Synchrosqueezed Transforms and Applications

Size: px
Start display at page:

Download "Synchrosqueezed Transforms and Applications"

Transcription

1 Synchrosqueezed Transforms and Applications Haizhao Yang Department of Mathematics, Stanford University Collaborators: Ingrid Daubechies,JianfengLu ] and Lexing Ying Department of Mathematics, Duke University ] Department of Mathematics and Chemistry and Physics, Duke University Department of Mathematics and ICME, Stanford University January 9, 25

2 Medical study (Y., ACHA, 4) I A superposition of two ECG signals. f (t) = (t)s (2 (t)) + 2 (t)s 2 (2 2 (t)). I Spike wave shape functions s (t) ands 2 (t) x x 3 Figure : Complicated wave shape functions Figure : Good decomposition.

3 Geophysics (Y. and Ying, SIIMS 3, SIMA 4) I A superposition of several wave fields. I Nonlinear components, bounded supports Figure : One target component with structure noise and Gaussian random noise. Courtesy of Fomel and Hu for providing data.

4 Materials science (Y., Lu and Ying, preprint) Atomic crystal analysis I Observation: an assemblage of wave-like components; I Goal: Crystal segmentation, crystal rotations, crystal defects, crystal deformations

5 Art forensics (Y., Lu, Brown, Daubechies, Ying, preprint) Painting canvas analysis I Observation: a superposition of wave-like components; I Goal: count threads and estimate texture deformation Figure : Top: a X-ray image of canvas. Left: horizontal thread count. Right: horizontal thread angle.

6 D mode decomposition Known: A superposition of wave-like components KX KX f (t) = f k (t) = k (t)e 2 in k k (t). k= k= Unknown: Number K, components f k (t), smooth instantaneous amplitudes k (t), smooth instantaneous frequencies N k k (t). Existing methods: I Empirical mode decomposition methods (Huang et al. 98, 9); I Synchrosqueezed wavelet transform (Daubechies et al. 9, ); Synchrosqueezed wave packet transform (Y. 4); I Data-driven time-frequency analysis (Hou et al., 2, 3); I Regularized nonstationary autoregression (Fomel 3);

7 D wave packets Given a mother wave packet w(t) andascalingparameters 2 (/2, ), the family of wave packets {w ab (t) :a, b 2 R} is defined as w ab (t) =a s/2 w(a s (t b))e 2 i(t b)a, or equivalently, in the Fourier domain as dw ab ( ) =a s/2 e 2 ib bw(a s ( a)). D wave packet transform The D wave packet transform of a function f (t) is a function Z W f (a, b) =hw ab, f i = w ab (t)f (t)dt for a, b 2 R.

8 Asimpleexample A plane wave with an instantaneous frequency N: f (t) =e 2 int. Its wave packet transform: Z W f (a, b) = e 2 int a s/2 w(a s (t b))e 2 i(t b)a dt R = a s/2 e 2 inb ŵ(a s (N a)). The oscillation of W f (a, b) inb reveals b W f (a, b) 2 iw f (a, b) = a b e 2 inbŵ(a s (N a)) 2 ia s/2 e 2 inb ŵ(a s (N a)) = N.

9 Definition: Instantaneous frequency estimate for W f (a, b) 6=.! f (a, b) bw f (a, b) 2 iw f (a, b) Definition: Synchrosqueezed wave packet transform (SSWPT) Z T f (!, b) = Comparison of supports Aplanewavef (t) =e 2 int,forafixedb, R W f (a, b) 2 (<! f (a, b)!) da. suppw f (a, b) (N N s, N + N s ); suppt f (!, b) concentrates at! = N.

10 SS for sharpened representation k k x x Figure : The supports of the D wave packet transform and D SSWPT of a synthetic benchmark signal.

11 Theory of D SSWPT Theorem: (Y. 4 ACHA) If KX KX f (t) = f k (t) = k (t)e 2 in k k= k= and f k (t) arewell-separated,then I T f (a, b) haswell-separatedsupportsz k concentrating (N k k (t) k (b), b); I f k (t) can be accurately recovered by applying an inverse transform on I Zk (a, b)t f (a, b). where I Zk (a, b) is an indication function.

12 Robustness properties of D SSWPT I Bounded perturbation; I Gaussian random noise (colored); I Possible compactly supported in space. Theorem: (Y. and Ying, 4, preprint) I A non-linear wave f (x) = (x)e 2 in (x), (x) =O(); A zero mean Gaussian random noise e with covariance q for some q > ; Awavepacketw ab (x) compactly supported in the Fourier domain; I Main results: if s(x) = f (x) + e, then after thresholding, with a probability at least e O(N2 3s q ) e O(N 2 s q ),! s (a, b) bw s (a, b) 2 iw s (a, b) N (b)

13 Properties of D SSWPT 2 I When s =, wave packets become wavelets; I When s = /2, wave packets become wave atoms; I Larger s, more accurate to estimate instantaneous frequencies; I Smaller s, more robust to estimate instananeous frequencies; I Smaller s, better resolution to distinguish wave-like components in the high frequency domain. I Smaller s, better for the general mode decomposition problem: KX KX f (t) = f k (t) = k (t)s k (2 N k k (t)) k= = k= KX k= k (t) X n bs k (n)e 2 in k n k (t) Y. ACHA, 4. 2 Y. and Ying, arxiv:4.5939, 4.

