ABSTRACT ALGEBRA 1, LECTURE NOTES 4: DEFINITIONS AND EXAMPLES OF MONOIDS AND GROUPS.

Size: px
Start display at page:

Download "ABSTRACT ALGEBRA 1, LECTURE NOTES 4: DEFINITIONS AND EXAMPLES OF MONOIDS AND GROUPS."

Transcription

1 ABSTRACT ALGEBRA 1, LECTURE NOTES 4: DEFINITIONS AND EXAMPLES OF MONOIDS AND GROUPS. ANDREW SALCH 1. Monoids. Definition 1.1. A monoid is a set M together with a function µ : M M M satisfying the following properties: Associativity: For all x, y, z M, we have an equality µ(µ(x, y), z) = µ(x, µ(y, z)). Existence of an identity element, aka unitality : There exists an element e M such that µ(e, x) = µ(x, e) = x for all x M. The element e is called an identity element for M or sometimes a unit element for M. A monoid M is called commutative if µ(x, y) = µ(y, x) for all x, y M. Example 1.2. (Examples of monoids.) The set of natural numbers N, with the function µ : N N N given by addition. That is, µ(x, y) = x + y. This monoid is commutative. The unit element is 0. The set of integers Z, with the function µ : Z Z Z given by addition. Again, this monoid is commutative. The unit element is 0. (Hopefully now you are getting the point that the function µ is best thought of as a binary operation, like addition or multiplication.) The set of natural numbers N, with the function µ given by multiplication. Again, this monoid is commutative. The unit element is 1. The set of positive integers, with the function µ given by multiplication. Again, this monoid is commutative. The unit element is 1. For any positive integer n, the set of all n-by-n matrices with entries in the real numbers, with the function µ given by matrix addition. Again, this monoid is commutative. The unit element is the zero matrix. For any positive integer n, the set of all n-by-n matrices with entries in the real numbers, with the function µ given by matrix multiplication. If n > 1, then this monoid isn t commutative, since matrix multiplication doesn t always satisfy the equation MN = NM! The unit element is the identity matrix (ones on the diagonal, zeros everywhere else). Here is a more analytic example: given an open subset U of the set of real numbers, the set of all differentiable functions U R forms a monoid under pointwise addition, that is, given two differentiable functions f, g : U R, we let f + g be the function f + g : U R given by ( f + g)(x) = f (x) + g(x) for all x U. (It is a standard exercise in introductory analysis to prove that this function f + g is differentiable if both f and g are.) This monoid is commutative. The unit element is the function sending every element of U to zero. Date: September

2 2 ANDREW SALCH Let S be a set. The set of all functions S S is a monoid, with binary operation given by composition, that is, µ( f, g) = f g. This monoid is usually not commutative (specifically, this monoid fails to be commutative as long as S has more than two elements). The unit element is the identity function id S. Example 1.3. (Non-examples of monoids.) The set of positive integers, under addition, is not a monoid, since although addition is associative, it does not have a unit element in the positive integers (since zero is not positive). The set of integers 2, under multiplication, is not a monoid, since although multiplication is associative, it does not have a unit element in the integers 2 (since 1 is not 2). The set of 2-by-2 matrices with real entries, equipped with the binary operation µ(m, N) = MN NM, which is often written [M, N] (this is called the commutator product), is not a monoid, since the commutator product is not associative. For example, if we let [ ] 0 1 L = M = N = 1 0 [ it is an elementary exercise in matrix multiplication to check that ], [[L, M], N] = LMN LNM MNL + NML LMN MLN NLM + NML = [L, [M, N]]. Here is an analytic example: let A be the set of compactly supported continuous functions from R to R. (A function f : R R is called compactly supported if there exists some bounded interval [a, b] R such that f (x) = 0 unless x [a, b].) The convolution product of compactly supported continuous functions f, g : R R is defined as the function f g : R R given by the formula ( f g)(x) = f (y)g(x y)dy. The convolution product is associative (and commutative), but the set A, equipped with the convolution product, is not a monoid, because there is no unit element! (This isn t obvious, but it is true.) Proposition 1.4. Let M be a monoid. Then M has only one unit element. That is, if e, e are both unit elements in M, then e = e. Proof. If e, e are both unit elements in M, then by the definition of a unit element, we have e = µ(e, e ) = e. 2. Groups. Definition 2.1. A group is a monoid G with the property that, for every element g G, there exists an element g 1 G such that µ(g, g 1 ) = µ(g 1, g) = e. A group is called an abelian group if its underlying monoid is commutative. That is, a group G is abelian if µ(x, y) = µ(y, x) for all x, y G.

