Discrete Choice Modeling

Size: px
Start display at page:

Download "Discrete Choice Modeling"

Transcription

1 Dscrete Choce Modelg Wllam Greee Ster School of Busess New York Uversty [Topc 6-Nolear Models] 1/87

2 6. NONLINEAR MODELS [Topc 6-Nolear Models] 2/87

3 Nolear Models Ageda Estmato Theory for Nolear Models Estmators Propertes M Estmato Nolear Least Squares Maxmum Lkelhood Estmato GMM Estmato Mmum Dstace Estmato Mmum Ch-square Estmato Computato Nolear Optmzato Nolear Least Squares Newto-lke Algorthms; Gradet Methods (Backgroud: JW, Chapters 12-14, Greee, Chapters 7,12-14) [Topc 6-Nolear Models] 3/87

4 What s the Model? Ucodtoal characterstcs of a populato Codtoal momets: E[g(y) x]: meda, mea, varace, quatle, correlatos, probabl tes Codtoal probabltes ad destes Codtoal meas ad regressos Fully parametrc ad semparametrc specfcatos Parametrc specfcato: Kow up to parameter θ Codtoal meas: E[y x] = m(x, θ) [Topc 6-Nolear Models] 4/87

5 What s a Nolear Model? Model: E[g(y) x] = m(x,θ) Objectve: Lear about θ from y, X Usually estmate θ Lear Model: Closed form; = h(y, X) Nolear Model Not ecessarly wrt m(x,θ). E.g., y = exp(θ x + ε) θˆ Wrt estmator: Implctly defed. h(y, X, )=0, E.g., E[y x]= exp(θ x) ˆθ [Topc 6-Nolear Models] 5/87

6 What s a Estmator? Pot ad Iterval ˆθ= f(data model) I( ˆθ ) =θ± ˆ samplg varablty Classcal ad Bayesa ˆθ= E[ θ data,pror f( θ )] = expectato from posteror I( ˆθ ) = arrowest terval from posteror desty cotag the specfed probablty (mass) [Topc 6-Nolear Models] 6/87

7 Parameters Model parameters The parameter space: Estmators of parameters The true parameter(s) exp( y / θ) Example : f(y xβx ) =, θ = exp( ) Model parameters : β θ Codtoal Mea: E(y xβx ) = θ = exp( ) [Topc 6-Nolear Models] 7/87

8 The Codtoal Mea Fucto m( x, θ ) = E[y x] for some θ Θ. 0 0 A property of the codtoal mea: 2 E (y m( x, θ)) s mmzed by E[y x] y,x (Proof, pp , JW) [Topc 6-Nolear Models] 8/87

9 M Estmato Classcal estmato method 1 ˆθ= arg m q( data =1, θ) Example : Nolear Least squares ˆ 1 θ= arg m [y -E(y, θ)] 2 x =1 [Topc 6-Nolear Models] 9/87

10 A Aalogy Prcple for M Estmato 1 The estmator ˆθ mmzes q= q(data 1, θ) = The true parameter θ mmzes q*=e[q(data, θ)] 0 The weak law of large umbers: 1 P q= q(data 1, θ) q*=e[q(data, θ)] = [Topc 6-Nolear Models] 10/87

11 Estmato 1 P q= q(data 1, θ) q*=e[q(data, θ)] = Estmator P q q* ˆθ mmzes q True parameter θ mmzes q* P Does ths mply θ θ 0? Yes, f... ˆ 0 [Topc 6-Nolear Models] 11/87

12 Idetfcato Uqueess : If θ θ, the m(x, θ) m(x, θ) for some x Examples whch ths property s ot met: (1) (Multcollearty) (2) (Need for ormalzato) E[y x] = m( β x/ σ) (3) (Idetermacy) m(x, θ)= β +β x +β 1 2 x whe β = 0 β4 3 3 [Topc 6-Nolear Models] 12/87

13 Cotuty q(data, θ) s (a) Cotuous θ for all data ad all (b) Cotuously dfferetable. Frst dervatves are also cotuous (c) Twce dfferetable. Secod dervatves must be ozero, though they eed ot be cotuous fuctos of θ. (E.g. Lear LS) θ [Topc 6-Nolear Models] 13/87

14 1 Cosstecy P q= q(data 1, θ) q*=e[q(data, θ)] = Estmator P q q* ˆθ mmzes q True parameter θ mmzes q* P Does ths mply θ θ 0? ˆ 0 Yes. Cosstecy follows from detfcato ad cotuty wth the other assumptos [Topc 6-Nolear Models] 14/87

15 Asymptotc Normalty of M Estmators Frst order codtos: N (1/) Σ=1q(data, ˆθ ) = 0 θ ˆ 1 ˆ N q(data, θ) = Σ=1 θ ˆ 1 N = Σ ˆ ˆ =1g(data, θ ) = g(data, θ) For ay ˆθ, ths s the mea of a radom sample. We apply Ldberg-Feller CLT to assert the lmtg ormal dstrbuto of g(data, ˆθ ). [Topc 6-Nolear Models] 15/87

16 Asymptotc Normalty A Taylor seres expaso of the dervatve g(data, ˆθ ) = g(data, θ ) + H( θ )( ˆθ θ ) = q(data, θ ) H( θ ) = Σ= 1 θ θ θ = some pot betwee ˆθ ad θ The, ( ˆθ θ ) = [ H( θ )] g(data, θ ) ad ( ˆθ θ ) = [ H( θ)] g θ0 0 (data, ) [Topc 6-Nolear Models] 16/87

17 Asymptotc Normalty ( ˆθ θ ) = [ H( θ )] g(data, θ ) H θ [ ( )] coverges to ts expectato (a matrx) g(data, θ 0 ) coverges to a ormally dstrbuted vector (Ldberg-Feller) Imples lmtg ormal dstrbuto of (ˆθ θ ). 0 Lmtg mea s 0. Lmtg varace to be obtaed. Asymptotc dstrbuto obtaed by the usual meas. [Topc 6-Nolear Models] 17/87