14 Di erence of wavelets and wave packets The size of the essential support of dw ab ( ) iso(a s ) Figure : In the frequency domain: s =,wavelettiling(blue);samplingbump functions (black); Fourier transforms of plane waves (red) Figure : s <, wave packets.

15 Di erence of SS wavelets and SS wave packets 5 t=/2, SS wave atom 5 t = /2+/8 5 t=, SS wavelet Frequency (Hz) 5 Frequency (Hz) 5 Frequency (Hz) t=/2, SS wave atom 5 t = /2+/8 5 t=, SS wavelet Frequency (Hz) Frequency (Hz) Frequency (Hz) Figure : Seismic trace benchmark signal: s =.5; s =.625; s =. Top: whole domain. Bottom: high frequency part.

16 k k k Robustness properties of D SSTs Smaller scaling parameter s in the SSWPT, better robustness x x x Figure : Noisy synthetic benchmark signal. From left to right: s =.625, s =.75, and s =.875.

17 k k k Robustness properties of D SSTs Higher redundancy in the time-frequency transform, better robustness x x x Figure : 6 times redundancy. From left to right: s =.625, s =.75, and s =.875.

18 Frequency (Hz) 3 Frequency (Hz) Frequency (Hz) Frequency (Hz) 3 Frequency (Hz) Frequency (Hz) Volcanic signal tremor Figure : From left to right: s = (SSWT); s =.75; s =.625. Top: Normal SST. Bottom: Enhance the energy in the high frequency part.

19 2D Synchrosqueezed (SS) transforms 2D wave packets +SS = 2D SS wave packet (SSWPT) 2D general curvelets 2D SS curvelet (SSCT) 2D wave packets 2D wave packets {w ab (x) :a, b 2 R 2, a or equivalently in Fourier domain } are defined as w ab (x) = a s w( a s (x b))e 2 i(x b) a, dw ab ( ) = a s e 2 ib ŵ( a s ( a)).

20 Notations:. The scaling matrix A a = a t a s. 2. The rotation angle and rotation matrix cos sin R = sin cos. 3. Aunitvectore = (cos, sin ) T with a rotation angle. 2D general curvelets 2D general curvelets {w a b (x), a 2 [, ), 2 [, 2 ), b 2 R 2 } are defined as w a b (x) =a t+s 2 e 2 ia(x b) e w(a a R (x b)), or equivalently in Fourier domain dw a b ( ) =bw(a a R ( a e ))e 2 ib a t+s 2.

21 2D wave packets and 2D general curvelets p p a a t a s p p Figure : Essential support of the Fourier transform of: continuous wave packets; continuous general curvelets; a discrete general curvelet with parameters (s, t), roughly of size a s a t.

22 Theory for 2D SS wave packet transforms Theroem : (Y. and Ying SIIMS 3) A non-linear wave f (x) = (x)e 2 i (x),awavepacketw ab (x), define a transform: Z W f (a, b) =hs(x), w ab (x)i = s(x)w ab (x) dx.! f (a, b) = r bw f (a, b) r (b) 2 iw f (a, b) Theorem 2: (Y. and Ying preprint 4) A zero mean Gaussian random noise e with covariance q for some q >. If s(x) = f (x) + e, then after thresholding, with a probability at least e O(N2 2s q ) e O(N 2s q ) e O(N 2 q ),! s (a, b) = r bw s (a, b) Nr (b) 2 iw s (a, b)

23 Theory for 2D SS curvelet transforms Theroem : (Y. and Ying SIMA 4) A non-linear wave f (x) = (x)e 2 i (x), a general curvelet w a b (x), define atransform: Z W f (a,,b) =hs(x), w a b (x)i = s(x)w a b (x) dx.! f (a,,b) = r bw f (a,,b) r (b) 2 iw f (a,,b) Theroem 2: (Y. and Ying preprint 4) A zero mean Gaussian random noise e with covariance q for some q >. If s(x) = f (x) + e, then after thresholding, with a probability at least e O(N2 2t q ) e O(N 2s q ) e O(N 2 q ),! f (a,,b) = r bw f (a,,b) r (b) 2 iw f (a,,b)

24 Synchrosqueezing for sharpened representation: Z T f (!, b) = W f (a, b) (! f (a, b) {a:w f (a,b)6=}!) da. 2 x p p.5 b v x v.5 b 2 Figure : An example of a superposition of two 2D waves using 2D SSWPT.

25 2 2 2 v 2 v 2 v v.5 b v.5 b v.5 b 2 Figure : T f (!, b) of the same example in the last figure. Left: noiseless. Middle: SNR= 3. Right: SNR= 3.

26 Di erence of 2D SSWPT and 2D SSCT Usually s = t is better than s < t, exceptforthebandedwave-like components. Figure : Left: A superposition of two banded waves; Middle: 2D SSWPT; Right: 2D SSCT.

