y control to produce nerly snusodl voltge on resonnt tnk y Lr, Cr Lm. Due to resonnt tnk full-rdge crcut eng worked t nductve lod, zero-voltge swtchng Q1~Q4 s relzed t whole lod. Frequency modulton s used to control lod voltge. he studed converter cn e used n ttery Energes chrger/dschrger 018, 11, 413 wth swtches on hgh-voltge termnl n proposed converter 3 13 low-voltge nput renewle energy source such s solr cell pnel. C Q C Q L 1 L1 L L n Q 1 Q1 C Q D Q C Q1 D Q1 Q4 Q 4 Q 3 Q3 C Q4 D Q4 C Q3 D Q3 C r Lr L r D 1 C R o D C o o I o Q C Q L 1 L1 L n L n Q 1 Q1 C Q D Q C Q1 D Q1 Q4 Q 4 Q 3 Q3 D Q4 C Q3 D Q3 Energes 018, 10, x FOR PEER REIEW 3 1 () Energes 018, 10, x FOR PEER REIEW Q C Q Q4 I o 3 1 C o Q4 Q Lr Q 4 D 1 Q C DC Q Q Q4 D Q4 C r L r I o C o Q4 v Q Cr Lr Q 4 D 1 R o C D Q D Q4 C Q1 C Q3 C r L r Q 1 Q 3 D R C o Q1 D Q1 Q3 D o C Q1 Q3 C Q3 Q 1 Q 3 (c) D C Q1 D Q1 Q3 D o Q3 Fgure 1. Proposed converter crcut dgrm () oost converter operton (c) full-rdge resonnt (c) converter operton. Fgure 1. Proposed converter crcut dgrm () oost converter operton (c) full-rdge resonnt converter operton. Fgure 1. Proposed converter crcut dgrm () oost converter operton (c) full-rdge resonnt converter operton. 3. Crcut Operton 3. Crcut Operton wo oost crcuts wth nterleved PWM schemes re connected n prllel to decrese 3. Crcut Operton wo oost stress crcuts ctve wth devces nterleved to PWM otn schemes no nput re rpple connected. Snce prllel Q1~Q4 toll decrese hve 0.5 duty stress cycles, ctve wo t cn oost devces otn crcuts to oost wth otn nterleved voltge no nput PWM = rpple n. schemes he. full-rdge re Snce connected resonnt Q 1 ~Qn 4 prllel ll crcut hves to 0.5 operted decrese duty cycles, t t nductve lod wth control. herefore, Q1~Q4 cn otn stress oost voltge ctve devces hve zero-voltge swtchng wth low = to n. he otn full-rdge no nput rpple resonnt. crcut Snce Q1~Q4 s operted ll t hve nductve 0.5 duty lod swtchng cycles, loss, cn otn D1 D oost hve voltge zero- = swtchng n. he full-rdge wth no reverse resonnt recovery crcut s operted loss. he t wth control. herefore, Q 1 ~Q 4 hve zero-voltge swtchng wth low swtchng loss, studed nductve converter lod wth s ssumed L1 = control. L = L, herefore, CQ1 = CQ = Q1~Q4 CQ3 = hve CQ4 = zero-voltge CQ, Co1 = Co swtchng o1 = o wth = o/. low D 1 D hve zero- swtchng wth no reverse recovery loss. he studed converter Fgure swtchng gves loss, PWM D1 wveforms D hve zero- studed swtchng crcut t wth swtchng no reverse cycle. recovery Bsed on swtchng loss. he s ssumed L sttes studed D1, converter 1 = L D = L s Q1~Q4, ssumed, C Q1 = C studed Q = C converter Q3 = C Q4 = C cn e Q, C dvded o1 = C nto o sx opertng o1 = o = steps o /. Fgure L1 = L = L, CQ1 = CQ = CQ3 = CQ4 = CQ, Co1 = Co o1 = o n = ech o/. gvesswtchng Fgure PWM gves perod wveforms when PWM wveforms seres studed resonnt crcut studed t crcut swtchng s more t thn swtchng cycle. swtchng Bsed cycle. Bsed on. on swtchng swtchng Fgure sttes 3 D 1, Dgves sttes se Q 1 D1, ~Q sx D 4 equvlent, studed Q1~Q4, crcuts. converter studed Before step cn converter 1, eq1~q4 dvded cn re e f, nto dvded D sx conducts, opertng nto sx L1 opertng > steps 0, L > n0 steps ech n Lr swtchng > ech 0. perodswtchng when perod seres when resonnt seres resonnt s more thns more swtchng thn swtchng.. Fgure 3Fgure gves3 se sx equvlent gves se crcuts. sx equvlent Beforecrcuts. stepv1, Q1,g Before Q, v 1 Q4,g ~Q 4 step re1, f, Q1~Q4 Dv Q,g conducts, re, vf, Q3,g D conducts, L1 > 0, L1 L > 0, 0L > 0 Lr > 0. Lr > 0. v Q,d, v v Q3,d Q1,g, v Q4,g v Q1,d, v v Q4,d Q,g, v Q3,g L1 L L1 v Q,d, v Q3,d Lm Lr v Q1,d, v Q4,d L Q1 Lm Lr Q1 Q Q Q3 Q4 Q4 D Q3 C L 1 L1 C L L L 1 D D1 t 1 t t 3 t 4 t 5 t 0 D1 Fgure. PWM wveforms developed crcut. t t 1 t t 3 t 4 t 5 t 0 Fgure. PWM wveforms developed crcut. I o Fgure. PWM wveforms developed crcut. o C C Q4 Q 4 D Q4 Q4 Q 4 L1 D Q4 n Q 1 L Q1 D Q1 L n Q 1 C r C r Lr L r Lr L r R o D C o R o D C o t o I o