18 Asymptotc Varace ˆ [ ( )] (data, ) a 1 θ θ 0 + H θ g θ 0 Asymptotcally ormal Mea = θ 0 Asy.Var[ ˆ] [ ( )] Var[ (data, )] [ ( )] 1 1 θ = H θ0 g θ0 H θ0 (A sadwch estmator, as usual) What s Var[ g(data, θ )]? 0 1 E[ g (data, θ0 ) g (data, θ0 ) '] Not kow what t s, but t s easy to estmate. 1 1 Σ= 1g(data, ˆθ) g(data ˆ, θ) ' [Topc 6-Nolear Models] 18/87

19 Estmatg the Varace Asy.Var[ ˆ] [ H( )] Var[ g(data, )] [ H( )] Estmate [ H( 1 1 θ = θ0 θ0 θ0 1 m(data, ˆθ) θ θ ˆˆ 2 1 θ0)] wth = m(data θ θ, ˆ) m(data, ˆ) Estmate Var[ g(data, θ0)] wth = 1 θ θ ˆ ˆ 2 E.g., f ths s lear least squares, (1/2) Σ (y -x β) m(data, ˆθ ) = (1 / 2)(y x b) = = 1 ( XX/) = 1 m(data, ˆθ) θ θ ˆˆ 2 =1 m(data θ θ, ˆ) m(data, ˆ) 2 N 2 = (1 / ) Σ θ θ ˆ ˆ = 1exx [Topc 6-Nolear Models] 19/87

20 Nolear Least Squares Gauss-Marquardt Algorthm q = the codtoal mea fucto = m( x, θ) m( x, θ) 0 g = = x = 'pseudo regressors ' θ Algorthm - terato ˆθ = ˆ θ + [ X 'X ] X 'e (k+1) (k) [Topc 6-Nolear Models] 20/87

21 Applcato - Icome Germa Health Care Usage Data, 7,293 Idvduals, Varyg Numbers of Perods Varables the fle are Data dowloaded from Joural of Appled Ecoometrcs Archve. Ths s a ubalaced pael wth 7,293 dvduals. They ca be used for regresso, cout models, bary choce, ordered choce, ad bvarate bary choce. Ths s a large data set. There are altogether 27,326 observatos. The umber of observatos rages from 1 to 7. (Frequeces are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987). Note, the varable NUMOBS below tells how may observatos there are for each perso. Ths varable s repeated each row of the data for the perso. (Dowloaded from the JAE Archve) HHNINC = household omal mothly et come Germa marks / (4 observatos wth come=0 were dropped) HHKIDS = chldre uder age 16 the household = 1; otherwse = 0 EDUC = years of schoolg AGE = age years [Topc 6-Nolear Models] 21/87

22 Icome Data Desty INCOME Kerel desty estmate for INCOME [Topc 6-Nolear Models] 22/87

23 Expoetal Model f(icome Age,Educ,Marred) 1 HHNINC exp = θ θ θ = exp(a + a Educ + a Marred + a Age) E[HHNINC Age,Educ,Marred] Startg values for the teratos: E[y othg else]=exp(a ) 0 Start a = loghhninc, a = θ = a = a 3 = 0 [Topc 6-Nolear Models] 23/87

24 Covetoal Varace Estmator ˆ 2 = 1 Σ [y m(x, θ)] ( X 0 X 0 ) #parameters 1 Sometmes omtted. [Topc 6-Nolear Models] 24/87

25 Estmator for the M Estmator q = (1 / 2)[y exp( x β )] = (1 / 2)(y θ) g H 2 2 = e θx = y θ xx Estmator s [ Σ H] [ Σ gg ][ Σ H] N -1 N N -1 =1 =1 =1 2 = [ Σ y θxx ] [ Σ e θ xx ][ Σ y θxx ] N -1 N 2 N -1 =1 =1 =1 Ths s the Whte estmator. See JW, p [Topc 6-Nolear Models] 25/87

26 Computg NLS Reject; hhc=0$ Calc ; b0=log(xbr(hhc))$ Names ; x=oe,educ,marred,age$ Nlsq ; labels=a0,a1,a2,a3 ; start=b0,0,0,0 ; fc=exp(a0 x) ; lhs=hhc;output=3$ Create; theta = exp(x'b) ; e=hhc-theta ; g2=(e*theta)^2 ; h=hhc*theta$ Matrx; varm = <x'[h] x> * x'[g2]x * <x'[h] x> $ Matrx; stat(b,varm,x)$ [Topc 6-Nolear Models] 26/87

27 Iteratos Covergece e X X X X e -1 ' gradet ' = 0 0 ( 0 ' 0 ) 0 ' 0 Beg NLSQ teratos. Learzed regresso. Iterato= 1; Sum of squares= ; Gradet= Iterato= 2; Sum of squares= ; Gradet= Iterato= 3; Sum of squares= ; Gradet= E-02 Iterato= 4; Sum of squares= ; Gradet= E-04 Iterato= 5; Sum of squares= ; Gradet= E-06 Iterato= 6; Sum of squares= ; Gradet= E-08 Iterato= 7; Sum of squares= ; Gradet= E-10 Iterato= 8; Sum of squares= ; Gradet= E-12 Iterato= 9; Sum of squares= ; Gradet= E-14 Iterato= 10; Sum of squares= ; Gradet= E-16 Iterato= 11; Sum of squares= ; Gradet= E-17 Iterato= 12; Sum of squares= ; Gradet= E-19 Iterato= 13; Sum of squares= ; Gradet= E-21 Covergece acheved [Topc 6-Nolear Models] 27/87

28 NLS Estmates User Defed Optmzato Nolear least squares regresso LHS=HHNINC Mea = Stadard devato = Resduals Sum of squares = Varable Coeffcet Stadard Error b/st.er. P[ Z >z] Covetoal Estmates Costat EDUC MARRIED AGE Recomputed varaces usg sadwch estmator for M Estmato. B_ B_ B_ B_ [Topc 6-Nolear Models] 28/87

