On Generalized Fuzzy Goal Optimization for Solving Fuzzy Multi- Objective Linear Programming Problems. Abstract

Size: px
Start display at page:

Download "On Generalized Fuzzy Goal Optimization for Solving Fuzzy Multi- Objective Linear Programming Problems. Abstract"

Transcription

1 O Geerlzed Fuzzy Gol Optmzto or Solv Fuzzy Mult- Ojetve er Prormm Prolems Je u Feje Wu Guqu Zh Fulty o Iormto Teholoy Uversty o Teholoy Sydey PO Bo 3 Brodwy NSW 007 Austrl E-ml: jelu@t.uts.edu.u Astrt My orztol deso prolems e ormulted y mult-ojetve ler prormm (MOP) models. eerr to the mpreso heret hum judmets uertty my e orported the prmeters o MOP model whe t s estlshed whh s lled Fuzzy MOP (FMOP) prolem. Wht s optml soluto or FMOP prolem s the rst ssue o ths study. The seod ssue s how to eetvely derve optml soluto se uertty s lso releted soluto proess o FMOP deso prolem. By trodu three types o omprso o uzzy umers d djustle ststory deree ths study ew soluto oept o FMOP s ve. For hdl the seod ssue ths study develops tertve uzzy ol optmzto method whh mkes terto wth deso mkers dur soluto proess d llows deso mkers provd uzzy ols y orms o memershp utos. A llustrtve emple ves the detls o the soluto oept d the proposed method. Keywords: Optmzto; Fuzzy prormm; Mult-ojetve ler prormm; Itertve deso-mk method.

2 . Itroduto Mult-ojetve ler prormm (MOP) s eet tehque to model d solve deso prolems whh severl olt d ommesurle ojetves re to e optmzed smulteously sujet to speed ostrts [5]. However sett up sutle mthemtl model eet soluto proedure d pertet omput method or MOP prolem s qute dult euse there ests uertty d mpreso the judmets o oth model retors (eperts) d deso mkers d thereore the dulty s releted oth the proess o model mult-ojetve deso prolem d solv the prolem. I model relst MOP prolem the possle vlues o the prmeters the ojetve utos d ostrts my e ssed epermetl sttstl or sujetve mer throuh some eperts uderstd o the ture or the deso prolem. These methods re eet to model some prolems ut my use mportt ormto lost d sometmes l to the rellty o the models. The m reso s tht the vlues o the prmeters model re ote mpresely or muously uderstood to the eperts d dult to e determed us prese vlues. Wth ths oservto t my e more pproprte to terpret the eperts uderstd o these prmeters s uzzy umerl dt. A MOP model wth uzzy prmeters ts ojetve utos or ostrts or oth s lled uzzy MOP (FMOP) prolem. I order to derve ststo soluto o MOP prolem or deso mker sed o hs/her sujetve vlue judmet d preeree my methods hve ee proposed rom ltertures. Two m types o the methods re ol prormm d tertve prormm [5]. Cosder the mprese eture o deso mkers judmet d preeree t s ture to ssume tht the deso mkers my oly

3 hve mprese ols or the ojetve utos. Ths ssue s reereed s the uzzy ol prormm optmzto []. Fuzzy ol optmzto methods hve ee ppled solv lssl MOP prolem [8]. To solve FMOP prolem the uzzy ol prormm method eeds to e urther developed so tht t eetvely ompre the vlues etwee ojetve uto wth uzzy prmeters d ts uzzy ol. I eerl there does t est uque soluto or oth MOP d FMOP prolems. To ot ststory soluto o FMOP prolem or prtulr deso mker volves lot o terto to rry out the deso mker s preeree or soluto. Whe oth the prmeters the model d the ols ve y deso mker re wth uertty the tertve soluto proedure my eome very omple d thereore more eet FMOP methods re eeded. My optmzto methods d tehques or model d solv FMOP prolems hve ee proposed [] [6] [8] [8]. As uzzy umers well represet oth uzzy prmeters d uzzy ols us uzzy umers to model d solve FMOP prolem s prtulrly proms. My ppltos hve lso proved t s pplle or del wth hum deso-mk prolems most prtl stutos [] [9]. For emple Tk d As [3] ormulted FMOP prolems y us trulr uzzy umers to desre the uzzy prmeters oth ojetve utos d ostrts. d Hw [9] modeled FMOP prolems y us trulr uzzy umers s well d lso solved FMOP prolems y us the uzzy rk oept to hdle mprese ostrts d mmze the most possle vlues o ts ojetves. uhdjul [0] proposed the oepts o α-possle eslty d β-possle eey sed o the oept o uzzy umer d used the two oepts to solve FMOP prolems y trserr t to ulry rsp 3

4 MOP prolem. Furthermore Slowsk [] proposed tertve method (FIP) or solv MOP prolems wth uzzy prmeters the ojetve utos d o the oth sdes o the ostrts. ommeler [4] preseted method (FUPA) or solv (multrter) ler prorms where the rht-hd sdes s well s the prmeters the ostrts d/or the ojetve utos my e uzzy. Smlrly mk et l. [] proposed ued pproh sed o the uzzy equlty reltos or uzzy mthemtl prormm prolem whh uzzy prmeters my hve oler memershp utos. Espelly Iuuh et l. [6] revewed some uzzy ler prormm methods d tehques rom prtl pot o vew d trodued the eerl hstory d the pprohes o uzzy mthemtl prormm. I metme ol prormm [3] s eetve method hs ee suessully ppled solv FMOP prolems. Kuwo [7] ppled the oepts o the - optml soluto d the restrted -optml vlue t the -optml soluto to estlsh ol prormm pproh or solv FMOP prolems. Nshzk d Skw [] pushed the work orwrd sed o ther prevous results [8] [0] y de two soluto oepts or FMOP sed o uzzy ols. Oe s deed y mmz the mml uzzy ol d the other y mmz the sum o uzzy ols. They the developed two omputtol methods or ot the solutos or FMOP prolems. More mporttly mk [] eerted stdrd ol prormm prolem wth ltertves d ols e uzzy sets d the ststo o ol y uzzy ojetve uto s lso epressed y uzzy relto d proposed uy pproh over severl pprohes kow rom lterture. Althouh these methods re eet to solve FMOP prolems there est two 4