4 Q4 D D1 t t 1 t t 3 t 4 t 5 t 0 Energes 018, 11, Fgure. PWM wveforms developed crcut. Q4 I o o C Q Lr 4 L C 1 L1 D Q4 C r L r L R o L n Q 1 D C Q1 D o Q1 Energes 018, 10, x FOR PEER REIEW 4 1 C Q4 I o o C Lr Q 4 L 1 L1 C r L r L L n Q 1 Q1 () C o R o C Q C L 1 L1 L C Q Q4 C Q4 C r Lr L r D 1 o I o n L Q1 C Q1 Q3 C Q3 C o (c) C Q Q Lr o I o C L L 1 L1 D 1 D Q C r L r n L Q 3 Q3 D Q3 C o (d) C Q I o o C Q Lr L 1 L1 C r L r L n L Q 3 Q3 (e) C o C Q C Q Q4 C Q4 Lr o I o C L 1 L1 L L n Q1 L r C r C C Q1 Q3 D Q3 C o R o (f) Fgure 3. Sx equvlent crcuts n swtchng perod opertng step 1 () opertng step (c) Fgure 3. Sx equvlent crcuts n swtchng perod opertng step 1 () opertng step opertng step (d) opertng step 4 (e) opertng step 5 (f) opertng step 6. (c) opertng step 3 (d) opertng step 4 (e) opertng step 5 (f) opertng step 6. Step 1 [t0~t1]: At tme t0, cpctors CQ1 CQ4 re dschrged to zero voltge. Snce L1 Lr < 0 StepLr 1 + [t L 0 ~t > 0, 1 ]: Atody tmedodes t 0, cpctors DQ1 DQ4 C Q1 re forwrd C Q4 re sed. dschrged At ths tme to zero nstnt, voltge. swtches Snce Q1 L1 Lr Q4 re turned on under zero-voltge swtchng. Snce Q1 Q4 re turned on n ths step, v < 0 = 0 Lr + L > 0, ody dodes D Q1 D Q4 re forwrd sed. At ths tme nstnt, swtches v =. he oost nductor voltges vl1 = n vl = n. Snce > n, L1 Q ncreses lnerly 1 Q 4 re turned on under zero-voltge swtchng. Snce Q 1 Q 4 re turned on n ths step, v = L decreses lnerly. d dt = L L1 n, d L n = (1) dt L For full-rdge resonnt converter, energy s trnsferred from C to secondry sde (hgh-voltge sde) through resonnt tnk wth Lr Cr. Snce D s forwrd sed, prmry wndng voltge vlm = o/, Lm, Lm, decreses lnerly wth no/(lm) Co s chrged

5 Energes 018, 11, v =. he oost nductor voltges v L1 = n v L = n. Snce > n, L1 ncreses lnerly L decreses lnerly. d L1 dt = n, d L L dt = n L (1) For full-rdge resonnt converter, energy s trnsferred from C to secondry sde (hgh-voltge sde) through resonnt tnk wth L r C r. Snce D s forwrd sed, prmry wndng voltge v Lm = o /,, Lm, decreses lnerly wth n o /( ) C o s chrged from secondry trnsformer. In ths step, L r C r re resonnt wth f r = 1/π L r C r. he solutons prmry sde voltge re gven s Lr (t) = [ n o n (t 0 )] Lr /C r sn t t 0 Lr C r + Lr (t 0 ) cos t t 0 Lr C r () (t) = Lr (t 0 ) L r /C r sn t t 0 Lr C r + n o n [ n o n (t 0 )] cos t t 0 Lr C r (3) where n = n p /n s. If seres resonnt f r s more thn swtchng f sw, n secondry sde trnsformer decreses to zero t tme t 1 crcut operton goes to step. Orwse, crcut operton wll go to step 3 under f sw > f r condton. Step [t 1 ~t ]: D decreses to zero t tme t 1 D ecomes reverse sed. In ths step, L1 ncreses lnerly, L decreses lnerly Lr freewheels through Q 1 Q 4. In ths step, L r, C r re resonnt wth ω p = 1/ (L r + )C r. he solutons prmry Lr resonnt cpctor voltge n ths freewheelng stte re gven n (4) (5). Lr (t) = [ n + (t 1 )] (Lr + )/C r sn (t) = n + [ n + (t 1 )] cos t t 1 (Lr + )C r + Lr (t 1 ) cos t t 1 (Lr + )C r (4) t t 1 t t + Lr (t 1 ) (L r + )/C r sn 1 (5) (Lr + )C r (Lr + )C r Step 3 [t ~t 3 ]: Q 1 Q 4 re turned f t tme t under zero voltge. Snce L1 Lr > 0 Lr + L < 0, C Q C Q3 re dschrged lnerly. dv CQ dt = L1 Lr, dv CQ3 C Q dt = Lr + L C Q (6) In ths step, D 1 s forwrd sed prmry wndng voltges v Lm s clmped t n o /. he dschrge tme C Q C Q3 s soon enough so tht L1, L Lr re lmost constnt durng ths step. Step 4 [t 3 ~t 4 ]: he voltges on C Q C Q3 re decresed to zero voltge t tme t 3. Snce L1 Lr > 0 Lr + L < 0, D Q1 D Q4 re forwrd sed. herefore, Q Q 3 cn e turned on fter t 3 zero-voltge swtchng Q Q 3 s cheved. In ths step, v = v = 0 so tht v L1 = n v L = n. herefore, L1 decreses lnerly L ncreses lnerly. d L1 dt = n, d L L dt = n L (7) he energy s trnsferred from C to through L r C r. Snce D 1 s forwrd sed, prmry wndng voltge v Lm = o /, Lm ncreses lnerly s chrged. If seres resonnt f r s more thn swtchng f sw, n dode D1 wll decrese to zero t tme t 4 crcut goes to step 5. On or h, crcut wll go to step 6 under f sw > f r condton.