27 SynLab: a MATLAB toolbox I Available at haizhao/codes.htm. I D SS Wave Packet Transform 3 I 2D SS Wave Packet/Curvelet Transform 45 Applications: I Geophysics: seismic wave field separation and ground-roll removal. I Atomic crystal image analysis. I Art forensic. 3 Synchrosqueezed Wave Packet Transforms and Di eomorphism Based Spectral Analysis for D General Mode Decompositions, Applied and Computational Harmonic Analysis, Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition,SIAM Journal on Imaging Science, Synchrosqueezed Curvelet Transform for 2D Mode Decomposition, SIAM Journal on Mathematical Analysis, 24.

Synchrosqueezed Curvelet Transforms for 2D mode decomposition

Synchrosqueezed Curvelet Transforms for 2D mode decomposition Synchrosqueezed Curvelet Transforms for 2D mode decomposition Haizhao Yang Department of Mathematics, Stanford University Collaborators: Lexing Ying and Jianfeng Lu Department of Mathematics and ICME,

More information

Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a

Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a Time-frequency analysis of seismic data using synchrosqueezing wavelet transform a a Published in Journal of Seismic Exploration, 23, no. 4, 303-312, (2014) Yangkang Chen, Tingting Liu, Xiaohong Chen,

More information

Statistical Analysis of Synchrosqueezed Transforms

Statistical Analysis of Synchrosqueezed Transforms Statistical Analysis of Synchrosqueezed Transforms Haizhao Yang Department of Mathematics, Due University October 4, Revised: August 6 Abstract Synchrosqueezed transforms are non-linear processes for a

More information

Robustness Analysis of Synchrosqueezed Transforms

Robustness Analysis of Synchrosqueezed Transforms Robustness Analysis of Synchrosqueezed Transforms Haizhao Yang Department of Mathematics, Due University October 4, Revised: July 5 Abstract Synchrosqueezed transforms are non-linear processes for a sharpened

More information

HAIZHAO YANG CURRENT POSITION

HAIZHAO YANG CURRENT POSITION HAIZHAO YANG Department of Mathematics National Universify of Singapore Singapore Phone: 65162798 Email: matyh@nus.edu.sg Homepage: http://www.math.nus.edu.sg/ matyh/ Assistant Professor Department of

More information

NWC Distinguished Lecture. Blind-source signal decomposition according to a general mathematical model

NWC Distinguished Lecture. Blind-source signal decomposition according to a general mathematical model NWC Distinguished Lecture Blind-source signal decomposition according to a general mathematical model Charles K. Chui* Hong Kong Baptist university and Stanford University Norbert Wiener Center, UMD February

More information

Jean Morlet and the Continuous Wavelet Transform (CWT)

Jean Morlet and the Continuous Wavelet Transform (CWT) Jean Morlet and the Continuous Wavelet Transform (CWT) Brian Russell 1 and Jiajun Han 1 CREWES Adjunct Professor CGG GeoSoftware Calgary Alberta. www.crewes.org Introduction In 198 Jean Morlet a geophysicist

More information

Downloaded 01/15/16 to Redistribution subject to SIAM license or copyright; see

Downloaded 01/15/16 to Redistribution subject to SIAM license or copyright; see MULTISCALE MODEL. SIMUL. Vol. 13, No. 4, pp. 1542 1572 c 215 Society for Industrial and Applied Mathematics Downloaded 1/15/16 to 171.64.38.112. Redistribution subject to SIAM license or copyright; see

More information

Edge preserved denoising and singularity extraction from angles gathers

Edge preserved denoising and singularity extraction from angles gathers Edge preserved denoising and singularity extraction from angles gathers Felix Herrmann, EOS-UBC Martijn de Hoop, CSM Joint work Geophysical inversion theory using fractional spline wavelets: ffl Jonathan

More information

A New Complex Continuous Wavelet Family

A New Complex Continuous Wavelet Family IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 11, Issue 5 Ver. I (Sep. - Oct. 015), PP 14-19 www.iosrjournals.org A New omplex ontinuous Wavelet Family Mohammed Rayeezuddin

More information

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group

NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION. M. Schwab, P. Noll, and T. Sikora. Technical University Berlin, Germany Communication System Group NOISE ROBUST RELATIVE TRANSFER FUNCTION ESTIMATION M. Schwab, P. Noll, and T. Sikora Technical University Berlin, Germany Communication System Group Einsteinufer 17, 1557 Berlin (Germany) {schwab noll

More information

Introduction to Wavelets and Wavelet Transforms

Introduction to Wavelets and Wavelet Transforms Introduction to Wavelets and Wavelet Transforms A Primer C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo with additional material and programs by Jan E. Odegard and Ivan W. Selesnick Electrical and

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

Discrete Wavelet Transform

Discrete Wavelet Transform Discrete Wavelet Transform [11] Kartik Mehra July 2017 Math 190s Duke University "1 Introduction Wavelets break signals up and then analyse them separately with a resolution that is matched with scale.