5 lmttos ther urret results. Oe s tht oly some spelzed orms o memershp utos suh s trulr orm were used to del wth the uzzy prmeters d the uzzy ols. Ths my restrt the use o other orms o memershp utos to desre the prmeters model FMOP prolem d to epress ther ols y deso mkers solv FMOP prolem. The seod lmtto s tht the vlues o ojetve utos orrespod to ststory soluto o FOMP prolem re oly desred y some rsp vlues whh s sometmes ot pproprte prte. Se deso prolem ws ormulted wth uertty d ts soluto s reeved wth uzzy vlues t s more resole to provde the vlues o the ojetve utos wth re vlues. Ths study thereore develops eerlzed uzzy ol optmzto method to ssst deso mkers to ot ststory solutos or FMOP prolem. The method solve FMOP prolem whtever the prmeters o oth ojetve d ostrtsre desred whh orm o memershp utos. The method lso llows the deso mkers provd ther uzzy ols or the ojetve utos o ther deso prolems y orms o memershp utos. By trodu three types o omprso o uzzy umers d djustle ststory deree ew oept o soluto o or FMOP prolem s deed. As result the oted vlues o ojetve utos orrespod to soluto e desred y uzzy vlues whh rel umer s s spel se. Moreover the eerlzed uzzy ol optmzto method hs the etures o terto wth deso mkers dur soluto proess. Ths pper s orzed s ollows. Some relted oepts d theorems out uzzy umer d MOP re revewed seto. Seto 3 ves the oept o djustle ststory deree α the deto o uzzy umer sed soluto 5

6 oept d relted theorems or solv FMOP prolem wth deret deree α. A eerlzed tertve uzzy ol optmzto method or solv FMOP prolems s desred Seto 4. A llustrtve emple s preseted Seto 5 to demostrte the method. Dsussos urther remrks d uture study pl re oluded Seto 6.. Prelmres The results show ths pper re s otu reserh o our prevous reports. Zh et l. [9] proposed methods to solve uzzy ler prormm prolem y trsorm t to orrespod our-ojetve ostred optmzto prolem. Follow tht Zh et l. [8] developed method to ormulte ler prormm prolems wth uzzy equlty d equlty ostrts. Bsed o these work Wu et l. [5-7] proposed relted tehques optml ppromte lorthm d uzzy ol sed optmzto method or solv FMOP prolems. Ths seto revews two roups o oepts uzzy umer d MOP d our prevous relted work o FMOP.. Fuzzy umer Deto. [6] et X deote uversl set. The uzzy suset A o X s deed y ts memershp uto : X [0] () A whh sss to eh elemet X rel umer the tervl [ 0] where the vlue o t represets the rde o memershp o A. Deto. [6] A uzzy set A s ove d oly ) m( ( ) ( )) () ( 6

7 or every X d [0]. Deto.3 [6] The -level set o uzzy set A s deed s ordry set A or whh the deree o ts memershp uto eeeds the level : A 0. (3) A By the oept o -level sets the reltoshps etwee ordry sets d uzzy sets e etured y the ollow deomposto theorem. Theorem. (Deomposto theorem) [6] A uzzy sets A e represeted y where A A (4) 0 A deotes the ler produt o slr wth the -level set A. I ths pper we del wth rel uzzy umers suh s out m or roud whh re ormlly deed s ollows. Deto.4 [4] et e the set o ll rel umers. The rel uzzy umer s deed y ts memershp uto whh stses: ) A otuous mpp rom to the losed terl [ 0] ) 0 or ll 3) Strtly res d otuous o 4) or ll 5) Strtly deres d otuous o d 6) 0 or ll d Aord to Deomposto theorem Theorem. uzzy umer e represeted s ollows: (5) 0 7

8 By the pplto o the eteso prple [6] o uzzy set we hve the ollow deto. Deto.5 [9] et e two uzzy umers wth the memershp utos d respetvely d 0 the ddto o two uzzy umers the sutrto o two uzzy umers d the slr produt o d re deed y the memershp utos z sup m (6) y z y z sup m (7) y z y z (8) sup z From Deomposto theorem d Deto.5 we hve the ollow theorem. Theorem. [9] et e two uzzy umers wth the memershp utos d respetvely d [0] [0] [0] 0 0 we hve (9) (0) () Deto.6 [9] et e uzzy umers wth the memershp utos we dee whose memershp uto s deed s () m where s -dmesol vetor. The s lled -dmesol uzzy umer o. 8

9 I del wth FMOP prolems the m questo to e swered ossts the omprsos o uzzy ojetve utos uzzy ols d let- d rht-hd-sde o uzzy ostrts. Suh omprsos re ll reled o the omprsos o - dmesol uzzy umers. There est my deret methods or ompr the uzzy umers [8] [-4] []. I ths pper we dopt deret rk pproh whh re more pproprte to the deret kds o the FMOP optml detos. Ths pproh s sutle or the -dmesol uzzy umers wth the oler memershp uto d t s pplle to the omprso o the o-uzzy vetors s ts spel se. et d y y y y e y two vetors where y. For y two vetors y we hve ) y y. ) y y d y 3) y y Here we dee the rk wy etwee two -dmesol uzzy umers s ollows. Deto.7 et e y two -dmesol uzzy umers we dee ) d 0 ) d 0 3) d 0 where or represets the let or rht etreme pot o the λ-level set o the uzzy umer the -dmesol uzzy umer respetvely; smlrly or represets the let or rht etreme pot o the λ-level set o the uzzy umer the -dmesol uzzy umer respetvely. 9