6 Energes 018, 11, Step 5 [t 4 ~t 5 ]: D1 decreses to zero t t 4 D 1 ecomes reverse sed. Durng step 5, L1 decreses, L ncreses Lr freewheels through Q Q 3. C r, L r re resonnt n step 5. Step 6 [t 5 ~t 0 ]: At tme t 5, Q Q 3 turn f under zero voltge. Snce L1 Lr < 0 Lr + L > 0, C Q1 C Q4 re dschrged lnerly. dv CQ1 dt = L1 Lr, dv CQ4 C Q dt = Lr + L C Q (8) Rectfer dode D s forwrd sed v Lm = n o /. Snce dschrge tme C Q1 C Q4 n step 6 s very soon, L1, L Lr re lmost constnt n ths tme ntervl. 4. Crcut Chrcterstcs 4.1. Boost Converter wo nterleved voltge oost crcuts re worked n contnuous conducton mode under followng ssumptons: (1) power devces re del; () nductors cpctors re lner tme-nvrnt. Snce verge vlue voltges cross L 1 L s zero, t s possle to clculte followng equton sed on flux lnce on oost nductors. = n /(1 D) (9) where D s duty rto Q 1 Q 4. Snce D s fxed t 0.5 n studed crcut, t cn e clculted s = n DC voltge trnsfer functon oost converter s gven s M. oost = o / n =. he PWM wveforms Q 1 Q 3 re phse shfted y sw /. he rpple s, L1 L1, on two oost nductors L 1 L re cncelled ech or whch gves n = L1 + L = 0. hus, re s no rpple ( n = 0) from nput voltge. he voltge rtngs Q 1 ~Q 4 re equl to (= n ). he verge nductor s I L1 I L equl to P o /( n ). 4.. Full-Brdge Resonnt Converter he full-rdge resonnt crcut ncludes two swtchng legs to drw two pulses per swtchng cycle from nput voltge termnl to delver more output power thn hlf-rdge resonnt crcut. o otn dvntges good lght lod effcency seres resonnt crcut lty to control lod voltge t lght or open lod prllel resonnt crcut, full-rdge LLC resonnt crcut s employed n studed crcut topology. Fundmentl hrmonc nlyss from Stegerwld s rtcle [17] s used to otn AC gn chrcterstcs. Due to PWM wveforms Q 1 ~Q 4, voltge v s squre wveform wth two voltge levels, (= n ) (= n ). hus, fundmentl voltge v,f s expressed s v, f = (8 n /π) sn(π f sw t) (10) Due on-f sttes D 1 D, trnsformer prmry voltge v Lm s squre wveform fundmentl mgnetzng voltge s gven s v Lm, f = n o π sn(π f swt θ) (11) he fundmentl secondry trnsformer s derved s s, = πi o sn(π f sw t θ) (1) Bsed on (11) (1), R c s otned from secondry lod R o reflected nto prmry sde.

7 Energes 018, 11, R c = v Lm, f s, /n = n π R o (13) Fgure 4 gves AC equvlent crcut dopted resonnt crcut. v,f s n effectvely snusodl nput voltge R c s n effectve lod. herefore, gn chrcterstcs studed resonnt crcut under dfferent swtchng frequences s clculted s G c ( f sw ) = jω sw L r R c jω sw R c +jω sw j ω sw C r + R = c jω sw R c +jω sw K(1 1 F ) + jq(f 1 F ) (14) where f sw s swtchng, f r = 1/π L r C r, F = f sw / f r, K = L r / Q = L r /C r /R c. Energes 018, 10, x FOR PEER REIEW 7 1 he mpltude AC gn from (14) cn e furr expressed s 1 G c ( fg sw c) ( f= sw) = (15) 1 [1 K(1 1F )] + Q 1 [1 + K )] (F 1F + Q ( F ) F F ) (15) C r L r Lr v,f R c Fgure 4. AC equvlent crcut full-rdge resonnt crcut. Fgure 4. AC equvlent crcut full-rdge resonnt crcut Desgn Procedure Developed Converter 4.3. Desgn Procedure Developed Converter A 1000 W prototype s set up to nvestgte mn crcut prmeter desgn consdertons. Ahe 1000 electrcl W prototype specfctons s set up to developed nvestgte converter mn re nput crcut voltge prmeter n = 44~5 desgn, output consdertons. voltge he electrcl o = 400, specfctons output power Po = 1000 developed W, converter seres resonnt re nput voltgefr = n 100 = 44~5 khz. Frst,, output oost voltge o = 400 converter, output wth power nterleved P o = PWM 1000 W, s used to oost seres nput resonnt voltge reduce f r nput = 100rpple khz.. Frst, he oost duty cycle Q1~Q4 s fxed t 0.5 wth modulton. he rpple s ΔL1 ΔL converter wth nterleved PWM s used to oost nput voltge reduce nput rpple. re he duty cycle clculted Q s 1 ~Q 4 s fxed t 0.5 wth modulton. he rpple s L1 L re clculted s nsw Δ Lo1 = ΔLo = (16) L Lo1 = Lo = n sw (16) L Snce gte sgnls Q1 Q3 re phse shfted y sw/ ech duty cycle swtches s Snce equl to 0.5, gte t s sgnls ovous tht Q 1 Q 3 re rpple phse on shfted nput y sde sw s / decresed ech sgnfcntly duty cycle swtches equls s equlzero. to 0.5, he t s dopted ovous oost thtnductors L1 rpple on L re 37 µh. nput ht sde mens s decresed tht rpple sgnfcntly s on equls L1 zero. hel dopted t mxmum oostnput nductors voltge L 1 seres L resonnt re 37 µh. ht mens re tht rpple s on L 1 L t mxmum nput voltge seres resonnt re Δ 1 = Δ = n sw Lo Lo = 7 A L (17) In order to mke sure Lo1 = output Lo = n sw voltge cn = e regulted t ll 7 A nput voltge rnges, (17) L mnmum DC voltge gn Gdc,mn under C,mx nput s desgned s unty. hus, turn-rto s In otned order ton mke (18). sure output voltge cn e regulted t ll nput voltge rnges, mnmum DC voltge gn G dc,mn under C,mx nput Gdc,,mns desgned C,mx 1 5s unty. hus, turn-rto s otned n n = = = 0.5 (18). (18) o / 400 / n = G dc,mn C,mx = 1 5 = 0.5 (18) rnsformer s mplemented y o ferrte / core DK 400/ PC40 EER-4 wth np = 13 ns = 5. hen, oretcl mxmum DC voltge gn under mnmum nput voltge s gven s rnsformer s mplemented y ferrte core DK PC40 EER-4 wth n p = 13 n s = 5. hen, oretcl mxmum DC voltge no G gn dc, mx = under mnmum = nput = 1.18voltge s gven s C, mn 44 (19) Bsed on (13), Rc under Gfull dc,mx lod = condtons n o = cn e clculted = s 1.18 (19) C,mn 44 n Rc = = Ω Ro π he nductor rto K = Lr/Lm wll ffect crcultng loss on prmry sde resonnt converter. he lower nductor rto K cn reduce crcultng loss due to lrger Lm. However, AC gn resonnt converter s reduced. he hgher nductor rto K cn otn (0)