29 Hypothess Tests for M Estmato Null hypothess: c( θ)= 0 for some set of J fuctos (1) cotuous c( θ ) (2) dfferetable; = R( θ ), J K Jacoba θ (3) fuctoally depedet: Rak R( θ) = J Wald: gve ˆθ, Vˆ =Est.Asy.Var[ ˆθ], W=Wald dstace ˆ ˆ -1 =[ c( θ)- c( θ)]{ R( θ) V( θ) R ( θ)} ' [ c( θ)- c( θ)] ch-squared[j] [Topc 6-Nolear Models] 29/87

30 Chage the Crtero Fucto 1 P q= q(data θ θ = 1, ) q*=e[q(data, )] Estmator ˆθ mmzes q Estmator ˆθ c mmzes q subject to restrctos c( θ)=0 ˆc q ˆq. c D 2(q ˆ q ) ch squared[j] [Topc 6-Nolear Models] 30/87

31 Score Test LM Statstc Dervatve of the objectve fucto (1 / ) Σ=1 q(data, θ ) Score vector = = g(data, θ ) θ Wthout restrctos g(data, ˆθ ) = 0 Wth ull hypothess, c( ˆθ ) mposed g(data, ˆθ c ) geerally ot equal to 0. Is t close? (Wth samplg varablty?) c c 1 c Wald dstace = [ g (data, ˆθ )]'{Var[ g(data, ˆθ )]} [ g(data, ˆθ )] D LM ch squared[j] [Topc 6-Nolear Models] 31/87

32 Expoetal Model f(icome Age,Educ,Marred) 1 HHNINC exp = θ θ θ = exp(a + a Educ + a Marred + a Age) Test H : a = a = a = [Topc 6-Nolear Models] 32/87

33 Wald Test Matrx ; Lst ; R=[0,1,0,0 / 0,0,1,0 / 0,0,0,1] ; c=r*b ; Vc = R*Varb*R' ; Wald = c'<vc>c $ Matrx R has 3 rows ad 4 colums d D D D D D D D D Matrx C has 3 rows ad 1 colums Matrx VC has 3 rows ad 3 colums d d d d d D D D D-07 Matrx WALD has 1 rows ad 1 colums [Topc 6-Nolear Models] 33/87

34 Chage Fucto Calc ; M = sumsqdev $ (from urestrcted) Calc ; b0 = log(xbr(hhc)) $ Nlsq ; labels=a0,a1,a2,a3;start=b0,0,0,0 ; fc=exp(a0+a1*educ+a2*marred+a3*age) ; fx=a1,a2,a3? Fxes at start values ; lhs=hhc $ Calc ; M0 = sumsqdev $ [Topc 6-Nolear Models] 34/87

35 Costraed Estmato Nolear Estmato of Model Parameters Method=BFGS ; Maxmum teratos=100 Start values: D+01 1st dervs D-10 Parameters: D+01 Itr 1 F=.4273D+03 gthg=.2661d-10 * Coverged NOTE: Covergece tal teratos s rarely at a true fucto optmum. Ths may ot be a soluto (especally f tal teratos stopped). Ext from teratve procedure. 1 teratos completed. Why dd ths occur? The startg value s the mmzer of the costraed fucto [Topc 6-Nolear Models] 35/87

36 Costraed Estmates User Defed Optmzato Nolear least squares regresso LHS=HHNINC Mea = Stadard devato = Resduals Sum of squares = Varable Coeffcet Stadard Error b/st.er. P[ Z >z] A A (Fxed Parameter)... A (Fxed Parameter)... A (Fxed Parameter)... --> calc ; m0=sumsqdev ; lst ; df = 2*(m0 - m) $ DF = [Topc 6-Nolear Models] 36/87

37 LM Test Fucto : q = (1 / 2)[y exp(a + a Educ...)] Dervatve : LM statstc 0 1 g = e θx LM=( Σ g)[ Σ gg ] ( Σ g) 1 = 1 = 1 = 1 All evaluated at ˆa 0 = log(y),0,0,0 2 [Topc 6-Nolear Models] 37/87

38 LM Test Name ;x=oe,educ,marred,age$ Create ;theta=exp(x'b);e=hhc-theta$ Create ;g=e*theta ; g2 = g*g $ Matrx ; lst ; LM = 1'[g]x * <x'[g2]x> * x'[g]1 $ Matrx LM has 1 rows ad 1 colums [Topc 6-Nolear Models] 38/87

39 Maxmum Lkelhood Estmato Fully parametrc estmato Desty of y s fully specfed The lkelhood fucto = the jot desty of the observed radom varable. Example: desty for the expoetal model 1 y f(y x) β= exp, θ = exp( x ) θ θ E[y x ]= θ, Var[y x ]= θ 2 NLS (M) estmator examed earler operated oly o E[y x ]= θ. [Topc 6-Nolear Models] 39/87

40 The Lkelhood Fucto 1 y f(y = θ = x) β exp, exp( x ) θ θ Lkelhood = f(y,..., y x,..., x ) By depedece, y L( β data)= exp, θ = =1 exp( xβ) θ θ The MLE, βˆ, maxmzes the lkelhood fucto MLE [Topc 6-Nolear Models] 40/87

41 Log Lkelhood Fucto 1 y f(y = θ = x) β exp, exp( x ) θ θ 1 y L( β data)= exp, θ = =1 exp( xβ) θ θ The MLE, βˆ, maxmzes the lkelhood fucto logl( β data) s a mootoc fucto. Therefore The MLE, βˆ MLE MLE y logl( β data)= -logθ =1 θ, maxmzes the log lkelhood fucto [Topc 6-Nolear Models] 41/87