10 . Mult-ojetve ler prormm A lssl MOP prolem s speed y ler utos whh re to e mmzed sujet to set o ler ostrts. The stdrd orm o MOP e wrtte s ollows: (MOP) m C s.t. X A 0 (3) where C s k ojetve uto mtr A s m ostrt mtr s m-vetor o rht hd sde d s -vetor o deso vrles [5]. Whe the otos o sle ojetve ler prormm re dretly ppled to MOP the ollow otos o omplete optml soluto re oted. Deto.8 [7] s sd to e omplete optml soluto to the MOP prolem d oly there ests X suh tht k or ll X. However suh omplete optml soluto tht mmzes ll ojetve utos smulteously does ot lwys est. Thus the Preto-optml soluto s trodued to the MOP. Deto.9 [7] s sd to e Preto optml soluto to the MOP prolem d oly there does ot est other X suh tht or ll d j or t lest oe j. j I ddto to Preto optmlty the ollow wek Preto optml soluto s deed s slht wek soluto oept th Preto optmlty. Deto.0 [7] s sd to e wek Preto optml soluto to the MOP prolem d oly there does ot est other X suh tht k. 3. Fuzzy mult-ojetve ler prormm 0

11 I ths pper we osder the stuto whh ll prmeters o the ojetve utos d the ostrts re uzzy umers represeted y orms o memershp utos. Suh FMOP prolem e ormulted s ollows: (FMOP) m s.t. C X A 0 (4) where C s k mtr eh elemet o whh j s uzzy umer wth memershp uto A s m mtr eh elemet o whh j s uzzy j umer wth memershp uto j s uzzy umer wth memershp uto vrles. s m-vetor eh elemet o whh d s -vetor o deso Theorem. dees the ddto operto o two uzzy umers (9) d the slr produt operto o postve rel umer d uzzy umer (). eerr to t the proposed FMOP model (4) or eh rsp vlue o X eh ojetve uto d eh let-hd-sde o ostrts re uzzy umers d let-hd-sde d rht-hd-sde o ostrts re ompred. For deret rsp vlue o X deret s eed to e rked. Beuse there s o uversl oept o optml soluto to e epted wdely we propose the ollow detos out the optml soluto or FMOP prolem sed o Deto.7. Deto 3. s sd to e omplete optml soluto to the FMOP prolem d oly there ests X k or ll X. suh tht Deto 3. s sd to e Preto optml soluto to the FMOP prolem d oly there does ot est other X suh tht or ll.

12 Deto 3.3 s sd to e wek Preto optml soluto to the FMOP prolem d oly there does ot est other X suh tht or ll. Uder some rumstes deso mker my motor hs/her ststory deree or soluto o FMOP prolem. Tht mes whe ompr two uzzy umers ll vlues wth memershp rdes smller th re eleted. I some ppltos t e uderstood s rsk tke y deso mker who elets ll vlues wth the posslty o ourree smller th. et s osder typl uzzy prmeter j the FMOP model. As the posslty o suh prmeter j tk vlue the re [ j ] j s or ove whle the posslty o eyod [ j ] j j s less th the deso mker would eerlly e more terested solutos oted us prmeters j tk vlues [ j ] j wth 0. Furthermore or eh rsp vlue o X uzzy ojetve utos (4) re mult-dmesol uzzy umers d Deto.7 s employed or the omprsos o these uzzy ojetve utos uder deret solutos o FMOP prolem. However y us Deto.7 to rk uzzy ojetve utos d set up uzzy reltos ostrt some rel FMOP prolems ot e epressed y (4) euse t s so hrsh to ormulte the prolem. Thereore Deto.7 eeds to e eteded s ollows. Deto 3.4 [9] et e y two -dmesol uzzy umers we dee ) d ) d 3) d

13 Uder ert ststory deree the orl FMOP prolem (4) wll e redesred s ollow: (FMOP ) m s.t. X C A 0 (5) where d j wth lj k l j d l m. Bsed o Deto 3.4 whh supples rk wy or y two -dmesol uzzy umers uder the ststory deree we propose ollow detos out the optml solutos or the FMOP prolem (5). Deto 3.5 s sd to e omplete optml soluto to the FMOP prolem d oly there ests X suh tht k or ll X. Deto 3.6 s sd to e Preto optml soluto to the FMOP prolem d oly there does ot ests other X suh tht or ll. Deto 3.7 s sd to e wek Preto optml soluto to the FMOP prolem d oly there does ot ests other X suh tht or ll. A eet pproh or solv the FMOP prolem s to trsorm the orl prolem to ssotve rsp prormm oe. De ssotve ouzzy MOP d sett up the reltoshps etwee the soluto o FMOP d o ts ssotve MOP re rul to mplemet ths pproh. Thereore ssoted wth the FMOP prolem (5) let us osder the ollow multple ojetve ler prormm (MOP λ ) prolems: (MOP λ ) m s.t. C C X A A 0 (6) where 3

14 4 k k k C k k k C m m m A m m m A T m d T m. The ollow theorem shows the reltoshp etwee the soluto o the FMOP prolem d o the MOP λ prolem. Theorem 3. et X e esle soluto to the FMOP prolem. The. s omplete optml soluto to the FMOP prolem d oly s omplete optml soluto to the MOP λ prolem.. s Preto optml soluto to the FMOP prolem d oly s Preto optml soluto to the MOP λ prolem. 3. s wek Preto optml soluto to the FMOP prolem d oly s wek Preto optml soluto to the MOP λ prolem. Proo. The proo s ovous rom Deto 3.4. I del wth the FMOP prolem uder some rumstes deso mker my wt to spey some ols or the uzzy ojetve utos. The purpose o the ol prormm s to mmze the devtos rom ols set y the deso mker to the uzzy ojetve utos. Thereore most ses ol prormm wll yeld stsy soluto rther th optml oe [8]. Cosder the FMOP prolem or the uzzy multple ojetve utos T k the deso mker spey uzzy ols T k uder ststory deree whh relet the desred vlues o the