8 Energes 018, 11, Bsed on (13), R c under full lod condtons cn e clculted s R c = n π R o = Ω (0) 1000 he nductor rto K = L r / wll ffect crcultng loss on prmry sde resonnt converter. he lower nductor rto K cn reduce crcultng loss due to lrger. However, AC gn resonnt converter s reduced. he hgher nductor rto K cn otn lrger AC voltge gn. However, crcultng loss s ncresed to reduce crcut effcency. herefore, selecton K s compromse etween AC voltge gn crcultng loss. Normlly, K s selected etween Consderng se fctors, nductor rto qulty fctor re desgned s K = L r / = 1/6 Q = 0.3. herefore, L r C r re clculted s 1 C r = 4π L r fr L r = QR c π f r = µh (1) π 100,000 1 = 606 nf () 4π (100,000) Consderng prctcl vlue C r, 600 nf flm cpctor s used for C r. In smlr wy, resonnt nductor L r s ctully selected s 4. µh. Snce nductor rto K = L r / = 1/6 s dopted, mgnetzng nductnce s clculted s = L r /k = 4. µh 1/6 5.3 µh (3) he voltge stress verge fst recovery dodes D 1 D re clculted n (4) (5). v D1,stress = v D1,stress o = 400 (4) D1,v = D,v = I o =.5 A (5) Dodes OM56SW wth 1000 voltge rtng 1 A verge rtng re dopted for D 1 D. he voltge rtng Q 1 ~Q 4 re 5 = 104. he MOSFEs IRFB5N15D wth 150 voltge rtng 60 A rtng re dopted for Q 1 ~Q 4. he 1100 µf cpctor s used for C 360 µf cpctors re used for C o. 5. Expermentl Results he developed converter s mplemented y 1 kw prototype to demonstrte crcut performnce verfy feslty effectveness studed crcut. Fgure 5 gves expermentl crcut dgrm developed crcut. he photocoupler PC817 voltge regultor L431 re dopted to control lod voltge. he resonnt mode control ntegrted crcut UCC5600 s used to relze modulton cheve zero-voltge swtchng. he crcut prmeters ctve pssve components developed crcut re dscussed otned from prevous secton. From expermentl n Fgures 6 1, test expermentl gree wth PWM wveforms n Fgure. he expermentl gte voltges Q 1 ~Q 4 t rted power re llustrted n Fgure 6. It cn e oserved tht Q 1 (Q ) Q 3 (Q 4 ) hve complementry PWM wveforms. he swtchng Q 1 t 44 nput s less thn swtchng t 5 nput so tht resonnt crcut cn otn lrger voltge gn to regulte lod voltge. he expermentl wveforms nput oost nductor s t rted power re gven n Fgure 7. It cn e oserved tht L1 L re nterleved wth ech or lnced well. he PWM wveforms two oost crcuts re nterleved y phse shft sw / so tht nput rpple n s reduced lmost to zero.

9 t rted power re llustrted n Fgure 6. It cn e oserved tht Q1 (Q) Q3 (Q4) hve complementry PWM wveforms. he swtchng Q1 t 44 nput s less thn swtchng t 5 nput so tht resonnt crcut cn otn lrger voltge gn to regulte lod voltge. he expermentl wveforms nput oost nductor s t rted power re gven n Fgure 7. It cn e oserved tht L1 L re nterleved wth ech or well. he PWM wveforms two oost crcuts re nterleved y phse shft 9 13 Energes 018, 11, lnced 413 sw/ so tht nput rpple Δn s reduced lmost to zero. C C Q Q L1 L1 L L n CQ Q4 CQ4 Q4 DQ DQ4 CQ3 CQ1 vcr Cr Lr Lr o Io D1 Co1 Ro Lm Q3 Q1 DQ1 Q3 DQ3 Q1~Q4 D Co Isolted Gte Drves ref x o PC817 PWM Genertor (UCC5600) L431 Fgure 5. he prototype crcut dgrm studed crcut. Fgure 5. he prototype crcut dgrm studed crcut. Energes 018, 10, x FOR PEER REIEW Energes 018, 10, x FOR PEER REIEW vq,g vq,g vq,g vq,g vq3,g vq3,g vq3,g vq3,g vq4,g vq4,g vq4,g vq4,g () () Fgure 6. Expermentl gtng sgnls Q1~Q4 under rted power n = 44 Fgure 6. Expermentl gtng sgnls Q1 ~Q4 under rted power n = 44 Fgure Expermentl gtng sgnls Q1~Q4 under rted power n = 44 [~vq4,g: 10 /dv; tme: 4 µs/dv]. () n =6.5 () () [v [ ~v~vq4,g : 10 /dv; tme: 4 µs/dv]. n =5 n = 5 Q1,g Q4,g: 10 /dv; tme: 4 µs/dv]. n n L1 L1 L1 L L1 L n n L L () () Fgure 7. Expermentl nput oost s under rted power n Fgure 7. Expermentl nput oost s under rted power n = 44 () n = 5 [n, L1, L: 5 A/dv; 4 µs/dv]. Fgure 7. Expermentl nputtme: oost s under rted power = 44 () n = 5 [n, L1, L: 5 A/dv; tme: 4 µs/dv]. n = 44 () n = 5 [n, L1, L : 5 A/dv; tme: 4 µs/dv]. he test oost voltge, oost C swtch s Q Q4 under test re oost voltge cler, oost C swtch Q4 under twce Q Q rtedhe power shown n Fgure 8. It s tht C ss s twce rted power re shown n Fgure 8. It tht he test voltge s oost C swtch s Q under Q4. Fgure 9 gves oost test prmry voltge C full-rdge resonnt crcut under Q4Q, cler Q4. Fgure 9 gves voltge full-rdge resonnt crcut under rtedre power. It cn e seen8.tht hgher swtchng nput result n rted power shown ntest Fgure It prmry s cler tht Cts5twce wll low Q rted power. cn e seen tht hgher swtchng 5 nputresonnt wll result n lowunder crcultng compred to tprmry 44 nput. Q4. Fgure 9 gves It test voltge t full-rdge crcut crcultng compred to t 44 nput. rted power. It cn e seen tht hgher swtchng t 5 nput wll result n low crcultng compred to t 44 nput. Q Q Q4 Q4 C C Q Q Q4 Q4 C C