42 Codtoal ad Ucodtoal Lkelhood Ucodtoal jot desty f(y, x θδ, ) θ= our parameters of terest δ = parameters of the margal desty of x Ucodtoal lkelhood fucto L( θδ, y, X)= f(y, x θδ, ) =1 f(y, x θδ, ) = f(y x, θδ, )g( x θδ, ) L( θδ, y, X )= f(y x, θδ, )g( x θδ, ) =1 Assumg the parameter space parttos logl( θδ, y, X )= logf(y x, θ ) + logg( x δ) =1 =1 = codtoal log lkelhood + margal log lkelhood [Topc 6-Nolear Models] 42/87

43 Cocetrated Log Lkelhood ˆ θ maxmzes logl( θ data) Cosder a partto, θ=( βα, ) two parts. logl Maxmum occurs where = 0 β α Jot soluto equates both dervatves to 0. If logl/ α=0 admts a mplct soluto for α MLE terms of β, α ˆ =αβ ˆ( ˆ), the wrte MLE logl ( βαβ, ( ))=a fucto oly of β. c Cocetrated log lkelhood ca be maxmzed for β, the the soluto computed for α. The soluto must occur where α ˆ =αβ ˆ ( ˆ),so restrct the search to ths subspace of the parameter space. MLE [Topc 6-Nolear Models] 43/87

44 A Cocetrated Log Lkelhood Fxed effects expoetal regresso: θ = exp( α+ x β) logl = ( logθ y / θ ) logl α = 1 t= 1 = ( α+ ( x β) y exp( α x β)) = 1 t= 1 T = 1 y exp( α x β)( 1) t= 1 T T T t t t t t t t t = T + y exp( α x β) t= 1 t t T = T + exp( α ) y exp( x β) = 0 t= 1 t t t t T Σ t= 1 y t / exp(x tβ) Solve ths for α = log = α ( β) T T Σ c t= 1y t / exp(x tβ) Cocetrated log lkelhood has θ = t exp(x tβ) T [Topc 6-Nolear Models] 44/87

45 ML ad M Estmato logl( θ ) = log f(y x, θ) = 1 ˆθ MLE = argmax log f(y 1 x, θ) = 1 = argm - log f(y 1 x, θ) = The MLE s a M estmator. We ca use all of the prevous results for M estmato. [Topc 6-Nolear Models] 45/87

46 Regularty Codtos Codtos for the MLE to be cosstet, etc. Augmet the cotuty ad detfcato codtos for M estmato Regularty: Three tmes cotuous dfferetablty of the log desty Fte thrd momets of log desty Codtos eeded to obta expected values of dervatves of log desty are met. (See Greee (Chapter 14)) [Topc 6-Nolear Models] 46/87

47 Cosstecy ad Asymptotc Normalty of the MLE Codtos are detcal to those for M estmato Terms proofs are log desty ad ts dervatves Nothg ew s eeded. Law of large umbers Ldberg-Feller cetral lmt apples to dervatves of the log lkelhood. [Topc 6-Nolear Models] 47/87

48 Asymptotc Varace of the MLE Based o results for M estmato Asy.Var[ ˆθ ] MLE ={-E[Hessa]} {Var[frst dervatve]}{-e[hessa]} logl logl logl = -E Var -E θ θ θ θ θ [Topc 6-Nolear Models] 48/87

49 The Iformato Matrx Equalty Fudametal Result for MLE The varace of the frst dervatve equals the egatve of the expected secod dervatve. 2 logl -E = The Iformato Matrx θ θ Asy.Var[ ˆθ ] MLE logl logl logl = -E -E -E θ θ θ θ θ θ 2 logl = -E θ θ 1 [Topc 6-Nolear Models] 49/87

50 Three Varace Estmators Negatve verse of expected secod dervatves matrx. (Usually ot kow) Negatve verse of actual secod dervatves matrx. Iverse of varace of frst dervatves [Topc 6-Nolear Models] 50/87

51 Asymptotc Effcecy M estmator based o the codtoal mea s semparametrc. Not ecessarly effcet. MLE s fully parametrc. It s effcet amog all cosstet ad asymptotcally ormal estmators whe the desty s as specfed. Ths s the Cramer-Rao boud. Note the mpled comparso to olear least squares for the expoetal regresso model. [Topc 6-Nolear Models] 51/87

52 Ivarace Useful property of MLE If λ=g( θ) s a cotuous fucto of θ, the MLE of λ s g( ˆθ ) MLE E.g., the expoetal FE model, the MLE of λ = exp(- α) s exp(- αˆ ),MLE [Topc 6-Nolear Models] 52/87

53 Applcato: Expoetal Regresso Expoetal (Loglear) Regresso Model Maxmum Lkelhood Estmates Depedet varable HHNINC Number of observatos Iteratos completed 10 Log lkelhood fucto Number of parameters 4 Restrcted log lkelhood Ch squared Degrees of freedom Varable Coeffcet Stadard Error b/st.er. P[ Z >z] Mea of X Parameters codtoal mea fucto Costat EDUC MARRIED AGE NLS Results wth recomputed varaces usg results for M Estmato. B_ B_ B_ B_ [Topc 6-Nolear Models] 53/87

54 Varace Estmators LogL = logθ y / θ, θ= exp( xβ ) = 1 logl g = = x + (y / θ ) x = [(y / θ) 1] x β = 1 = 1 = 1 Note, E[y x ] = θ, so E[ g]= 0 2 logl H = = (y θ = 1 / ) x x β β E[ H] = x x = - X'X (kow for ths partcular model) [Topc 6-Nolear Models] 54/87

55 Three Varace Estmators Berdt-Hall-Hall-Hausma (BHHH) = [(y ˆ =1 1 / θ) 1] gg xx = Based o actual secod dervatves 1 1 H = (y ˆ =1 1 / θ) xx = Based o expected secod dervatves { E H } =1 = x = ( ) = 1 x X'X [Topc 6-Nolear Models] 55/87

56 Varace Estmators Loglear ; Lhs=hhc;Rhs=x ; Model = Expoetal create;theta=exp(x'b);h=hhc/theta;g2=(h-1)^2$ matr;he=<x'x> ; ha=<x'[h]x> ; bhhh=<x'[g2]x>$ matr;stat(b,ha);stat(b,he);stat(b,bhhh)$ Varable Coeffcet Stadard Error b/st.er. P[ Z >z] B_ ACTUAL B_ B_ B_ B_ EXPECTED B_ B_ B_ B_ BHHH B_ B_ B_ [Topc 6-Nolear Models] 56/87