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Jean Morlet and the Continuous Wavelet Transform

Jean Morlet and the Continuous Wavelet Transform Jean Brian Russell and Jiajun Han Hampson-Russell, A CGG GeoSoftware Company, Calgary, Alberta, brian.russell@cgg.com ABSTRACT Jean Morlet was a French geophysicist who used an intuitive approach, based

More information

Getting to Grips with X-ray Reverberation and Lag Spectra. Dan Wilkins with Ed Cackett, Erin Kara, Andy Fabian

Getting to Grips with X-ray Reverberation and Lag Spectra. Dan Wilkins with Ed Cackett, Erin Kara, Andy Fabian Getting to Grips with X-ray Reverberation and Lag Spectra Dan Wilkins with Ed Cackett, Erin Kara, Andy Fabian X-ray BunClub May 212 Outline 1. Observing X-ray reverberation and lag spectra 2. Simulating

More information

Poincare wavelet techniques in depth migration

Poincare wavelet techniques in depth migration Proceedings of the International Conference, pp. 104-110 978-1-4673-4419-7/12/$31.00 IEEE 2012 Poincare wavelet techniques in depth migration Evgeny A. Gorodnitskiy, Maria V. Perel Physics Faculty, St.

More information

Signal Denoising with Wavelets

Signal Denoising with Wavelets Signal Denoising with Wavelets Selin Aviyente Department of Electrical and Computer Engineering Michigan State University March 30, 2010 Introduction Assume an additive noise model: x[n] = f [n] + w[n]

More information

Mathematical Methods in Machine Learning

Mathematical Methods in Machine Learning UMD, Spring 2016 Outline Lecture 2: Role of Directionality 1 Lecture 2: Role of Directionality Anisotropic Harmonic Analysis Harmonic analysis decomposes signals into simpler elements called analyzing

More information

Wavelet analysis identifies geology in seismic

Wavelet analysis identifies geology in seismic Wavelet analysis identifies geology in seismic Geologic lithofacies can be quantitatively identified by the wavelet decomposition of the seismic reflection. That is, the reservoir risk can be mitigated

More information

Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev* and Aaron Scollard, Schlumberger

Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev* and Aaron Scollard, Schlumberger Robust one-step (deconvolution + integration) seismic inversion in the frequency domain Ivan Priezzhev and Aaron Scollard, Schlumberger Summary Seismic inversion requires two main operations relative to

More information

arxiv: v2 [stat.ml] 22 May 2018

arxiv: v2 [stat.ml] 22 May 2018 Non-Oscillatory Pattern Learning for Non-Stationary Signals arxiv:8.8v [stat.ml] May 8 Jieren Xu, Yitong Li, David Dunson, Ingrid Daubechies, Haizhao Yang Duke University, National University of Singapore

More information

Robust Control of Linear Quantum Systems

Robust Control of Linear Quantum Systems B. Ross Barmish Workshop 2009 1 Robust Control of Linear Quantum Systems Ian R. Petersen School of ITEE, University of New South Wales @ the Australian Defence Force Academy, Based on joint work with Matthew

More information

Empirical Wavelet Transform

Empirical Wavelet Transform Jérôme Gilles Department of Mathematics, UCLA jegilles@math.ucla.edu Adaptive Data Analysis and Sparsity Workshop January 31th, 013 Outline Introduction - EMD 1D Empirical Wavelets Definition Experiments

More information

New Multiscale Methods for 2D and 3D Astronomical Data Set

New Multiscale Methods for 2D and 3D Astronomical Data Set New Multiscale Methods for 2D and 3D Astronomical Data Set Jean Luc Starck Dapnia/SEDI SAP, CEA Saclay, France. jstarck@cea.fr http://jstarck.free.fr Collaborators: D.L. Donoho, O. Levi, Department of

More information

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis

Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Iterative Matching Pursuit and its Applications in Adaptive Time-Frequency Analysis Zuoqiang Shi Mathematical Sciences Center, Tsinghua University Joint wor with Prof. Thomas Y. Hou and Sparsity, Jan 9,

More information

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ). Wavelet Transform Andreas Wichert Department of Informatics INESC-ID / IST - University of Lisboa Portugal andreas.wichert@tecnico.ulisboa.pt September 3, 0 Short Term Fourier Transform Signals whose frequency

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Linear second-order differential equations with constant coefficients and nonzero right-hand side Linear second-order differential equations with constant coefficients and nonzero right-hand side We return to the damped, driven simple harmonic oscillator d 2 y dy + 2b dt2 dt + ω2 0y = F sin ωt We note

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

An Introduction to Wavelets and some Applications

An Introduction to Wavelets and some Applications An Introduction to Wavelets and some Applications Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France An Introduction to Wavelets and some Applications p.1/54

More information

A METHOD FOR NONLINEAR SYSTEM CLASSIFICATION IN THE TIME-FREQUENCY PLANE IN PRESENCE OF FRACTAL NOISE. Lorenzo Galleani, Letizia Lo Presti