10 Fgure 7. Expermentl nput oost s under rted power n = 44 () n = 5 [n, L1, L: 5 A/dv; tme: 4 µs/dv]. he test oost voltge, oost C swtch s Q Q4 under rted power re shown n Fgure 8. It s cler tht C s twce Q Q4. Fgure 9 gves test prmry voltge full-rdge resonnt crcut under Energes 018, 11,rted 413 power. It cn e seen tht hgher swtchng t 5 nput wll result n low crcultng compred to t 44 nput. Q Q Energes 018, 10, x FOR PEER REIEW 10 1 Q4 v C Q4 v C () Lr Fgure 8. Mesured wveforms, C, Q Q4 under rted power n = 44 () n = Fgure 8. 5 Mesured wveforms A/dv;, C, Q Q4 under rtedvcr power n = 44 Q, Q4, C: 0 tme: 4 µs/dv]. [: 50 /dv; () n = 5 [ : 50 /dv; Q, Q4, C : 0 A/dv; tme: 4 µs/dv]. vcr Energes 018, 10, x FOR PEER REIEW Lr v () 10 1 v Fgure 9. Mesured wveforms v, Lr vcr under rted power 44 nput voltge () 5 nput voltge [v, vcr: 100 /dv; Lr: 0 A/dv; tme: µs/dv]. Lr Fgure 10 llustrtes test L1, L, ~Q4 Lr under rted power. he pek vcr s lrger thn pek Q due to = L1 Lr Lr < 0 when Q1 s conductng. he test expermentl Lr s under vcr output cpctor voltges rectfer dode rted power re shown n Fgure 11. o1 o re lnced well D1 D re turned f under zero- swtchng. Fgure 1 llustrtes test swtch Q1 t 0%, 50% 100% lods. It cn e oserved tht Snce Q~Q4 hve zero-voltge swtchng swtch Q1 s relzed. () sme operton chrcterstcs Q1, t cn e expected tht zero-voltge swtchng swtches Fgure 9. Mesured wveforms v, Lr vcr under rted power 44 nput voltge () ~Q4 re lso cheved. he mesured effcences developed converter re 90.5% (t 0% lod), FgureQ9. Mesured wveforms /dv; v, Lr : vcr under rted power 44 nput voltge, vcr: A/dv; µs/dv].he mesured swtchng frequences 5 nput voltge [v94.5% 9.6% (t 50% lod) (t 100%Lrlod) undertme: 5 nput. () 5 nput voltge [v, vcr : 100 /dv; Lr : 0 A/dv; tme: µs/dv]. re 131 khz (t 0% lod), 118 khz (t 50% lod) 99 khz (t 100% lod) under 5 nput. Fgure 10 llustrtes test L1, L, ~Q4 Lr under rted power. he pek s lrger thn pek Q due to = L1 Lr Lr < 0 when Q1 s conductng. L dode s under he test expermentl L1 output cpctor voltges rectfer rted power re shown n Fgure 11. o1 o re lnced well D1 D re turned f Fgure 1 llustrtes test swtch QQ3 under zero- swtchng. 1 t 0%, 50% 100% lods. It cn e oserved tht zero-voltge swtchng swtch Q1 s relzed. Snce Q~Q4 hve Q Q4 sme operton chrcterstcs Q1, t cn e expected tht zero-voltge swtchng swtches Q~Q4 re lso cheved. he mesured effcences developed converter re 90.5% (t 0% lod), Lrswtchng frequences 9.6% (t 50% lod) 94.5% (t 100%Lrlod) under 5 nput. he mesured re 131 khz (t 0% lod), 118 khz (t 50% lod) 99 khz (t 100% lod) under 5 nput. () L L1 L1 L Q3 Q Q4 Q Lr Q3 Q4 Lr Lr Lr () (c) L1 (d) L Fgure 10. est swtch nductor on prmry sde under rted Q3 44 Fgure 10. power est swtch nductor on prmry sde under rted L1,, Q Lr t Q1 nput cse () L, Q3, Q4 Lr t 44 nput cse (c) L1,, Q power LrL1,, t 44 nput cse (),, t 44 nput (c) L1,, t 5Q1 nput L: 10 Lr A/dv; ~Q4, Lr: 0cse A/dv; Q cse (d) Lr L, Q3, Q4 Q3 [L1 Q4 L cse,q4 Q Lr t 5 nput tme: µs/dv]. Q Lr t 5 nput cse (d) L, Q3, Q4 Lr t 5 nput cse [L1, L : 10 A/dv; ~Q4, Lr : 0 A/dv; tme: µs/dv]. Lr Lr (c) (d) Fgure 10. est swtch nductor on prmry sde under rted power L1,, Q Lr t 44 nput cse () L, Q3, Q4 Lr t 44 nput cse (c) L1,, Q Lr t 5 nput cse (d) L, Q3, Q4 Lr t 5 nput cse [L1, L: 10 A/dv; ~Q4, Lr: 0 A/dv; tme: µs/dv].