15 5 ojetve utos o the deso mker. These uzzy ols e represeted y eerl uzzy umers. By de uzzy dste uto D s uzzy deree etwee uzzy ojetve utos T k d uzzy ols T k the uzzy ol prormm (FGP α ) prolem my e deed s optmzto prolem: (FGP α ) 0 s.t. m A X D (7) Normlly the uzzy dste uto D s deed s mmum o devtos o dvdul ols k D D m. (8) By (8) the FGP α prolem (7) s overted s ollows: 0 s.t. m m A X D k (9) where D m m 0 0 k (0) From (0) the optml soluto o (9) e oted y solv the ollow ouzzy GP models: (GP λ - ) 0 s.t. m m k A A X () or (GP λ - ) 0 s.t. m m k A A X () where k k k k k k k k

16 A m m m A m m. T T m m The dopto o GP λ- () or GP λ- () or solv FGP α prolem depeds m o the reltoshp o d.e. the GP λ- () s used otherwse GP λ- () s dopted. 4. A tertve uzzy ol optmzto method or solv FMOP prolems It hs ee oud tht the most eetve wy or solv FMOP prolem s to use tertve pproh. A tertve pproh mkes deso mkers dretly ee the prolem solv proess. Desos tke y the deso mkers t eh tertve phse re otuously revsed d updted sed o ther perorme d ormto eom vlle dur the mplemetto [5] [4] [30]. The tertve eture s luded the proposed method. Eept the tl ste t eh tertve phse the deso mker spees uzzy ols (ould e lust term) the memershp uto spe. The FMOP prolem t the lol level s the solved sed o ths uzzy ols to provde the deso mker wth seres o solutos. Dur the tertve proess the deso mker selet the most sutle soluto o the ss o hs/her preeree. The m steps o the tertve uzzy ol optmzto method wth 5 steps uder stes re desred s ollows. et the tervl e deomposed to l me su-tervls wth (l+) odes 0 l tht re rred the order o. Wth the urret 0 l 6

17 deompos we dee the ostrt X l l X X A A 0. Ste : Itlzto Ths ste s to eerte tl optml soluto or the FMOP prolem. Bsed o the detos o the FMOP d the MOP λ prolems d Theorem 3. we mke oluso tht the soluto o the MOP λ prolem s equl to o the FMOP prolem. [Step ] Ask the deso mker to ve the memershp utos o uzzy prmeters to set wehts or eh d to selet tl vlue o ststory deree 0. [Step ] Assot the MOP λ model (6) we deote: (MOP λ ) l j m k; j 0 l j (3) j l s.t. X Set l the solve (MOP λ ) l (3) wth soluto l where l l d the soluto oted s sujet to ostrt l X. I ths step the tervl s ot splt tlly d oly 0 d re osdered. The eh o the uzzy ojetve utos s overted to our orrespod ouzzy ojetve utos: k. (4) Suh kd o overso s lso ppled o ostrts the sme wy d eh uzzy ostrt s overted to our orrespod ouzzy ostrts: s s s s s m. (5) s s s s 7

18 The soluto s sed o ew ouzzy ojetve utos (4) d ouzzy ostrts (5). [Step 3]: Solve (MOP λ ) l wth soluto l d the soluto oted s sujet to ostrt l X. I urret step the tervl s splt urther. Suppose there re l odes 0 4 l the tervl d l ew odes 3 l re serted. The reltoshp etwee the ew serted odes d the prevous odes s: 0 l. (6) l So eh o the uzzy ojetve utos s overted to orrespod ouzzy ojetve utos d the sme overso hppes o the ostrts. The soluto l s lso sed o ew ouzzy ojetve utos d ouzzy ostrts. [Step 4]: I the the l soluto o MOP λ prolem s l l l Otherwse updte l to l d o k to Step 3. [Step 5]: I the orrespod Preto optml soluto. ests o orwrd to the et step. Otherwse the deso mker must o k to Step to ress deree (res the deree ). [Step 6]: Ask the deso mker whether to e stsed wth the tl uzzy Preto optml soluto lulted Step 4. I stsed the whole tertve proess stops d the tl Preto optml soluto s the l stsy soluto to the deso mker. Otherwse o to Ste. Ste : Itertos I ths ste tertve proess wll proeed. At eh terto phse the deso mker s suppled wth the soluto oted Itlzto ste or the 8

19 prevous terto phse. I ot stsed wth the urret soluto the deso mker s sked to spey the uzzy ols or the uzzy ojetve utos d the ew ompromse soluto wll e eerted utl the deso mker stops the tertve proedure. [Step 7]: Spey ew uzzy ols T or the ojetve utos d/or k ew ststory deree sed o the urret soluto. The deso mker wll hve to mke the ompromse mo the uzzy ojetves. A mprovemet oe or more o the uzzy ojetves wll result the sres o the other uzzy ojetves. [Step 8]: Assot wth the GP λ- model () we deote: Set l ostrt m m j (GP λ- ) l k j j j j s.t. j 0 l (7) X l the solve (GP λ- ) l (7) wth soluto l whh s sujet to the l X. I ths step oly 0 d the tervl re osdered. The eh uzzy ojetve uto uder theuzzy ols T s orrespod to our ouzzy dste utos: k k. (8) Ths overso s lso ppled o ostrts d eh uzzy ostrt overted to our orrespod ouzzy ostrts s ollows: s s s s m. s s s s s The soluto o (7) s sed o (8) d (9). s (9) [Step 9]: Solve (GP λ- ) l wth soluto l d the soluto oted s sujet to the ostrt l X. 9