57 Hypothess Tests Trty of tests for ested hypotheses Wald Lkelhood rato Lagrage multpler All as defed for the M estmators [Topc 6-Nolear Models] 57/87

58 Example: Expoetal vs. Gamma Gamma Dstrbuto: f(y x, θ,p) = P exp( y / θ)y θ P 1 Γ(P) Expoetal: P = 1 P > 1 [Topc 6-Nolear Models] 58/87

59 Log Lkelhood logl =Σ P logθ log Γ(P) y / θ+ (P 1)log y Γ (1) = 0! = 1 = 1 logl =Σ logθ y / θ = 1 + (P 1) log y (P 1) log θ log Γ(P) =Σ logθ y / θ+ (P 1)log(y / θ) log Γ(P) = 1 = Expoetal logl + part due to P 1 [Topc 6-Nolear Models] 59/87

60 Estmated Gamma Model Gamma (Loglear) Regresso Model Depedet varable HHNINC Number of observatos Iteratos completed 18 Log lkelhood fucto Number of parameters 5 Restrcted log lkelhood Ch squared Degrees of freedom 4 Prob[ChSqd > value] = Varable Coeffcet Stadard Error b/st.er. P[ Z >z] Mea of X Parameters codtoal mea fucto Costat EDUC MARRIED AGE Scale parameter for gamma model P_scale [Topc 6-Nolear Models] 60/87

61 Testg P = 1 Wald: W = ( ) 2 / = Lkelhood Rato: logl (P=1)= logl P = LR = 2( ) = Lagrage Multpler [Topc 6-Nolear Models] 61/87

62 Dervatves for the LM Test logl =Σ logθ y / θ+ (P 1)log(y / θ) log Γ(P) logl β logl P = 1 =Σ (y / θ P) x =Σ g = 1 = 1 x, =Σ log(y / θ) ψ (P) =Σ g = 1 = 1 P, ψ(1)= For the LM test, we compute these at the expoetal MLE ad P = 1. x [Topc 6-Nolear Models] 62/87

63 Ps Fucto = dlogγ(p)/dp 5 Ps(p) = Log Dervatve of Gamma Fucto 0-5 Ps Fucto PV [Topc 6-Nolear Models] 63/87

64 Dervatves g x,(1) g x,(educ) g = = = g x,(marred), g g = whe P s urestrcted 1 g x,(age) g P, = whe P = 1 the gamma model [Topc 6-Nolear Models] 64/87

65 Score Test Test the hypothess that the dervatve vector equals zero whe evaluated for the larger model wth the restrcted coeffcet vector. 1 Estmator of zero s g= g =1 Statstc = ch squared = g [Var g] 1 1 Use =1 gg -1 g (the 's wll cacel). ch squared = ( ) -1 ( g ) gg =1 =1 g =1 [Topc 6-Nolear Models] 65/87

66 Calculated LM Statstc Create ;theta=exp(x b) ; g=(hhc/theta 1) Create ;gp=log(hhc/theta)-ps(1)$ Create ;g1=g;g2=g*educ;g3=g*marred;g4=g*age;g5=gp$ Namelst;gg=g1,g2,g3,g4,g5$ Matrx ;lst ; lm = 1'gg * <gg'gg> * gg'1 $ Matrx LM ? Use bult- procedure.? LM s computed wth actual Hessa stead of BHHH logl;lhs=hhc;rhs=oe,educ,marred,age;model=g;start=b,1;maxt=0$ LM Stat. at start values [Topc 6-Nolear Models] 66/87

67 Clustered Data ad Partal Lkelhood Pael Data: y x, t = 1,..., T t t Some coecto across observatos wth a group Assume margal desty for y x = f(y x, θ) Jot desty for dvdual s f(y,..., y X ) f(y x, θ) 1,T t= 1 t t T t t t t T "Pseudo loglkelhood" = log f(y x, θ) = 1 t= 1 = log f(y x, θ) = 1 t= 1 Just the pooled log lkelhood, gorg the pael aspect of the data. Not the correct log lkelhood. Does maxmzg wrt θ work? Yes, f the margal desty s correctly specfed. T t t t t [Topc 6-Nolear Models] 67/87

68 Iferece wth Clusterg (1) Estmator s cosstet (2) Asymptotc Covarace matrx eeds adjustmet Asy.Var[]=[Hessa] Var[gradet][Hessa] H = T = 1 t= 1 g = g, where g = g Terms t = 1 t= 1 t g H Est.Var[ ˆθ ] = -1-1 T are ot depedet, so estmato of the varace caot be doe wth = 1 t= 1 ( t ) ( t ) 1 T T ( = Hˆ = ) { T 1 t 1 t = 1( g ˆ t= 1 t ) ( ) }( ) T g ˆ = t ' t 1 = 1 Hˆ t= 1 t T T = 1 t= 1 t= 1 T gg But, terms across are depedet, so we estmate Var[ g] wth g g ' PMLE (Geerally serts a correcto term /(-1) before the mddle term.) t t 1 [Topc 6-Nolear Models] 68/87

69 Cluster Estmato Expoetal (Loglear) Regresso Model Maxmum Lkelhood Estmates Covarace matrx for the model s adjusted for data clusterg. Sample of observatos cotaed 7293 clusters defed by varable ID whch detfes by a value a cluster ID Varable Coeffcet Stadard Error b/st.er. P[ Z >z] Mea of X Parameters codtoal mea fucto Costat EDUC MARRIED AGE Ucorrected Stadard Errors Costat EDUC MARRIED AGE [Topc 6-Nolear Models] 69/87