11 Energes 018, 11, Energes 018, 10, x FOR PEER REIEW Energes 018, 10, x FOR PEER REIEW o1 o1 D1 D1 o1 o1 D1 D1 o o D D o o D D () () Fgure 11. est o1, o, D1 D under rted power 44 nput cse () n = 5 Fgure 11. est o1, o, D1 D under rted power 44 nput cse Fgure est o1, o,d1 D1, D under 4rted power 44 nput cse () n = 5 nput11. cse [o1, o: 100 /dv; D: 5A/dv; tme: µs/dv]. () n = 5 cse nput [o1/dv;, o :D1 100 D1tme:, D4: µs/dv]. 5 A/dv; tme: 4 µs/dv]. nput [o1,cse o: 100, D/dv; : 5 A/dv; (c) (c) (e) (e) () () (d) (d) (f) (f) Fgure 1. Mesured swtch Q1 under n = 44 0% lod () n = 44 50% lod Fgure 1. Mesured swtch Q1 under n = 44 0% lod () n = 44 50% lod 44 full lod (d) n = 5 0% lod (e) n = 5 50% lod (f) n = 5 full (c)1. n =Mesured Fgure swtch Q1 under n = 44 0% lod () n = 44 50% 44: 10 fullvlod (d)/dv; n = 5 0%for lod (e) n = 5 50%for lod (f)tme: n = 5µs/dv]. full (c) n[v=q1,g /dv; Q1,d: 50 : 0 A/dv (,,d,e) 50 A/dv (c,f); lod lod (c) n = 44 full lod (d) n = 5 0% lod (e) n = 5 50% lod (f) n = 5 lod [: 10 /dv; : 50 /dv; : 0 A/dv for (,,d,e) 50 A/dv for (c,f); tme: µs/dv]. full lod [ : 10 /dv; : 50 /dv; : 0 A/dv for (,,d,e) 50 A/dv for (c,f); tme: 6. Conclusons 6.µs/dv]. Conclusons A novel -controlled -fed resonnt crcut wth no nput rpple s A novel -controlled -fedexmnton resonnt crcut wth no nputdemonstrte rpple proposed verfed n ths pper. heoretcl test verfcton tht s Fgure 10 llustrtes testpper. L1, L, ~Q4 Lr under rted power.tht he pek proposed verfed n ths heoretcl exmnton test verfcton demonstrte hgh-performnce resonnt crcut wth low swtchng losses nput rpple-free s cheved developed s lrger thn topology. pek Q due to =ctve L1 Lrrpple-free Lr low-voltge <s0cheved when Q1 s hgh-performnce resonnt crcut wth low swtchng losses nput wth crcut he zero-voltge swtchng devces on conductng. he test expermentl output cpctor voltges rectfer wth developed crcut topology. he zero-voltge swtchng ctve devces on low-voltge sde zero- swtchng rectfer dodes on hgh-voltge sde re lso relzed t dode sde under zero- rectfer on11. hgh-voltge sdelnced reprovde lso relzed t s rted power reshown Fgure o re well D1 whole lod rnge. heswtchng test wth n1dodes kw lortory clerly clmed o1prototype whole lod rnge. he test wth 1 kw lortory prototype clerly provde clmed chrcterstcs. he constructed converter cn e ppled n renewle energy converson systemq1 t D re turned f under zero- swtchng. Fgure 1 llustrtes test swtch chrcterstcs. he constructed converter cn e ppled n ) renewle converson nput (48 ) hgh-voltge output (400 wth no energy nput 0%, wth 50% low-voltge 100% lods. It cn e oserved tht zero-voltge swtchng swtchrpple. Q1 system s he relzed. wth low-voltge nput (48 ) hgh-voltge output (400 )wth wthswtches no nputon rpple. he studed converter cn e used n ttery chrger/dschrger hgh-voltge Snce Q ~Q4 hve sme operton chrcterstcs Q1, t cn e expected tht zero-voltge studed converter cn e used n ttery chrger/dschrger swtches on hgh-voltge termnl n proposed If nput voltge s fromwth P solr cell pnel, slghtly swtchng swtches Q ~Q4 converter. re lso cheved. he mesured effcences developed converter termnl n proposed converter. If nput voltge s from P solr cell pnel, slghtly re 90.5% (t 0% lod), 9.6% (t 50% lod) 94.5% (t 100% lod) under 5 nput. he mesured swtchng frequences re 131 khz (t 0% lod), 118 khz (t 50% lod) 99 khz (t 100% lod) under 5 nput.

12 Energes 018, 11, Conclusons A novel -controlled -fed resonnt crcut wth no nput rpple s proposed verfed n ths pper. heoretcl exmnton test verfcton demonstrte tht hgh-performnce resonnt crcut wth low swtchng losses nput rpple-free s cheved wth developed crcut topology. he zero-voltge swtchng ctve devces on low-voltge sde zero- swtchng rectfer dodes on hgh-voltge sde re lso relzed t whole lod rnge. he test wth 1 kw lortory prototype clerly provde clmed chrcterstcs. he constructed converter cn e ppled n renewle energy converson system wth low-voltge nput (48 ) hgh-voltge output (400 ) wth no nput rpple. he studed converter cn e used n ttery chrger/dschrger wth swtches on hgh-voltge termnl n proposed converter. If nput voltge s from P solr cell pnel, slghtly wder nput voltge vrton s expected. hen, wder swtchng rnge mxmum power pont trckng must e mplemented to regulte lod voltge. Acknowledgments: hs reserch s supported y Mnstry Scence echnology, wn, under contrct MOS E MY. he uthors would lso lke to thnk nonymous revewers for r vlule comments suggestons to mprove qulty pper. Author Contrutons: Bor-Ren Ln desgned mn prts project ws lso responsle for wrtng pper. Gun-Hong Ln ult prototype crcut mesured expermentl wveforms. Conflcts Interest: he uthor declres no potentl conflct nterest. References 1. Wng, J.; Peng, F.Z.; Anderson, J.; Joseph, A.; Buffenrger, R. Low cost fuel cell converter system for resdentl power generton. IEEE rns. Power Electron. 004, 19, [CrossRef]. Nym, M.; Andersen, M.A.E. Hgh-effcency solted oost dc dc converter for hgh-power low-voltge fuel-cell pplctons. IEEE rns. Ind. Electron. 010, 57, [CrossRef] 3. Zhng, Z.; homsen, O.C.; Andersen, M.A.E. St-swtched dul-nput DC DC converter comnng oost-hlf-rdge cell voltge-fed full-rdge cell. IEEE rns. Power Electron. 013, 8, [CrossRef] 4. Yun, Y.; Wu, Q. One zero-voltge-swtchng three-trnsstor push pull converter. IE Power Electron. 013, 6, [CrossRef] 5. Moon, D.; Prk, J.; Cho, S. New nterleved -fed resonnt converter wth sgnfcntly reduced hgh sde output flter for E HE pplctons. IEEE rns. Power Electron. 015, 30, [CrossRef] 6. Prsnn, U.R.; Rthore, A.K. Extended rnge ZS ctve-clmped -fed full-rdge solted dc/dc converter for fuel cell pplctons: Anlyss, desgn expermentl. IEEE rns. Ind. Electron. 013, 60, Km, H.; Yoon, C.; Cho, S. An mproved -fed ZS solted oost converter for fuel cell pplcton. IEEE rns. Power Electron. 001, 5, [CrossRef] 8. Korotkov, S.; Meleshn,.; Nemchnov, A.; Frdln, S. Smll-sgnl modelng st-swtched symmetrcl hlf-rdge DC/DC converter. In Proceedngs IEEE-APEC Conference on Appled Power Electroncs Conference Exposton, Dlls, X, USA, 5 9 Mrch 1995; olume, pp schrhrt, D.J.; Jn, P.K. Desgn procedure for hgh- operton modfed seres-resonnt APWM converter to reduce sze crcultng. IEEE rns. Power Electron. 01, 7, [CrossRef] 10. Km, B.C.; Prk, K.B.; Moon, G.W. Asymmetrc PWM control scheme durng hold-up tme for LLC resonnt converter. IEEE rns. Ind. Electron. 01, 59, [CrossRef] 11. Mshm,.; Akmtsu, K.; Nkok, M. A hgh -lnk secondry-sde phse-shfted full-rdge st-swtchng PWM DC-DC converter wth ZCS ctve rectfer for E ttery chrged. IEEE rns. Power Electron. 013, 8, [CrossRef]