A METHOD FOR NONLINEAR SYSTEM CLASSIFICATION IN THE TIME-FREQUENCY PLANE IN PRESENCE OF FRACTAL NOISE. Lorenzo Galleani, Letizia Lo Presti A METHOD FOR NONLINEAR SYSTEM CLASSIFICATION IN THE TIME-FREQUENCY PLANE IN PRESENCE OF FRACTAL NOISE Lorenzo Galleani, Letizia Lo Presti Dipartimento di Elettronica, Politecnico di Torino, Corso Duca

More information

ATTENUATION AND POROSITY ESTIMATION USING THE FREQUENCY-INDEPENDENT PARAMETER Q

ATTENUATION AND POROSITY ESTIMATION USING THE FREQUENCY-INDEPENDENT PARAMETER Q ATTENUATION AND POROSITY ESTIMATION USING THE FREQUENCY-INDEPENDENT PARAMETER Q Kenneth I. McRae Defence Research Establishment Pacific F.M. O. Victoria, B. C. Canada VOS lbo Cedric A. Zala Barrodale Computing

More information

Support Detection in Super-resolution

Support Detection in Super-resolution Support Detection in Super-resolution Carlos Fernandez-Granda (Stanford University) 7/2/2013 SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 1 / 25 Acknowledgements This work was

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

Adaptive Short-Time Fractional Fourier Transform Used in Time-Frequency Analysis

Adaptive Short-Time Fractional Fourier Transform Used in Time-Frequency Analysis Adaptive Short-Time Fractional Fourier Transform Used in Time-Frequency Analysis 12 School of Electronics and Information,Yili Normal University, Yining, 830054, China E-mail: tianlin20110501@163.com In

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 25 November 5, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 19 Table of Contents 1 Ming Zhong (JHU) AMS Fall 2018 2 / 19 Some Preliminaries: Fourier

More information

MODWT Based Time Scale Decomposition Analysis. of BSE and NSE Indexes Financial Time Series

MODWT Based Time Scale Decomposition Analysis. of BSE and NSE Indexes Financial Time Series Int. Journal of Math. Analysis, Vol. 5, 211, no. 27, 1343-1352 MODWT Based Time Scale Decomposition Analysis of BSE and NSE Indexes Financial Time Series Anu Kumar 1* and Loesh K. Joshi 2 Department of

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Th P4 07 Seismic Sequence Stratigraphy Analysis Using Signal Mode Decomposition

Th P4 07 Seismic Sequence Stratigraphy Analysis Using Signal Mode Decomposition Th P4 07 Seismic Sequence Stratigraphy Analysis Using Signal Mode Decomposition F. Li (University of Olahoma), R. Zhai (University of Olahoma), K.J. Marfurt* (University of Olahoma) Summary Reflecting

More information

ONE OR TWO FREQUENCIES? THE SYNCHROSQUEEZING ANSWERS

ONE OR TWO FREQUENCIES? THE SYNCHROSQUEEZING ANSWERS Advances in Adaptive Data Analysis Vol. 3, Nos. & 2 (2) 29 39 c World Scientific Publishing Company DOI:.42/S793536974X ONE OR TWO FREQUENCIES? THE SYNCHROSQUEEZING ANSWERS HAU-TIENG WU,, PATRICK FLANDRIN,

More information

Wavelets in Image Compression

Wavelets in Image Compression Wavelets in Image Compression M. Victor WICKERHAUSER Washington University in St. Louis, Missouri victor@math.wustl.edu http://www.math.wustl.edu/~victor THEORY AND APPLICATIONS OF WAVELETS A Workshop

More information

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico Rock Physics for Fluid and Porosity Mapping in NE GoM JACK DVORKIN, Stanford University and Rock Solid Images TIM FASNACHT, Anadarko Petroleum Corporation RICHARD UDEN, MAGGIE SMITH, NAUM DERZHI, AND JOEL

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Curt Da Silva and Felix J. Herrmann 2 Dept. of Mathematics 2 Dept. of Earth and Ocean Sciences, University

More information

Ultrasonic Thickness Inspection of Oil Pipeline Based on Marginal Spectrum. of Hilbert-Huang Transform

Ultrasonic Thickness Inspection of Oil Pipeline Based on Marginal Spectrum. of Hilbert-Huang Transform 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Ultrasonic Thickness Inspection of Oil Pipeline Based on Marginal Spectrum of Hilbert-Huang Transform Yimei MAO, Peiwen

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #2 Recap of Last Class Schrodinger and Heisenberg Picture Time Evolution operator/ Propagator : Retarded

More information

Compressive Sensing Applied to Full-wave Form Inversion

Compressive Sensing Applied to Full-wave Form Inversion Compressive Sensing Applied to Full-wave Form Inversion Felix J. Herrmann* fherrmann@eos.ubc.ca Joint work with Yogi Erlangga, and Tim Lin *Seismic Laboratory for Imaging & Modeling Department of Earth

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

MULTI-SCALE IMAGE DENOISING BASED ON GOODNESS OF FIT (GOF) TESTS

MULTI-SCALE IMAGE DENOISING BASED ON GOODNESS OF FIT (GOF) TESTS MULTI-SCALE IMAGE DENOISING BASED ON GOODNESS OF FIT (GOF) TESTS Naveed ur Rehman 1, Khuram Naveed 1, Shoaib Ehsan 2, Klaus McDonald-Maier 2 1 Department of Electrical Engineering, COMSATS Institute of

More information

Accounting for non-stationary frequency content in Earthquake Engineering: Can wavelet analysis be useful after all?