20 I ths step the tervl s splt urther. Suppose there re l odes 0 4 l the tervl t the urret step d l ew odes 3 l re serted. Thereore eh uzzy ojetve uto uder the uzzy ols T s overted to l orrespod k ouzzy dste utos d the sme overso hppes o the ostrts. The soluto l o the urret step s lso sed o ew ouzzy dste utos d ouzzy ostrts. [Step 0]: I the the soluto o GP λ- model () s l l Otherwse updte l to l d o k to Step 9. l [Step ]: I the soluto o GP λ- model oted Step 0 s resole the o to Step 5 otherwse move to Step. [Step ]: The proedure rom Step to 4 s smlr to the oe rom Step 8 to 0 ut s omed wth the deret GP λ model. Assot wth the GP λ- model () we deote: m m j (GP λ- ) l k j j j j s.t. j 0 l X l. (30) Set l the solve (GP λ- ) l (30) wth soluto l d the soluto l s sujet to the ostrt l X. I ths step oly 0 d the tervl re osdered. The eh uzzy ojetve uto uder uzzy ols T s orrespod to our ouzzy dste utos: k k. (3) Ad the smlr overso s ppled to eh uzzy ostrt. 0

21 s s s s s s s s. m s (3) [Step 3]: Solve (GP λ- ) l wth soluto l d the soluto oted s sujet to the ostrt l X. [Step 4]: I l l the the soluto o GP λ- prolem s l. Otherwse updte l to l d o k to Step. [Step 5]: I the deso mker s stsed wth the urret soluto the whole tertve proess stops d the urret soluto s the l stsy soluto o the FMOP prolem to the deso mker. Otherwse o k to Step 7. Drm shows the low hrt o the tertve uzzy ol optmzto method. 5. A llustrtve emple To llustrte the tertve uzzy ol optmzto method developed ths study let us osder the ollow FMOP prolem whh hs two uzzy ojetve utos d our uzzy ostrts: 4-4 m m m m (33) s.t. 0 0; The memershp utos o the prmeters o the ojetve utos d ostrts re set up s ollows: or or 4

22 / / / / or -.5 or or or or or or / / / / / or or or or or or or Ste : Itlzto Step : Iput the memershp utos o ll uzzy prmeters. For emple the memershp utos o s ve s show Fure. We suppose tl vlue o the ststory deree s set to 0. d the wehts o the two uzzy ojetve utos re equl. Step -4: Uder the urret ststory deree 0. lulte Preto optml soluto. Assoted wth the FMOP model o the llustrtve emple the orrespod MOP λ model the llustrtve emple s lsted:

23 st. M M (34) where. eer to the MOP λ prolem tlly the tervl s ot splt oly 0. d 0 re osdered the totlly eht ouzzy ojetve utos d 6 ouzzy ostrts re eerted. From (34) the result o overso s lsted s ollows: m s.t m (35) 3

24 The the tervl s splt urther. Flly the result o Ste s tht the deso vrles re: (36) d two uzzy ojetve utos re: whh re show s Fure Step 5-6: Suppose the deso mker s ot stsed wth the tl uzzy Preto optml soluto lulted Step 4 the tertve proess would proeed d o to Itertve ste. (37) Ste : Itertos Iterto No : Step 7: Bsed o the soluto Ste the deso mker spees the ew uzzy ols to e heved ths terto y res the rst uzzy y 30 ojetve uto peret d deres the seod uzzy ojetve uto 4

25 uzzy ols re: y 5 peret. The the ew.3. (38) 0.75 Step 8-0: Clulte the stsy soluto sed o the ew uzzy ols speed Step 7 d the ststory deree 0.. Uder the ew uzzy ols (38) the FMOP prolem wll e overted to orrespod ouzzy GP λ- whh s lsted s ollows: m m s.t where (39) The result o the urret terto s tht the deso vrles re: (40) d two uzzy ojetve utos re: whh re show s Fure Compr Fure wth Fure 3 sed o the ew uzzy ols (38) t e (4) oud tht the rst uzzy ojetve uto hs oted some remet d the seod uzzy ojetve uto ot some deremet. 5

26 Step : Se the solutos oted Step 0 s resole the proess wll o to Step 5. Step 5: Suppose the deso mker s lso ot stsed wth the soluto lulted the prevous step the tertve proess wll proeed d o k to Step 7. Iterto No : Step 7: At ths terto suppose the deso mker spees the ew uzzy ols y the orrespod memershp utos whh re set up s ollows: or or (4) (43) The memershp utos o ew uzzy ols re show Fure 4. Step 8-0: Clulte the stsy soluto sed o the ew uzzy ols speed (4) d (43) d deree 0. Uder the ew uzzy ols the FMOP prolem wll lso e overted to orrespod ouzzy GP λ- prolem whh s lsted s ollows: m m (44) s.t

27 where. The result o ths terto s tht the deso vrles re: (45) d two uzzy ojetve utos re: whh re show s Fure (46) Step : Se the solutos oted Step 0 s resole the proess wll o to Step 5. Step 5: Now the deso mker s stsed wth the soluto lulted Step 0 the whole tertve proess stops d the urret soluto s the l ststory soluto o the FMOP prolem to the DM whh s (48) By solv ths emple we see how ths proposed tertve uzzy ol optmzto method s ppled to solve FMOP prolem. (47) 6. Colusos Deso mk lud oth model deso prolem d solv the prolem omple d ll-strutured stuto s ote eted y uertty. Ths s essetlly due to the suet d mprese ture o dt evluted y oth model estlshers d deso mkers. For MOP prolem the uertty s eted oth the prmeters o the model d the ols o the deso mkers. Ths study eerlzes tertve uzzy ol optmzto method to solve FMOP prolem whh the uzzy prmeters oth the ojetve utos d the ostrts e represeted y y orms o memershp utos. Ths 7