13 Energes 018, 11, Ln, B.R.; Shu,.Y. Zero-voltge swtchng full-rdge DC/DC converter wth prllel-connected output wthout output nductor. IE Power Electron. 013, 6, [CrossRef] 13. Sfee, A.; Jn, P.; Bkhsh, A. A ZS pulsewdth modulton full-rdge converter wth low RMS resonnt uxlry crcut. IEEE rns. Power Electron. 016, 31, [CrossRef] 14. Hg, H.; Kurokw, F. A novel modulton method full rdge three-level LLC resonnt converter for ttery chrger electrcl vehcles. In Proceedngs IEEE Energy Converson Congress Exposton (ECCE), Montrel, QC, Cnd, 0 4 Septemer 015; pp Johnson, S.; Erckson, R. Stedy-stte nlyss desgn prllel resonnt converter. IEEE rns. Power Electron. 1988, 3, [CrossRef] 16. Gu, Y.; Lu, Z.; Hng, L.; Qn, Z.; Hung, G. hree-level LLC seres resonnt DC/DC converter. IEEE rns. Power Electron. 005, 0, [CrossRef] 17. Stegerwld, R.L. A comprson hlf-rdge resonnt converter topologes. IEEE rns. Power Electron. 1988, 3, [CrossRef] 018 y uthors. Lcensee MDPI, Bsel, Swtzerl. hs rtcle s n open ccess rtcle dstruted under terms condtons Cretve Commons Attruton (CC BY) lcense (

Solution of Tutorial 5 Drive dynamics & control

Solution of Tutorial 5 Drive dynamics & control ELEC463 Unversty of New South Wles School of Electrcl Engneerng & elecommunctons ELEC463 Electrc Drve Systems Queston Motor Soluton of utorl 5 Drve dynmcs & control 500 rev/mn = 5.3 rd/s 750 rted 4.3 Nm

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get rgsdle (zdr8) HW6 dtmre (58335) Ths prnt-out should hve 5 questons Multple-choce questons my contnue on the next column or pge fnd ll choces efore nswerng 00 (prt of ) 00 ponts The currents re flowng n

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

Permanent Magnet Synchronous Generator Based Wind Energy and DG Hybrid System

Permanent Magnet Synchronous Generator Based Wind Energy and DG Hybrid System Permnent Mgnet Synchronous Genertor Bsed Wnd Energy nd DG Hyrd System Geet Pthk, Memer, EEE Bhm Sngh, Fellow, EEE B. K. Pngrh, Senor Memer, EEE Deprtment of Electrcl Engneerng, Deprtment of Electrcl Engneerng,

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Switching-Based SVPWM Control for Three-Phase Active Power Filter

Switching-Based SVPWM Control for Three-Phase Active Power Filter Interntonl Journl of Sgnl Processng, Imge Processng nd Pttern Recognton Vol.8, No. (25), pp.85-98 http://dx.do.org/.4257/jsp.25.8..9 Swtchng-Bsed SVPWM Control for hree-phse Actve Power Flter Zhng Menghu

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

The Study of Lawson Criterion in Fusion Systems for the

The Study of Lawson Criterion in Fusion Systems for the Interntonl Archve of Appled Scences nd Technology Int. Arch. App. Sc. Technol; Vol 6 [] Mrch : -6 Socety of ducton, Ind [ISO9: 8 ertfed Orgnzton] www.soeg.co/st.html OD: IAASA IAAST OLI ISS - 6 PRIT ISS

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

A Double-Line-Frequency Commutated Rectifier Complying with IEC Standards

A Double-Line-Frequency Commutated Rectifier Complying with IEC Standards A Double-ne-Frequency Commutted Rectfer Complyn wth IEC 000-3- Stndrds José Antenor Pomlo School of Electrcl nd Computer Enneern, nversty of Cmpns C. P. 60 308-970 Cmpns BRAZI Tel. (55-9) 7883748 Fx (55-9)

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F E F E + Q! 0

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

3. Quasi-Stationary Electrodynamics

3. Quasi-Stationary Electrodynamics 3. Qus-ttonry Electrodynmcs J B 1 Condtons for the Qus- ttonry Electrodynmcs The Qus-ttonry Electrodynmcs s chrcterzed y 1 st order tme ntercton etween electrc nd mgnetc felds. In qus-sttonry EM, n the

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

Industrial Electrical Engineering and Automation

Industrial Electrical Engineering and Automation CODEN:LUTEDX/(TEIE-719)/1-7/(7) Industril Electricl Engineering nd Automtion Estimtion of the Zero Sequence oltge on the D- side of Dy Trnsformer y Using One oltge Trnsformer on the D-side Frncesco Sull

More information

Investigation phase in case of Bragg coupling

Investigation phase in case of Bragg coupling Journl of Th-Qr Unversty No.3 Vol.4 December/008 Investgton phse n cse of Brgg couplng Hder K. Mouhmd Deprtment of Physcs, College of Scence, Th-Qr, Unv. Mouhmd H. Abdullh Deprtment of Physcs, College

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Flexible Beam. Objectives

Flexible Beam. Objectives Flexile Bem Ojectives The ojective of this l is to lern out the chllenges posed y resonnces in feedck systems. An intuitive understnding will e gined through the mnul control of flexile em resemling lrge

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erckson Department of Electrcal, Computer, and Energy Engneerng Unersty of Colorado, Boulder 3.5. Example: ncluson of semconductor conducton losses n the boost conerter model Boost conerter example

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Prolems Blinn College - Physics 2426 - Terry Honn Prolem E.1 A wire with dimeter d feeds current to cpcitor. The chrge on the cpcitor vries with time s QHtL = Q 0 sin w t. Wht re the current

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

ICS 252 Introduction to Computer Design

ICS 252 Introduction to Computer Design ICS 252 Introducton to Computer Desgn Prttonng El Bozorgzdeh Computer Scence Deprtment-UCI Prttonng Decomposton of complex system nto smller susystems Done herrchclly Prttonng done untl ech susystem hs

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

DESIGN OF MULTILOOP CONTROLLER FOR THREE TANK PROCESS USING CDM TECHNIQUES

DESIGN OF MULTILOOP CONTROLLER FOR THREE TANK PROCESS USING CDM TECHNIQUES DESIGN OF MULTILOOP CONTROLLER FOR THREE TANK PROCESS USING CDM TECHNIQUES N. Kngsb 1 nd N. Jy 2 1,2 Deprtment of Instrumentton Engneerng,Annml Unversty, Annmlngr, 608002, Ind ABSTRACT In ths study the