Accounting for non-stationary frequency content in Earthquake Engineering: Can wavelet analysis be useful after all? Academic excellence for business and the professions Accounting for non-stationary frequency content in Earthquake Engineering: Can wavelet analysis be useful after all? Agathoklis Giaralis Senior Lecturer

More information

Introduction Wavelet shrinage methods have been very successful in nonparametric regression. But so far most of the wavelet regression methods have be

Introduction Wavelet shrinage methods have been very successful in nonparametric regression. But so far most of the wavelet regression methods have be Wavelet Estimation For Samples With Random Uniform Design T. Tony Cai Department of Statistics, Purdue University Lawrence D. Brown Department of Statistics, University of Pennsylvania Abstract We show

More information

Interpolation of nonstationary seismic records using a fast non-redundant S-transform

Interpolation of nonstationary seismic records using a fast non-redundant S-transform Interpolation of nonstationary seismic records using a fast non-redundant S-transform Mostafa Naghizadeh and Kris A. Innanen CREWES University of Calgary SEG annual meeting San Antonio 22 September 2011

More information

Hilbert-Huang and Morlet wavelet transformation

Hilbert-Huang and Morlet wavelet transformation Hilbert-Huang and Morlet wavelet transformation Sonny Lion (sonny.lion@obspm.fr) LESIA, Observatoire de Paris The Hilbert-Huang Transform The main objective of this talk is to serve as a guide for understanding,

More information

Wavelets Marialuce Graziadei

Wavelets Marialuce Graziadei Wavelets Marialuce Graziadei 1. A brief summary 2. Vanishing moments 3. 2D-wavelets 4. Compression 5. De-noising 1 1. A brief summary φ(t): scaling function. For φ the 2-scale relation hold φ(t) = p k

More information

Detecting Stratigraphic Discontinuities using Wavelet and S- Transform Analysis of Well Log Data

Detecting Stratigraphic Discontinuities using Wavelet and S- Transform Analysis of Well Log Data Detecting Stratigraphic Discontinuities using Wavelet and S- Transform Analysis of Well Log Data Akhilesh K. Verma a, b*, akverma@gg.iitkgp.ernet.in and Burns A. Cheadle a, William K. Mohanty b, Aurobinda

More information

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985)

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985) Comparison of angle decomposition methods for wave-equation migration Natalya Patrikeeva and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Angle domain common image gathers offer

More information

Compressed Sensing in Astronomy

Compressed Sensing in Astronomy Compressed Sensing in Astronomy J.-L. Starck CEA, IRFU, Service d'astrophysique, France jstarck@cea.fr http://jstarck.free.fr Collaborators: J. Bobin, CEA. Introduction: Compressed Sensing (CS) Sparse

More information

An Introduction to HILBERT-HUANG TRANSFORM and EMPIRICAL MODE DECOMPOSITION (HHT-EMD) Advanced Structural Dynamics (CE 20162)

An Introduction to HILBERT-HUANG TRANSFORM and EMPIRICAL MODE DECOMPOSITION (HHT-EMD) Advanced Structural Dynamics (CE 20162) An Introduction to HILBERT-HUANG TRANSFORM and EMPIRICAL MODE DECOMPOSITION (HHT-EMD) Advanced Structural Dynamics (CE 20162) M. Ahmadizadeh, PhD, PE O. Hemmati 1 Contents Scope and Goals Review on transformations

More information

Using frequency domain techniques with US real GNP data: A Tour D Horizon

Using frequency domain techniques with US real GNP data: A Tour D Horizon Using frequency domain techniques with US real GNP data: A Tour D Horizon Patrick M. Crowley TAMUCC October 2011 Patrick M. Crowley (TAMUCC) Bank of Finland October 2011 1 / 45 Introduction "The existence

More information

Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) # $ ( ) = G f. y t

Notes on Wavelets- Sandra Chapman (MPAGS: Time series analysis) # $ ( ) = G f. y t Wavelets Recall: we can choose! t ) as basis on which we expand, ie: ) = y t ) = G! t ) y t! may be orthogonal chosen or appropriate properties. This is equivalent to the transorm: ) = G y t )!,t )d 2

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Introduction to Stochastic SIR Model

Introduction to Stochastic SIR Model Introduction to Stochastic R Model Chiu- Yu Yang (Alex), Yi Yang R model is used to model the infection of diseases. It is short for Susceptible- Infected- Recovered. It is important to address that R

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

Functional Analysis Review

Functional Analysis Review Functional Analysis Review Lorenzo Rosasco slides courtesy of Andre Wibisono 9.520: Statistical Learning Theory and Applications September 9, 2013 1 2 3 4 Vector Space A vector space is a set V with binary