70 O Clusterg The theory s very loose. That the margals would be correctly specfed whle there remas correlato across observatos s ambguous It seems to work pretty well practce (ayway) BUT It does ot mply that oe ca safely just pool the observatos a pael ad gore uobserved commo effects. The correcto redeems the varace of a estmator, ot the estmator, tself. [Topc 6-Nolear Models] 70/87

71 Robust Estmato If the model s msspecfed some way, the the formato matrx equalty does ot hold. Assumg the estmator remas cosstet, the approprate asymptotc covarace matrx would be the robust matrx, actually, the orgal oe. Asy.Var[ ˆθ ] = [ E[Hessa]] Var[gradet][ E[Hessa]] MLE 1 1 (Software ca be coerced to computg ths by tellg t that clusters all have oe observato them.) [Topc 6-Nolear Models] 71/87

72 Two Step Estmato ad Murphy/Topel Lkelhood fucto defed over two parameter vectors =1 logl= logf(y x,z, θδ, ) (1) Maxmze the whole thg. (FIML) (2) Typcal Stuato: Two steps 1 y E.g., f(hhninc educ,marred,age,ifkds)= exp, θ θ θ = exp( β +β Educ +β Marred +β Age +β Pr[IfKds]) If[Kds age,bluec] = Logstc Regresso Pr[IfKds]=exp( δ +δ Age +δ Bluec) /[1 + exp( δ +δ Age +δbluec)] (3) Two step strategy: Ft the stage oe model ( δ) by MLE frst, sert the results logl( θδ, ˆ) ad estmate θ. [Topc 6-Nolear Models] 72/87

73 Two Step Estmato (1) Does t work? Yes, wth the usual detfcato codtos, cotuty, etc. The frst step estmator s assumed to be cosstet ad asymptotcally ormally dstrbuted. (2) The asymptotc covarace matrx at the secod step that takes ˆ δ as f t were kow s too small. (3) Repar to the covarace matrx by the Murphy Topel Result (1983,2002) [Topc 6-Nolear Models] 73/87

74 Murphy-Topel - 1 logl ( δ) defes the frst step estmator. Let Vˆ = Estmated asymptotc covarace matrx for ˆδ log f,1(..., δ) ˆ 1 g ˆ ˆ,1 =. ( V1 mght = [ Σ=1g,1g,1] ) δ logl( θδ, ˆ) defes the secod step estmator usg the estmated value of δ. Vˆ = Estmated asymptotc covarace matrx for ˆθ ˆδ log f,2(..., θδ, ˆ) ˆ 1 g ˆ ˆ,2 =. ( V2 mght = [ Σ=1g,2g,2] ) θ Vˆ s too small [Topc 6-Nolear Models] 74/87

75 Murphy-Topel - 2 Vˆ 1 1,1,1 1 =1,1,1 2 = Estmated asymptotc covarace matrx for ˆδ g = log f (..., δ) / δ. ( Vˆ mght = [ Σ gˆ gˆ ] ) Vˆ g h C R = Estmated asymptotc covarace matrx for ˆθ ˆδ = log f (..., θ, ˆδ ) / θ. ( Vˆ mght =,2,2 2 = log f (..., θ, ˆδ ) / δ ˆ,2,2 = Σ = Σ =1,2,2 =1,2,1 [ Σ gˆ gˆ ] ) 1 =1,2,2 gˆ hˆ (the off dagoal block the Hessa) gˆ gˆ (cross products of dervatves for two logl's) M&T: Corrected ˆ ˆ ˆ ˆ ˆ ˆ ˆ V2 = V2 + V 2 [ CV 1 C' - CV 1 R' - RV 1 C' ] V 2 [Topc 6-Nolear Models] 75/87

76 Applcato of M&T Names ; z1=oe,age,bluec$ Logt ; lhs=hhkds ; rhs=z1 ; prob=prfkds $ Matrx ; v1=varb$ Create ; g1=hhkds-prfkds$ Names ; z2 = oe,educ,marred,age,prfkds Loglear; lhs=hhc;rhs=z2;model=e$ Matrx ; v2=varb$ Create ; g2=hhc*exp(z2'b)-1$ Create ; h2=g2*b(5)*prfkds*(1-prfkds)$ Create ; varc=g1*g2 ; varr=g1*h2$ Matrx ; c=z2'[varc]z1 ; r=z2'[varr]z1$ Matrx ; q=c*v1*c'-c*v1*r'-r*v1*c ; mt=v2+v2*q*v2;stat(b,mt)$ [Topc 6-Nolear Models] 76/87

77 M&T Applcato Multomal Logt Model Depedet varable HHKIDS Varable Coeffcet Stadard Error b/st.er. P[ Z >z] Mea of X Characterstcs umerator of Prob[Y = 1] Costat AGE BLUEC Expoetal (Loglear) Regresso Model Depedet varable HHNINC Varable Coeffcet Stadard Error b/st.er. P[ Z >z] Mea of X Parameters codtoal mea fucto Costat EDUC MARRIED AGE PRIFKIDS B_ B_ B_ B_ B_ Why so lttle chage? N = 27,000+. No ew varato. [Topc 6-Nolear Models] 77/87

78 GMM Estmato 1 N gβ ( )= Σ= m 1 (y,x,β ) N Asy.Var[ gβ ( )] estmated wth 1 1 N W= βσm = 1m,x (y,x,β, ) (y ) N N The GMM estmator of β the mmzes 1 N 1 1 N q = Σ= 1m (y β,x 'W, ) m Σ= 1, x (y,β ) N N. ˆ -1 1 gβ ( ) Est.Asy.Var[ βgmm] = [ G'W G], G = β [Topc 6-Nolear Models] 78/87

79 GMM Estmato-1 GMM s broader tha M estmato ad ML estmato Both M ad ML are GMM estmators. 1 = log f(y x, β) gβ ( ) for MLE = 1 β 1 = E(y x, β) gβ ( ) e = 1 for NLSQ β [Topc 6-Nolear Models] 79/87