3 ABSTRACT ALGEBRA 1, LECTURE NOTES 4: DEFINITIONS AND EXAMPLES OF MONOIDS AND GROUPS. 3 The reason that Definition 2.1 makes sense is that a monoid has a unique unit element e, by Proposition 1.4; so we don t have to say something like A group is a monoid G with the property that, for every element g G, there exists an element g 1 G such that µ(g, g 1 ) = µ(g 1, g) = e for some unit element e ; there s only one unit element for a given monoid, which makes the definition of a group simpler than it would otherwise be. Conventions 2.2. In most examples of groups, the binary operation µ is either some kind of generalized addition or some kind of generalized multiplication. It is very typical, when working with a particular group G, to write that you are going to use additive notation for G, and then to consistently write x + y instead of µ(x, y) when applying the group operation µ to elements x, y G. It is also very typical, when working with a particular group G, to write that you are going to use multiplicative notation for G, and then to consistently write xy instead of µ(x, y) when applying the group operation µ to elements x, y G. The convention is that, if you use additive notation, then the group G should be abelian; so to avoid confusion, you should use multiplicative notation for any group which is not abelian. But in general, for abelian groups, you have the choice of using either additive or multiplicative notation, and you should choose whichever notation seems to you to be the clearest and most intuitive notation for whatever group you are working with. Example 2.3. (Examples of groups.) The set with one element is a group in a unique way: if that element is called x, we have to let µ(x, x) = x. (It is very easy to check that the axioms for being a group are satisfied.) This group is called the trivial group. The monoid of integers Z under addition; the inverse of n is, of course, n. This is an abelian group. The monoid of nonzero rational numbers under multiplication; the inverse of n is, of course, 1/n. This is an abelian group. The monoid of nonzero real numbers under multiplication; the inverse of n is again 1/n. This is an abelian group. For any positive integer n, the monoid (under multiplication) of all n-by-n matrices with nonzero determinant with entries in the real numbers, with the function µ given by matrix multiplication. This uses the fact, which you learned in linear algebra, that a square matrix M with real entries has an inverse matrix M 1 if and only if the determinant of M is nonzero. This is a group, but if n > 1, it is non-abelian (because matrix multiplication isn t commutative). Given an open subset U of the set of real numbers, the set of all differentiable functions U R under pointwise addition is also a group: the inverse of a function f : U R is the function f given by ( f )(x) = f (x). This is an abelian group. Given a set S, the monoid of all bijective functions f : S S, under composition, is a group: the inverse of a function f is the inverse, in the sense of composition of functions. (See lecture notes #3.) This is a group, but if S has more than two elements, it is non-abelian. (See Example 2.5.) Example 2.4. (Non-examples of groups.) The monoid of natural numbers N under addition is a monoid, but not a group, because it doesn t have inverses: 0 is the unit element, but the element 1, for example, doesn t have any natural number n such that 1 + n = 0. (Of course n ought to be 1 here; but 1 is an integer, but not a natural number.)