More information

HISTOGRAM MATCHING SEISMIC WAVELET PHASE ESTIMATION

HISTOGRAM MATCHING SEISMIC WAVELET PHASE ESTIMATION HISTOGRAM MATCHING SEISMIC WAVELET PHASE ESTIMATION A Thesis Presented to the Faculty of the Department of Earth and Atmospheric Sciences University of Houston In Partial Fulfillment of the Requirements

More information

Multiple realizations: Model variance and data uncertainty

Multiple realizations: Model variance and data uncertainty Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? Multiple realizations: Model variance and data uncertainty Robert G. Clapp 1 ABSTRACT Geophysicists typically produce a single model,

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

AN INVERTIBLE DISCRETE AUDITORY TRANSFORM

AN INVERTIBLE DISCRETE AUDITORY TRANSFORM COMM. MATH. SCI. Vol. 3, No. 1, pp. 47 56 c 25 International Press AN INVERTIBLE DISCRETE AUDITORY TRANSFORM JACK XIN AND YINGYONG QI Abstract. A discrete auditory transform (DAT) from sound signal to

More information

Source function estimation in extended full waveform inversion

Source function estimation in extended full waveform inversion Source function estimation in extended full waveform inversion Lei Fu The Rice Inversion Project (TRIP) May 6, 2014 Lei Fu (TRIP) Source estimation in EFWI May 6, 2014 1 Overview Objective Recover Earth

More information

IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM

IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM IMAGE RECONSTRUCTION FROM UNDERSAMPLED FOURIER DATA USING THE POLYNOMIAL ANNIHILATION TRANSFORM Anne Gelb, Rodrigo B. Platte, Rosie Renaut Development and Analysis of Non-Classical Numerical Approximation

More information

SENSITIVITY ANALYSIS OF ADAPTIVE MAGNITUDE SPECTRUM ALGORITHM IDENTIFIED MODAL FREQUENCIES OF REINFORCED CONCRETE FRAME STRUCTURES

SENSITIVITY ANALYSIS OF ADAPTIVE MAGNITUDE SPECTRUM ALGORITHM IDENTIFIED MODAL FREQUENCIES OF REINFORCED CONCRETE FRAME STRUCTURES SENSITIVITY ANALYSIS OF ADAPTIVE MAGNITUDE SPECTRUM ALGORITHM IDENTIFIED MODAL FREQUENCIES OF REINFORCED CONCRETE FRAME STRUCTURES K. C. G. Ong*, National University of Singapore, Singapore M. Maalej,

More information

The subterranean cocktail party: Identifying your seismic source among multiple random ones with time delays

The subterranean cocktail party: Identifying your seismic source among multiple random ones with time delays The subterranean cocktail party: Identifying your seismic source among multiple random ones with time delays Pawan Bharadwaj, Laurent Demanet, Aimé Fournier Department of Earth, Atmospheric and Planetary

More information

Gaussian Processes for Audio Feature Extraction

Gaussian Processes for Audio Feature Extraction Gaussian Processes for Audio Feature Extraction Dr. Richard E. Turner (ret26@cam.ac.uk) Computational and Biological Learning Lab Department of Engineering University of Cambridge Machine hearing pipeline

More information

Time domain sparsity promoting LSRTM with source estimation

Time domain sparsity promoting LSRTM with source estimation Time domain sparsity promoting LSRTM with source estimation Mengmeng Yang, Philipp Witte, Zhilong Fang & Felix J. Herrmann SLIM University of British Columbia Motivation Features of RTM: pros - no dip

More information

Applied and Computational Harmonic Analysis

Applied and Computational Harmonic Analysis JID:YACHA AID:892 /FLA [m3g; v 1.85; Prn:31/10/2012; 14:04] P.1 (1-25) Appl. Comput. Harmon. Anal. ( ) Contents lists available at SciVerse ScienceDirect Applied and Computational Harmonic Analysis www.elsevier.com/locate/acha

More information

Numerical dispersion and Linearized Saint-Venant Equations

Numerical dispersion and Linearized Saint-Venant Equations Numerical dispersion and Linearized Saint-Venant Equations M. Ersoy Basque Center for Applied Mathematics 11 November 2010 Outline of the talk Outline of the talk 1 Introduction 2 The Saint-Venant equations

More information

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Curt Da Silva 1 and Felix J. Herrmann 2 1 Dept. of Mathematics 2 Dept. of Earth and Ocean SciencesUniversity of British

More information

Structural Cause of Missed Eruption in the Lunayyir Basaltic

Structural Cause of Missed Eruption in the Lunayyir Basaltic GSA DATA REPOSITORY 2015140 Supplementary information for the paper Structural Cause of Missed Eruption in the Lunayyir Basaltic Field (Saudi Arabia) in 2009 Koulakov, I., El Khrepy, S., Al-Arifi, N.,

More information

Harmonic Analysis and Geometries of Digital Data Bases

Harmonic Analysis and Geometries of Digital Data Bases Harmonic Analysis and Geometries of Digital Data Bases AMS Session Special Sesson on the Mathematics of Information and Knowledge, Ronald Coifman (Yale) and Matan Gavish (Stanford, Yale) January 14, 2010

More information

Nontechnical introduction to wavelets Continuous wavelet transforms Fourier versus wavelets - examples

Nontechnical introduction to wavelets Continuous wavelet transforms Fourier versus wavelets - examples Nontechnical introduction to wavelets Continuous wavelet transforms Fourier versus wavelets - examples A major part of economic time series analysis is done in the time or frequency domain separately.