28 method lso llows deso mkers to provde ther uzzy ols y y orms o memershp utos s well. I prtulr ths study hs deed ew soluto oept o FMOP d ppled the oept the developmet o our tertve uzzy ol optmzto method. Compr wth est methods the proposed method s more eerl wth the dvte del wth y type o uzzy umer d more pertet prte wth the dvte desrpto o soluto vlues o the ojetve utos us uzzy vlues whh rel umer s s spel se. Moreover the method hs the eture o terto wth deso mkers. A deso support system hs ee developed to pply the method to ssst deso mkers to solve relst FMOP prolems. Ths system hs ee tlly tested y umer o emples d results re very postve. Akowledemets Ths reserh s prtlly supported y Austrl eserh Coul (AC) uder dsovery rt DP070. eerees [] Bellm. E. d Zdeh. A. Deso-mk uzzy evromet Memet see 7 (970) [] Crlsso C. d Fuller. Fuzzy multple rter deso mk: eet developmets Fuzzy Sets d Systems 78 (996) [3] Chres A. d Cooper W. W. Gol prormm d multple ojetve optmztos Europe Jourl o Opertol eserh (977) [4] Duos D. d Prde H. Opertos o uzzy umer Itertol Jourl o Systems See (978) [5] Hw C.. d Msud A. S. Multple Ojetve Deso Mk: Methods d Appltos. Sprer-Verl Berl: 979. [6] Iuuh M. d mk J. Posslst ler prormm: re revew o uzzy mthemtl prormm d omprso wth stohst prormm portolo seleto prolem Fuzzy Sets d Systems (000) 3-8. [7] Kuwo H. O the uzzy mult-ojetve ler prormm prolem: Gol prormm pproh Fuzzy Sets d Systems 8 (996)

29 [8] Y. J. d Hw C.. Fuzzy Multple Ojetve Deso Mk: Methods d Appltos. Sprer-Verl Berl: 994. [9] Y. J. d Hw C.. A ew pproh to some posslst ler prormm prolems Fuzzy Sets d Systems 49 (99) -33. [0] uhdjul M. K. Multple ojetve prormm prolems wth posslst oeets Fuzzy Sets d Systems (987) [] mk J. Fuzzy ols d uzzy ltertves ol prormm prolems Fuzzy Sets d Systems (000) [] mk J. d ommeler H. Fuzzy mthemtl prormm sed o some ew equlty reltos Fuzzy Sets d Systems 8 (996) [3] mk J. d ommeler H. A sle- d mult-vlued order o uzzy umers d ts use ler prormm wth uzzy oeets Fuzzy Sets d Systems 57 (993) [4] ommeler H. FUPA - A tertve method or solv (Multojetve) uzzy ler prormm prolems : Stohst Versus Fuzzy Approhes to Multojetve Mthemtl Prormm uder Uertty. Slowsk d J. Tehem Eds. Kluwer Adem Pulshers Dordreht / Bosto / odo 990 pp [5] ommeler H. Itertve deso mk uzzy ler optmzto prolems Europe Jourl o Opertol eserh 4 (989) 0-7. [6] Skw M. Fudmetls o uzzy set theory : Fuzzy sets d tertve multojetve optmzto. Pleum Press New York 993. [7] Skw M. Fuzzy ler prormm : Fuzzy sets d tertve multojetve optmzto. Pleum Press New York 993. [8] Skw M. Fuzzy sets d tertve multojetve optmzto. Pleum Press New York: 993. [9] Skw M. Itertve multojetve ler prormm wth uzzy prmeters : Fuzzy sets d tertve multojetve optmzto. Pleum Press New York 993. [0] Skw M. d H. Y. Itertve deso mk or multojetve prormm prolems wth uzzy prmeters : Stohst Versus Fuzzy Approhes to Multojetve Mthemtl Prormm uder Uertty. Slowsk d J. Tehem Eds. Kluwer Adem Pulshers Dordreht / Bosto / odo 990 pp [] Skw M. d Nshzk I. Solutos sed o uzzy ols uzzy ler prormm mes Fuzzy Sets d Systems 5 (000) [] Slowsk. 'FIP': A tertve method or multojetve ler prormm wth uzzy oeets : Stohst Versus Fuzzy Approhes to Multojetve Mthemtl Prormm uder Uertty. Slowsk d J. Tehem Eds. Kluwer Adem Pulshers Dordreht / Bosto / odo 990 pp [3] Tk H. d As K. Fuzzy ler prormm prolems wth uzzy umers Fuzzy Sets d Systems 3 (984) -0. [4] Werers B. A tertve uzzy prormm system Fuzzy Sets d Systems 3 (987) [5] Wu F. u J. d Zh G. Q. "A -uzzy ol ppromte lorthm or uzzy multple ojetve ler prormm prolems" Proeeds o The Thrd Itertol Coeree o Iormto Tokyo Jp Nov 8 - De

30 [6] Wu F. u J. d Zh G. Q. "A uzzy ol ppromte lorthm or solv multple ojetve ler prormm prolems wth uzzy prmeters" Proeeds o FINS 004: 6th Itertol Coeree o Appled Computtol Itellee Blkeerhe Belum Sep [7] Wu F. u J. d Zh G. Q. A ew ppromte lorthm or solv multple ojetve ler prormm prolems wth uzzy prmeters Appled Mthemts d Computto (005) Artle I Press. [8] Zh G. Q. Wu Y. ems M. d u J. A -uzzy m order d soluto o ler ostred uzzy optmzto prolems Est-West Jourl o Mthemts Spel Volume (00) P84. [9] Zh G. Q. Wu Y. H. ems M. d u J. Formulto o uzzy ler prormm prolems s our-ojetve ostred optmzto prolems Appled Mthemts d Computto 39 (003) [30] Zot S. d Wlleus J. A tertve prormm method or solv the multple rter prolem Memet see (975)