4 4 ANDREW SALCH The monoid of positive integers under multiplication is a monoid, but not a group, because it doesn t have inverses: 1 is the unit element, but the element 2, for example, doesn t have any positive integer n such that 2 n = 1. (Of course n ought to be 1/2 here; but 1/2 is a rational number, but not a positive integer.) The set Q of all rational numbers under multiplication is a monoid but not a group, again because it doesn t have inverses: 1 is the unit element, but the element 0 doesn t have any rational number n such that 0 n = 1. (However, 0 is the only element in the rational numbers that doesn t have a multiplicative inverse; if we exclude zero and instead consider the set of all nonzero rational numbers under multiplication, then that is a group.) For any positive integer n, the monoid of all n-by-n matrices with entries in the real numbers, under matrix multiplication. This is a monoid, but not a group, since the matrices with determinant zero do not have inverses. Let S be a set. The set of all functions S S under composition is a monoid, but if S has more than one element, it is not a group, since any function S S which fails to be bijective will also fail to have an inverse. Example 2.5. Let n be a natural number, and let S be any set with exactly n elements. Then the group of bijective functions S S, under composition, is often called the symmetric group on n letters, and written S n or Σ n. There is a very useful notation for describing elements in symmetric groups, and it works like this: suppose we choose, as our set with n elements, simply the set of integers {1, 2,..., n}. Given some integers a 1,..., a b between 1 and n, we often write (a 1 a 2... a n ) for the bijection {1,..., n} {1,..., n} which sends a 1 to a 2, sends a 2 to a 3,..., sends a n 1 to a n, and sends a n to a 1. We often write (a 1 a 2... a n )(b 1 b 2... b m ) to mean the composite function (a 1 a 2... a n ) (b 1 b 2... b m ). The symmetric group on 1 letter, Σ 1, is the trivial group: there is only one function from a set with one element to a set with one element, so Σ 1 has only one element. The symmetric group on two letters, Σ 2, has two elements, the identity function e, and the function (12) which swaps the two elements. We have e(12) = (12)e = (12), and if we apply (12) twice, we get (12)(12) = e. It is convenient to represent this by a multiplication table: e (12) (12) e The symmetric group on three letters, Σ 3, has six elements: e, (12), (13), (23), (123), and (132). The group operation is given by the multiplication table: e (12) (13) (23) (123) (132) (12) e (132) (231) (23) (13) (13) (123) e (213) (12) (23) (23) (132) (123) e (13) (12) (123) (13) (23) (12) (132) e (132) (23) (12) (13) e (123) The way to read a multiplication table like this is as follows: to know the product xy, you look up the entry in row x and column y. For example, (12)(13) is the function that sends 1 to 3, sends 3 to 2, and sends 2 to 1, i.e., it is the function (132); so the entry in the multiplication table in row (12) and column (13) is (132). Example 2.6. Let n be a positive integer. Then there exists an abelian group with n elements called the cyclic group with n elements, and written C n or Z/nZ, defined as follows: let Z/nZ = {0, 1, 2,..., n 1}, with group operation given by addition modulo n. (It is easy

5 ABSTRACT ALGEBRA 1, LECTURE NOTES 4: DEFINITIONS AND EXAMPLES OF MONOIDS AND GROUPS. 5 to check that this indeed satisfies the associativity, unitality, inverses, and commutativity axioms, hence is a group.) For example, in the group Z/5Z, we have the multiplication table (although really it s an addition table ):

ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH

ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH ABSTRACT ALGEBRA 1, LECTURE NOTES 5: HOMOMORPHISMS, ISOMORPHISMS, SUBGROUPS, QUOTIENT ( FACTOR ) GROUPS. ANDREW SALCH 1. Homomorphisms and isomorphisms between groups. Definition 1.1. Let G, H be groups.

More information

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples:

Monoids. Definition: A binary operation on a set M is a function : M M M. Examples: Monoids Definition: A binary operation on a set M is a function : M M M. If : M M M, we say that is well defined on M or equivalently, that M is closed under the operation. Examples: Definition: A monoid

More information

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS.