More information

How to extract the oscillating components of a signal? A wavelet-based approach compared to the Empirical Mode Decomposition

How to extract the oscillating components of a signal? A wavelet-based approach compared to the Empirical Mode Decomposition How to extract the oscillating components of a signal? A wavelet-based approach compared to the Empirical Mode Decomposition Adrien DELIÈGE University of Liège, Belgium Louvain-La-Neuve, February 7, 27

More information

Fast Angular Synchronization for Phase Retrieval via Incomplete Information

Fast Angular Synchronization for Phase Retrieval via Incomplete Information Fast Angular Synchronization for Phase Retrieval via Incomplete Information Aditya Viswanathan a and Mark Iwen b a Department of Mathematics, Michigan State University; b Department of Mathematics & Department

More information

Basics on 2-D 2 D Random Signal

Basics on 2-D 2 D Random Signal Basics on -D D Random Signal Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Time: Fourier Analysis for -D signals Image enhancement via spatial filtering

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 12 Introduction to Wavelets Last Time Started with STFT Heisenberg Boxes Continue and move to wavelets Ham exam -- see Piazza post Please register at www.eastbayarc.org/form605.htm

More information

A Lower Bound Theorem. Lin Hu.

A Lower Bound Theorem. Lin Hu. American J. of Mathematics and Sciences Vol. 3, No -1,(January 014) Copyright Mind Reader Publications ISSN No: 50-310 A Lower Bound Theorem Department of Applied Mathematics, Beijing University of Technology,

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

Fundamentals of the gravitational wave data analysis V

Fundamentals of the gravitational wave data analysis V Fundamentals of the gravitational wave data analysis V - Hilbert-Huang Transform - Ken-ichi Oohara Niigata University Introduction The Hilbert-Huang transform (HHT) l It is novel, adaptive approach to

More information

Thin-Bed Reflectivity An Aid to Seismic Interpretation

Thin-Bed Reflectivity An Aid to Seismic Interpretation Thin-Bed Reflectivity An Aid to Seismic Interpretation Satinder Chopra* Arcis Corporation, Calgary, AB schopra@arcis.com John Castagna University of Houston, Houston, TX, United States and Yong Xu Arcis

More information

Diffusion Wavelets and Applications

Diffusion Wavelets and Applications Diffusion Wavelets and Applications J.C. Bremer, R.R. Coifman, P.W. Jones, S. Lafon, M. Mohlenkamp, MM, R. Schul, A.D. Szlam Demos, web pages and preprints available at: S.Lafon: www.math.yale.edu/~sl349

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Sparsity and Morphological Diversity in Source Separation. Jérôme Bobin IRFU/SEDI-Service d Astrophysique CEA Saclay - France

Sparsity and Morphological Diversity in Source Separation. Jérôme Bobin IRFU/SEDI-Service d Astrophysique CEA Saclay - France Sparsity and Morphological Diversity in Source Separation Jérôme Bobin IRFU/SEDI-Service d Astrophysique CEA Saclay - France Collaborators - Yassir Moudden - CEA Saclay, France - Jean-Luc Starck - CEA

More information

Sparse signal representation and the tunable Q-factor wavelet transform

Sparse signal representation and the tunable Q-factor wavelet transform Sparse signal representation and the tunable Q-factor wavelet transform Ivan Selesnick Polytechnic Institute of New York University Brooklyn, New York Introduction Problem: Decomposition of a signal into

More information

Research Project Report

Research Project Report Research Project Report Title: Prediction of pre-critical seismograms from post-critical traces Principal Investigator: Co-principal Investigators: Mrinal Sen Arthur Weglein and Paul Stoffa Final report

More information

A First Course in Wavelets with Fourier Analysis

A First Course in Wavelets with Fourier Analysis * A First Course in Wavelets with Fourier Analysis Albert Boggess Francis J. Narcowich Texas A& M University, Texas PRENTICE HALL, Upper Saddle River, NJ 07458 Contents Preface Acknowledgments xi xix 0

More information

Super-resolution via Convex Programming

Super-resolution via Convex Programming Super-resolution via Convex Programming Carlos Fernandez-Granda (Joint work with Emmanuel Candès) Structure and Randomness in System Identication and Learning, IPAM 1/17/2013 1/17/2013 1 / 44 Index 1 Motivation

More information

Wavelet de-noising for blind source separation in noisy mixtures.

Wavelet de-noising for blind source separation in noisy mixtures. Wavelet for blind source separation in noisy mixtures. Bertrand Rivet 1, Vincent Vigneron 1, Anisoara Paraschiv-Ionescu 2 and Christian Jutten 1 1 Institut National Polytechnique de Grenoble. Laboratoire

More information