More information

ELE B7 Power Systems Engineering. Power System Components Modeling

ELE B7 Power Systems Engineering. Power System Components Modeling Power Systems Engineering Power System Components Modeling Section III : Trnsformer Model Power Trnsformers- CONSTRUCTION Primry windings, connected to the lternting voltge source; Secondry windings, connected

More information

Lesson 2. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

Lesson 2. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER) Lesson 2 Thermomechncl Mesurements for Energy Systems (MEN) Mesurements for Mechncl Systems nd Producton (MME) 1 A.Y. 2015-16 Zccr (no ) Del Prete A U The property A s clled: «mesurnd» the reference property

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Performance analysis of a novel planetary speed increaser used in single-rotor wind turbines with counter-rotating electric generator

Performance analysis of a novel planetary speed increaser used in single-rotor wind turbines with counter-rotating electric generator OP Conference Seres: Mterls Scence nd Engneerng PAPE OPEN ACCESS Performnce nlyss of novel plnetry speed ncreser used n sngle-rotor wnd turbnes wth counter-rottng electrc genertor elted content - Fult

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

ANALOG CIRCUIT SIMULATION BY STATE VARIABLE METHOD

ANALOG CIRCUIT SIMULATION BY STATE VARIABLE METHOD U.P.B. Sc. Bull., Seres C, Vol. 77, Iss., 25 ISSN 226-5 ANAOG CIRCUIT SIMUATION BY STATE VARIABE METHOD Rodc VOICUESCU, Mh IORDACHE 22 An nlog crcut smulton method, bsed on the stte euton pproch, s presented.

More information

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0 Chapter Problem Solutons. K γ.6, r f Ω For v, v.6 r + f ( 9.4) +. v 9..6 9.. v v v v v T ln and S v T ln S v v.3 8snωt (a) vs 3.33snωt 6 3.33 Peak dode current d (max) (b) P v s (max) 3.3 (c) T o π vo(

More information

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator Latest Trends on Crcuts, Systems and Sgnals Scroll Generaton wth Inductorless Chua s Crcut and Wen Brdge Oscllator Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * Abstract An nductorless Chua

More information

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6. ECEN 5004, prng 08 Actve Mcrowve Crcut Zoy Popovc, Unverty of Colordo, Boulder LECURE 5 IGNAL FLOW GRAPH FOR MICROWAVE CIRCUI ANALYI In mny text on mcrowve mplfer (e.g. the clc one by Gonzlez), gnl flow-grph

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Smart Motorways HADECS 3 and what it means for your drivers

Smart Motorways HADECS 3 and what it means for your drivers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers You my hve seen some news rtcles bout the ntroducton of Hghwys Englnd

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ M/G//GD/ / System! Pollcze-Khnchn (PK) Equton L q 2 2 λ σ s 2( + ρ ρ! Stedy-stte probbltes! π 0 ρ! Fndng L, q, ) 2 2 M/M/R/GD/K/K System! Drw the trnston dgrm! Derve the stedy-stte probbltes:! Fnd L,L

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1. Mth Anlysis CP WS 4.X- Section 4.-4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether - is root of 0. Show

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

NUMERICAL MODELLING OF A CILIUM USING AN INTEGRAL EQUATION

NUMERICAL MODELLING OF A CILIUM USING AN INTEGRAL EQUATION NUEICAL ODELLING OF A CILIU USING AN INTEGAL EQUATION IHAI EBICAN, DANIEL IOAN Key words: Cl, Numercl nlyss, Electromgnetc feld, gnetton. The pper presents fst nd ccurte method to model the mgnetc behvour

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden Poton nd Speed Control Lund Unverty, Seden Generc Structure R poer Reference Sh tte Voltge Current Control ytem M Speed Poton Ccde Control * θ Poton * Speed * control control - - he ytem contn to ntegrton.

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

Solution of Tutorial 2 Converter driven DC motor drive

Solution of Tutorial 2 Converter driven DC motor drive chool of Electricl Engineering & Telecommunictions, UNW olution of Tutoril Converter driven DC motor drive Question 1. T V s D V I L E V 50 V,.5, I 0 A rted rted f 400 Hz, 0 rev/ min s rted (i) 0 6.8 rd

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Qnru Qu, Qng Wu, nd Mssoud Pedrm Dept. of Electrcl Engneerng-Systems Unversty of Southern Clforn Los Angeles CA 90089 Outlne! Introducton

More information

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits Watcharn Jantanate, Peter A. Chayasena, Sarawut Sutorn Odd/Even Scroll Generaton wth Inductorless Chua s and Wen Brdge Oscllator Crcuts Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * School

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

POLYPHASE CIRCUITS. Introduction:

POLYPHASE CIRCUITS. Introduction: POLYPHASE CIRCUITS Introduction: Three-phse systems re commonly used in genertion, trnsmission nd distribution of electric power. Power in three-phse system is constnt rther thn pulsting nd three-phse

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

UNIT # 10. JEE-Physics ELECTROMAGNETIC INDUCTION & ALTERNATING CURRENT EXERCISE I N B A

UNIT # 10. JEE-Physics ELECTROMAGNETIC INDUCTION & ALTERNATING CURRENT EXERCISE I N B A J-Physcs UN # OMAGN NDUON & ANANG UN XS. otl chnge n flu otl chrge flown through the col resstnce. esstnce. Webers. N A t W.mJ v t r r... d N S d N e N 5volt d e.8 volt volt d 6 NA ()( ). > mg < mg 5.

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

196 Circuit Analysis with PSpice: A Simplified Approach

196 Circuit Analysis with PSpice: A Simplified Approach 196 Circuit Anlysis with PSpice: A Simplified Approch i, A v L t, min i SRC 5 μf v C FIGURE P7.3 () the energy stored in the inductor, nd (c) the instntneous power input to the inductor. (Dul of Prolem

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 19, 2015, at Noon.

Designing Information Devices and Systems I Anant Sahai, Ali Niknejad. This homework is due October 19, 2015, at Noon. EECS 16A Designing Informtion Devices nd Systems I Fll 2015 Annt Shi, Ali Niknejd Homework 7 This homework is due Octoer 19, 2015, t Noon. 1. Circuits with cpcitors nd resistors () Find the voltges cross

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information