31 Strt Set up FMOP model.e. put the memershp utos o or d or Set weht or eh Spey the tl vlue o deree 0 Clulte the uzzy Preto optml soluto or FMOP prolem wth (MOP λ ) model N Soluto ests? Y Stsy soluto? Y N Spey ew uzzy ols T k or ojetve utos sed o the urret uzzy Preto optml soluto Clulte the uzzy stsy soluto to FMOP prolem sed o the urret uzzy ols wth (MOP λm- ) model Y Soluto resole? N Clulte the uzzy stsy soluto to FMOP prolem sed o the urret uzzy ols wth (MOP λm- ) model N Stsy soluto? Y The tertve proess stops here d the l soluto s show Drm : Flow hrt or the tertve uzzy ol optmzto method Ed 3

32 3 Fure : Memershp uto o uzzy prmeter

33 Fure : Memershp utos or d Ste 33

34 Fure 3: Memershp utos or d. Iterto No 34

35 Fure 4: Memershp utos o the ew uzzy ols Iterto No 35

36 Fure 5: Memershp utos or d Iterto No 3 36

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM S. Res. Chem. Commu.: (3 8-88 ISSN 77-669 GENERLIZED OPERTIONL RELTIONS ND PROPERTIES OF FRCTIONL NKEL TRNSFORM R. D. TYWDE *. S. GUDDE d V. N. MLLE b Pro. Rm Meghe Isttute o Teholog & Reserh Bder MRVTI

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have ES4 Sold Mehs Z Suo Prpl stress Prpl Stress Imge mterl prtle stte o stress The stte o stress s xed, but we represet the mterl prtle my wys by uttg ubes deret orettos For y gve stte o stress, t s lwys possble

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Recent Progresses on the Simplex Method

Recent Progresses on the Simplex Method Reet Progresses o the Smple Method www.stford.edu/~yyye K.T. L Professor of Egeerg Stford Uversty d Itertol Ceter of Mgemet See d Egeerg Ng Uversty Outles Ler Progrmmg (LP) d the Smple Method Mrkov Deso

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Modeling uncertainty using probabilities

Modeling uncertainty using probabilities S 1571 Itroduto to I Leture 23 Modelg uertty usg probbltes Mlos Huskreht mlos@s.ptt.edu 5329 Seott Squre dmstrto Fl exm: Deember 11 2006 12:00-1:50pm 5129 Seott Squre Uertty To mke dgost feree possble

More information

An Algorithm for Solving Bi-Criteria Large Scale Transshipment Problems

An Algorithm for Solving Bi-Criteria Large Scale Transshipment Problems Glol Jourl of Reserhes Egeerg: B Automotve Egeerg Volume 4 Issue 4 Verso 0 Yer 04 Type: Doule Bl Peer Revewe Itertol Reserh Jourl Pulsher: Glol Jourls I USA Ole ISS: 49-4596 & Prt ISS: 0975-586 A Algorthm

More information

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 67 CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 7. INTRODUCTION The eso mers the setors le fl ororte lg routo lg mretg me seleto uversty lg stuet mssos

More information

Implicit Runge-Kutta method for Van der pol problem

Implicit Runge-Kutta method for Van der pol problem Appled d Computtol Mthemts 5; 4(-: - Publshed ole Jul, 4 (http://www.seepublshggroup.om//m do:.48/.m.s.54. ISSN: 8-55 (Prt; ISSN: 8-5 (Ole Implt Ruge-Kutt method for V der pol problem Jfr Bzr *, Mesm Nvd

More information

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008 Alele Uverstăţ d Orde Fsul: Proteţ Medulu Vol. XIII 00 THEORETICAL AND COMPARATIVE STUDY REGARDING THE MECHANICS DISPLASCEMENTS UNDER THE STATIC LOADINGS FOR THE SQUARE PLATE MADE BY WOOD REFUSE AND MASSIF

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

Lecture 3: Review of Linear Algebra and MATLAB

Lecture 3: Review of Linear Algebra and MATLAB eture 3: Revew of er Aler AAB Vetor mtr otto Vetors tres Vetor spes er trsformtos Eevlues eevetors AAB prmer Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst Vetor mtr otto A -mesol (olum) vetor

More information

Math 1313 Final Exam Review

Math 1313 Final Exam Review Mth 33 Fl m Revew. The e Compy stlled ew mhe oe of ts ftores t ost of $0,000. The mhe s depreted lerly over 0 yers wth srp vlue of $,000. Fd the vlue of the mhe fter 5 yers.. mufturer hs mothly fed ost

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr. PROBLM ST # SOLUTIONS y Roert. DStso Jr. Q. Prove tht the MP eergy s sze-osstet for two ftely seprted losed shell frgmets. The MP orrelto eergy s gve the sp-ortl ss s: vrt vrt MP orr Δ. or two moleulr

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

Global Journal of Engineering and Technology Review

Global Journal of Engineering and Technology Review Glol Jourl of Egeerg d eholog Revew Jourl homepge: http://gjetr.org/ Glol Jourl of Egeerg d eholog Revew () 85 9 (06) Applto of Cojugte Grdet Method wth Cu No- Poloml Sple Sheme for Solvg wo-pot Boudr

More information

The linear system. The problem: solve

The linear system. The problem: solve The ler syste The prole: solve Suppose A s vertle, the there ests uue soluto How to effetly opute the soluto uerlly??? A A A evew of dret ethods Guss elto wth pvotg Meory ost: O^ Coputtol ost: O^ C oly

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs WSEAS TRANSACTIONS o MATHEMATICS Fudzh Isml Dgoll Implt Ruge-Kutt Nstrom Geerl Method Order Fve for Solvg Seod Order IVPs FUDZIAH ISMAIL Deprtmet of Mthemts Uverst Putr Mls Serdg Selgor MALAYSIA fudzh@mth.upm.edu.m

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Dual-Matrix Approach for Solving the Transportation Problem

Dual-Matrix Approach for Solving the Transportation Problem Itertol Jourl of Mthets Tres Tehology- Volue Nuer Jue 05 ul-mtr Aroh for Solvg the Trsortto Prole Vy Shr r Chr Bhus Shr ertet of Mthets, BBM College r, Jeh, (MU), INIA E-Prl, SS College Jeh, (MU), INIA