80 GMM Estmato - 2 Exactly detfed GMM problems 1 N Whe gβ ( ) = Σ = m 1 (y,x,β ) = 0 s K equatos N K ukow parameters (the exactly detfed case), the weghtg matrx 1 N 1 1 N q = Σ= 1m (y β,x 'W, ) Σ= 1 (y N m, x,β ) N s rrelevat to the soluto, sce we ca set exactly gβ ( ) = 0 so q = 0. Ad, the asymptotc covarace matrx (estmator) s the product of 3 square matrces ad becomes [ G'W G] = G WG' [Topc 6-Nolear Models] 80/87

81 Optmzato - Algorthms Maxmze or mmze (optmze) a fucto F( θ) Algorthm = rule for searchg for the optmzer Iteratve algorthm: (k+ 1) (k) = θ + Update (k+ 1) (k) (k) Dervatve (gradet) based algorthm θ θ (k) = θ + Update( g ) Update s a fucto of the gradet. Compare to 'dervatve free' methods (Dscotuous crtero fuctos) [Topc 6-Nolear Models] 81/87

82 Algorthms Iterato Geeral structure: g λ (k) (k) W (k) Optmzato θ = θ + Update (k+1) (k) (k) = θ +λ (k+1) (k) (k) (k) (k) = dervatve vector, pots to a better value tha θ θ (k) = drecto vector = 'step sze' = a weghtg matrx W Algorthms are defed by the choces of g λ (k) ad W (k) [Topc 6-Nolear Models] 82/87

83 Algorthms (k) (k) (k) -g 'g (k) Steepest Ascet: λ =, W = I (k) (k) (k) g 'H g g H (k) (k) = frst dervatve vector = secod dervatves matrx Newto's Method: λ = -1, W = [ H ] (k) (k) (k) 1 ( Sometmes called Newto-Raphso. Method of Scorg: λ = -1, W = [E[ H ]] (k) (k) (k) 1 (Scorg uses the expected Hessa. Usually feror to Newto's method. Takes more teratos.) BHHH Method (for MLE) : λ (k) (k) (k) = -1, W = [ Σ = g g '] (k) 1 1 [Topc 6-Nolear Models] 83/87

84 Le Search Methods Squeezg: Essetally tral ad error (k) λ = 1, 1/2, 1/4, 1/8,... Utl the fucto mproves Golde Secto: Iterpolate betwee (k) ad (k-1) Others : May dfferet methods have bee suggested λ λ [Topc 6-Nolear Models] 84/87

85 Quas-Newto Methods How to costruct the weghtg matrx: Varable metrc methods: W W E, W I (k) (k 1) (k 1) (1) = + = Rak oe updates: (k) (k 1) (k 1) (k 1) W W a a ' = + (Davdo Fletcher Powell) There are rak two updates (Broyde) ad hgher. [Topc 6-Nolear Models] 85/87

86 Stoppg Rule Whe to stop teratg: 'Covergece' (1) Dervatves are small? Not good. Maxmzer of F() s the same as that of f(), but the dervatves are small rght away. (2) Small absolute chage parameters from oe terato to the ext? Problematc because t s a fucto of the stepsze whch may be small. (3) Commoly accepted 'scale free' measure = g [ H ] g (k) (k) 1 (k) [Topc 6-Nolear Models] 86/87

87 For Example Nolear Estmato of Model Parameters Method=BFGS ; Maxmum teratos= 4 Covergece crtera:gthg.1000d-05 chg.f.0000d+00 max db.0000d+00 Start values: D D D D D+01 1st dervs D D D D D+05 Parameters: D D D D D+01 Itr 1 F=.3190D+05 gthg=.1078d+07 chg.f=.3190d+05 max db =.1042D+13 Try = 0 F=.3190D+05 Step=.0000D+00 Slope= D+07 Try = 1 F=.4118D+06 Step=.1000D+00 Slope=.2632D+08 Try = 2 F=.5425D+04 Step=.5214D-01 Slope=.8389D+06 Try = 3 F=.1683D+04 Step=.4039D-01 Slope= D+06 1st dervs D D D D D+04 Parameters: D D D D D+00 Itr 2 F=.1683D+04 gthg=.1064d+06 chg.f=.3022d+05 max db =.4538D+07 Try = 0 F=.1683D+04 Step=.0000D+00 Slope= D+06 Try = 1 F=.1006D+06 Step=.4039D-01 Slope=.7546D+07 Try = 2 F=.1839D+04 Step=.4702D-02 Slope=.1847D+06 Try = 3 F=.1582D+04 Step=.1855D-02 Slope=.7570D st dervs D D D D D-06 Itr 20 F=.1424D+05 gthg=.1389d-07 chg.f=.1155d-08 max db =.1706D-08 * Coverged Normal ext from teratos. Ext status=0. Fucto= D+05, at etry, D+05 at ext [Topc 6-Nolear Models] 87/87

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 21-1/67. Part 21: Generalized Method of Moments

Econometrics I. Professor William Greene Stern School of Business Department of Economics 21-1/67. Part 21: Generalized Method of Moments Ecoometrcs I Professor Wllam Greee Ster School of Busess Departmet of Ecoomcs 21-1/67 Ecoometrcs I Part 21 Geeralzed Method of Momets 21-2/67 I also have a questos about olear GMM - whch s more or less

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Econometrics. 3) Statistical properties of the OLS estimator

Econometrics. 3) Statistical properties of the OLS estimator 30C0000 Ecoometrcs 3) Statstcal propertes of the OLS estmator Tmo Kuosmae Professor, Ph.D. http://omepre.et/dex.php/tmokuosmae Today s topcs Whch assumptos are eeded for OLS to work? Statstcal propertes

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

GENERALIZED METHOD OF MOMENTS CHARACTERISTICS AND ITS APPLICATION ON PANELDATA

GENERALIZED METHOD OF MOMENTS CHARACTERISTICS AND ITS APPLICATION ON PANELDATA Sc.It.(Lahore),26(3),985-990,2014 ISSN 1013-5316; CODEN: SINTE 8 GENERALIZED METHOD OF MOMENTS CHARACTERISTICS AND ITS APPLICATION ON PANELDATA Beradhta H. S. Utam 1, Warsoo 1, Da Kurasar 1, Mustofa Usma