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chpter Vetor pes - Vetor pes Ler Comtos Vetor spe V V s set over fel F f V F! + V. Eg. R s vetor spe. For R we hek -4=-4-4R -7=-7-7R et. Eg. how tht the set of ll polomls PF wth oeffets from F s vetor

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

SOLVING INITIAL VALUE PROBLEM USING RUNGE-KUTTA 6 th ORDER METHOD

SOLVING INITIAL VALUE PROBLEM USING RUNGE-KUTTA 6 th ORDER METHOD VOL. NO. JULY ISSN 898 ARPN Jourl o Egeerg d Appled Sees As Reserh Pulshg Networ ARPN. All rghts reserved. www.rpourls.om SOLVING INITIAL VALUE PROBLEM USING RUNGEUTTA th ORDER METHOD As Fdhl As AlShmmr

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY

ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY IJRRAS 7 3 Deemer 203 wwwrressom/volumes/vol7issue3/ijrras_7_3_02 ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY Zlto Pvć & Ver Novosel 2 Mehl Egeerg Fulty Slvos Bro Uversty o Osje Trg Ive Brlć Mžurć 2

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza ١ ١ Chapter Chapter 4 Cyl Blo Cyl Blo Codes Codes Ammar Abu-Hudrouss Islam Uversty Gaza Spr 9 Slde ٢ Chael Cod Theory Cyl Blo Codes A yl ode s haraterzed as a lear blo ode B( d wth the addtoal property

More information

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1 LOCUS 33 Seto - 3 PAIR OF STRAIGHT LINES Cosder two les L L Wht do ou thk wll L L represet? It s ovous tht pot lg o L d L wll stsf L L, d thus L L represets the set of pots osttutg oth the les,.e., L L

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

A Mean- maximum Deviation Portfolio Optimization Model

A Mean- maximum Deviation Portfolio Optimization Model A Mea- mamum Devato Portfolo Optmzato Model Wu Jwe Shool of Eoom ad Maagemet, South Cha Normal Uversty Guagzhou 56, Cha Tel: 86-8-99-6 E-mal: wujwe@9om Abstrat The essay maes a thorough ad systemat study

More information

Solutions Manual for Polymer Science and Technology Third Edition

Solutions Manual for Polymer Science and Technology Third Edition Solutos ul for Polymer Scece d Techology Thrd Edto Joel R. Fred Uer Sddle Rver, NJ Bosto Idols S Frcsco New York Toroto otrel Lodo uch Prs drd Cetow Sydey Tokyo Sgore exco Cty Ths text s ssocted wth Fred/Polymer

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization) ISSNOle : 9-875 ISSN Prt : 47-670 Itertol Jourl of Iovtve Reserh See Egeerg d ehology ISO 97: 007 Certfed Orgzto Vol. 5 Issue Mrh 06 Mthemtl Produto Ivetory Model for Deterortg Items wth Stok d me Depedet

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

On Signed Product Cordial Labeling

On Signed Product Cordial Labeling Appled Mathematcs 55-53 do:.436/am..6 Publshed Ole December (http://www.scrp.or/joural/am) O Sed Product Cordal Label Abstract Jayapal Baskar Babujee Shobaa Loaatha Departmet o Mathematcs Aa Uversty Chea

More information

Nokia Research Center

Nokia Research Center Noka Researh Ceter Sprg 24! % & ) )*+, -.% "#$ "#'( "#$ " Itroduto 1 Itroduto Ths paper dsusses the state of the projet for ourse Mat-2.177 Projet Semar Operatos Researh, ordered ad supported by Noka Researh

More information

Analysis and Synthesis of Quantum Circuits by Using Quantum Decision Diagrams 1

Analysis and Synthesis of Quantum Circuits by Using Quantum Decision Diagrams 1 Alyss d Sythess of Qutum Cruts y Usg Qutum Deso Dgrms Afsh Adollh Mssoud Pedrm Deprtmet of Eletrl Egeerg Uersty of Souther Clfor {fsh, pedrm}@us.edu Astrt Qutum formto proessg tehology s ts poeerg stge

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DISCRETE EQUATIONS ON DISCRETE REAL TIME SCALES

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DISCRETE EQUATIONS ON DISCRETE REAL TIME SCALES ASYPTOTI BEHAVIOR OF SOLUTIONS OF DISRETE EQUATIONS ON DISRETE REAL TIE SALES J. Dlí B. Válvíová 2 Bro Uversy of Tehology Bro zeh Repul 2 Deprme of heml Alyss d Appled hems Fuly of See Uversy of Zl Žl

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

CLOSED-FORM SOLUTION OF SPACE RESECTION USING UNIT QUATERNION

CLOSED-FORM SOLUTION OF SPACE RESECTION USING UNIT QUATERNION CLOED-FOM OLUION OF PACE EECION UING UNI QUAENION GUAN ul, *, CHENG oju, HAN u, HOU hj, d Geoee & urve d M hool, Et Ch Ittute o eholo, Fuzhou, J, 44,Ch -lu@et.edu. Det. o urve d Geoormt, oj Uvert, hh,

More information

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005 Seto 2:00 ~ 2:50 pm Thursday Marylad 202 Sep. 29, 2005. Homework assgmets set ad 2 revews: Set : P. A box otas 3 marbles, red, gree, ad blue. Cosder a expermet that ossts of takg marble from the box, the

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

The Algebraic Least Squares Fitting Of Ellipses

The Algebraic Least Squares Fitting Of Ellipses IOSR Jourl of Mthets (IOSR-JM) e-issn: 78-578 -ISSN: 39-765 Volue 4 Issue Ver II (Mr - Ar 8) PP 74-83 wwwosrjourlsorg he Algebr Lest Squres Fttg Of Ellses Abdelltf Betteb Dertet of Geerl Studes Jubl Idustrl

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

CH 20 SOLVING FORMULAS

CH 20 SOLVING FORMULAS CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information