More information

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues Lkelhood Rato, Wald, ad Lagrage Multpler (Score) Tests Soccer Goals Europea Premer Leagues - 4 Statstcal Testg Prcples Goal: Test a Hpothess cocerg parameter value(s) a larger populato (or ature), based

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model ECON 48 / WH Hog The Smple Regresso Model. Defto of the Smple Regresso Model Smple Regresso Model Expla varable y terms of varable x y = β + β x+ u y : depedet varable, explaed varable, respose varable,

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

4. Standard Regression Model and Spatial Dependence Tests

4. Standard Regression Model and Spatial Dependence Tests 4. Stadard Regresso Model ad Spatal Depedece Tests Stadard regresso aalss fals the presece of spatal effects. I case of spatal depedeces ad/or spatal heterogeet a stadard regresso model wll be msspecfed.

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Linear Regression with One Regressor

Linear Regression with One Regressor Lear Regresso wth Oe Regressor AIM QA.7. Expla how regresso aalyss ecoometrcs measures the relatoshp betwee depedet ad depedet varables. A regresso aalyss has the goal of measurg how chages oe varable,

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER II STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1 Wu-Hausma Test: Detectg Falure of E( ε X ) Caot drectly test ths assumpto because lack ubased estmator of ε ad the OLS resduals wll be orthogoal to X, by costructo as ca be see from the momet codto X'

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE (STATISTICS) STATISTICAL INFERENCE COMPLEMENTARY COURSE B.Sc. MATHEMATICS III SEMESTER ( Admsso) UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY P.O., MALAPPURAM, KERALA, INDIA -

More information

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009 Aswer key to problem set # ECON 34 J. Marcelo Ochoa Sprg, 009 Problem. For T cosder the stadard pael data model: y t x t β + α + ǫ t a Numercally compare the fxed effect ad frst dfferece estmates. b Compare

More information

Chapter 13 Student Lecture Notes 13-1

Chapter 13 Student Lecture Notes 13-1 Chapter 3 Studet Lecture Notes 3- Basc Busess Statstcs (9 th Edto) Chapter 3 Smple Lear Regresso 4 Pretce-Hall, Ic. Chap 3- Chapter Topcs Types of Regresso Models Determg the Smple Lear Regresso Equato

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

L(θ X) s 0 (1 θ 0) m s. (s/m) s (1 s/m) m s

L(θ X) s 0 (1 θ 0) m s. (s/m) s (1 s/m) m s Hw 4 (due March ) 83 The LRT statstcs s λ(x) sup θ θ 0 L(θ X) The lkelhood s L(θ) θ P x ( sup Θ L(θ X) θ) m P x ad ad the log-lkelhood s (θ) x log θ +(m x ) log( θ) Let S X Note that the ucostraed MLE

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEA EGESSION ANALYSIS MODULE III Lecture - 4 Multple Lear egresso Aalyss Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Cofdece terval estmato The cofdece tervals multple

More information

G S Power Flow Solution

G S Power Flow Solution G S Power Flow Soluto P Q I y y * 0 1, Y y Y 0 y Y Y 1, P Q ( k) ( k) * ( k 1) 1, Y Y PQ buses * 1 P Q Y ( k1) *( k) ( k) Q Im[ Y ] 1 P buses & Slack bus ( k 1) *( k) ( k) Y 1 P Re[ ] Slack bus 17 Calculato

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

CLASS NOTES. for. PBAF 528: Quantitative Methods II SPRING Instructor: Jean Swanson. Daniel J. Evans School of Public Affairs

CLASS NOTES. for. PBAF 528: Quantitative Methods II SPRING Instructor: Jean Swanson. Daniel J. Evans School of Public Affairs CLASS NOTES for PBAF 58: Quattatve Methods II SPRING 005 Istructor: Jea Swaso Dael J. Evas School of Publc Affars Uversty of Washgto Ackowledgemet: The structor wshes to thak Rachel Klet, Assstat Professor,

More information

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution Global Joural of Pure ad Appled Mathematcs. ISSN 0973-768 Volume 3, Number 9 (207), pp. 55-528 Research Ida Publcatos http://www.rpublcato.com Comparg Dfferet Estmators of three Parameters for Trasmuted

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecto ad Estmato heory Joseph A. O Sullva Samuel C. Sachs Professor Electroc Systems ad Sgals Research Laboratory Electrcal ad Systems Egeerg Washgto Uversty Urbauer Hall 34-935-473 (Lyda aswers

More information

Statistics: Unlocking the Power of Data Lock 5

Statistics: Unlocking the Power of Data Lock 5 STAT 0 Dr. Kar Lock Morga Exam 2 Grades: I- Class Multple Regresso SECTIONS 9.2, 0., 0.2 Multple explaatory varables (0.) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (0.2) Exam 2 Re- grades Re-

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

THE EFFICIENCY OF EMPIRICAL LIKELIHOOD WITH NUISANCE PARAMETERS

THE EFFICIENCY OF EMPIRICAL LIKELIHOOD WITH NUISANCE PARAMETERS Joural of Mathematcs ad Statstcs (: 5-9, 4 ISSN: 549-3644 4 Scece Publcatos do:.3844/jmssp.4.5.9 Publshed Ole ( 4 (http://www.thescpub.com/jmss.toc THE EFFICIENCY OF EMPIRICAL LIKELIHOOD WITH NUISANCE

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Mache Learg Problem set Due Frday, September 9, rectato Please address all questos ad commets about ths problem set to 6.867-staff@a.mt.edu. You do ot eed to use MATLAB for ths problem set though

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE STATISTICAL INFERENCE The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3 IOSR Joural of Mathematcs IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume, Issue Ver. II Ja - Feb. 05, PP 4- www.osrjourals.org Bayesa Ifereces for Two Parameter Webull Dstrbuto Kpkoech W. Cheruyot, Abel

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information