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ANDREW SALCH 1. Subgroups, conjugacy, normality. I think you already know what a subgroup is: Definition

More information

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings. MATH 433 Applied Algebra Lecture 22: Semigroups. Rings. Groups Definition. A group is a set G, together with a binary operation, that satisfies the following axioms: (G1: closure) for all elements g and

More information

Math 4310 Solutions to homework 1 Due 9/1/16

Math 4310 Solutions to homework 1 Due 9/1/16 Math 0 Solutions to homework Due 9//6. An element [a] Z/nZ is idempotent if [a] 2 [a]. Find all idempotent elements in Z/0Z and in Z/Z. Solution. First note we clearly have [0] 2 [0] so [0] is idempotent

More information

Groups. s t or s t or even st rather than f(s,t).

Groups. s t or s t or even st rather than f(s,t). Groups Definition. A binary operation on a set S is a function which takes a pair of elements s,t S and produces another element f(s,t) S. That is, a binary operation is a function f : S S S. Binary operations

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

More information

Rings If R is a commutative ring, a zero divisor is a nonzero element x such that xy = 0 for some nonzero element y R.

Rings If R is a commutative ring, a zero divisor is a nonzero element x such that xy = 0 for some nonzero element y R. Rings 10-26-2008 A ring is an abelian group R with binary operation + ( addition ), together with a second binary operation ( multiplication ). Multiplication must be associative, and must distribute over

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION Chapter-1 GROUPS 1.1. INTRODUCTION The theory of groups arose from the theory of equations, during the nineteenth century. Originally, groups consisted only of transformations. The group of transformations

More information

3.1 Definition of a Group

3.1 Definition of a Group 3.1 J.A.Beachy 1 3.1 Definition of a Group from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair This section contains the definitions of a binary operation,

More information

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS.

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS. ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS. KEVIN MCGERTY. 1. RINGS The central characters of this course are algebraic objects known as rings. A ring is any mathematical structure where you can add

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ANDREW SALCH 1. Affine schemes. About notation: I am in the habit of writing f (U) instead of f 1 (U) for the preimage of a subset

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z).

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z). 18.312: Algebraic Combinatorics Lionel Levine Lecture date: May 3, 2011 Lecture 22 Notes by: Lou Odette This lecture: Smith normal form of an integer matrix (linear algebra over Z). 1 Review of Abelian

More information

Examples of Groups

Examples of Groups Examples of Groups 8-23-2016 In this section, I ll look at some additional examples of groups. Some of these will be discussed in more detail later on. In many of these examples, I ll assume familiar things

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Lecture 3: Latin Squares and Groups

Lecture 3: Latin Squares and Groups Latin Squares Instructor: Padraic Bartlett Lecture 3: Latin Squares and Groups Week 2 Mathcamp 2012 In our last lecture, we came up with some fairly surprising connections between finite fields and Latin

More information

1 Commutative Rings with Identity

1 Commutative Rings with Identity 1 Commutative Rings with Identity The first-year courses in (Abstract) Algebra concentrated on Groups: algebraic structures where there is basically one algebraic operation multiplication with the associated

More information

MATH 304 Linear Algebra Lecture 8: Vector spaces. Subspaces.

MATH 304 Linear Algebra Lecture 8: Vector spaces. Subspaces. MATH 304 Linear Algebra Lecture 8: Vector spaces. Subspaces. Linear operations on vectors Let x = (x 1, x 2,...,x n ) and y = (y 1, y 2,...,y n ) be n-dimensional vectors, and r R be a scalar. Vector sum:

More information

Figure 1. Symmetries of an equilateral triangle

Figure 1. Symmetries of an equilateral triangle 1. Groups Suppose that we take an equilateral triangle and look at its symmetry group. There are two obvious sets of symmetries. First one can rotate the triangle through 120. Suppose that we choose clockwise

More information

SUPPLEMENTARY NOTES: CHAPTER 1

SUPPLEMENTARY NOTES: CHAPTER 1 SUPPLEMENTARY NOTES: CHAPTER 1 1. Groups A group G is a set with single binary operation which takes two elements a, b G and produces a third, denoted ab and generally called their product. (Mathspeak:

More information

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS

AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS AN ALGEBRA PRIMER WITH A VIEW TOWARD CURVES OVER FINITE FIELDS The integers are the set 1. Groups, Rings, and Fields: Basic Examples Z := {..., 3, 2, 1, 0, 1, 2, 3,...}, and we can add, subtract, and multiply

More information

REMARKS 1.4: (a) In general discussion the operation in a group G is usually written as multiplication and a b is written as ab. (b) If the operation

REMARKS 1.4: (a) In general discussion the operation in a group G is usually written as multiplication and a b is written as ab. (b) If the operation FIRST-YEAR GROUP THEORY 1 DEFINITIONS AND EXAMPLES It is highly desirable that you buy, or in some other way have access to a copy of, the following book which will be referred to in these notes as Jordan

More information

Rings, Integral Domains, and Fields

Rings, Integral Domains, and Fields Rings, Integral Domains, and Fields S. F. Ellermeyer September 26, 2006 Suppose that A is a set of objects endowed with two binary operations called addition (and denoted by + ) and multiplication (denoted

More information

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication.

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication. Algebra fact sheet An algebraic structure (such as group, ring, field, etc.) is a set with some operations and distinguished elements (such as 0, 1) satisfying some axioms. This is a fact sheet with definitions

More information

To hand in: (a) Prove that a group G is abelian (= commutative) if and only if (xy) 2 = x 2 y 2 for all x, y G.

To hand in: (a) Prove that a group G is abelian (= commutative) if and only if (xy) 2 = x 2 y 2 for all x, y G. Homework #6. Due Thursday, October 14th Reading: For this homework assignment: Sections 3.3 and 3.4 (up to page 167) Before the class next Thursday: Sections 3.5 and 3.4 (pp. 168-171). Also review the

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

5 Group theory. 5.1 Binary operations

5 Group theory. 5.1 Binary operations 5 Group theory This section is an introduction to abstract algebra. This is a very useful and important subject for those of you who will continue to study pure mathematics. 5.1 Binary operations 5.1.1

More information

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S.

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S. Appendix A Number Axioms P. Danziger 1 Number Axioms 1.1 Groups Definition 1 A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b and c S 0. (Closure) 1. (Associativity)

More information

Euler s, Fermat s and Wilson s Theorems

Euler s, Fermat s and Wilson s Theorems Euler s, Fermat s and Wilson s Theorems R. C. Daileda February 17, 2018 1 Euler s Theorem Consider the following example. Example 1. Find the remainder when 3 103 is divided by 14. We begin by computing

More information

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1. MATH 101: ALGEBRA I WORKSHEET, DAY #1 We review the prerequisites for the course in set theory and beginning a first pass on group theory. Fill in the blanks as we go along. 1. Sets A set is a collection

More information

* 8 Groups, with Appendix containing Rings and Fields.

* 8 Groups, with Appendix containing Rings and Fields. * 8 Groups, with Appendix containing Rings and Fields Binary Operations Definition We say that is a binary operation on a set S if, and only if, a, b, a b S Implicit in this definition is the idea that

More information

Lecture 4.1: Homomorphisms and isomorphisms

Lecture 4.1: Homomorphisms and isomorphisms Lecture 4.: Homomorphisms and isomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4, Modern Algebra M. Macauley (Clemson) Lecture

More information

Lecture 2: Groups. Rajat Mittal. IIT Kanpur

Lecture 2: Groups. Rajat Mittal. IIT Kanpur Lecture 2: Groups Rajat Mittal IIT Kanpur These notes are about the first abstract mathematical structure we are going to study, groups. You are already familiar with set, which is just a collection of

More information

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S,

Group, Rings, and Fields Rahul Pandharipande. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, Group, Rings, and Fields Rahul Pandharipande I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, A binary operation φ is a function, S S = {(x, y) x, y S}. φ

More information

Computing Invariant Factors

Computing Invariant Factors Computing Invariant Factors April 6, 2016 1 Introduction Let R be a PID and M a finitely generated R-module. If M is generated by the elements m 1, m 2,..., m k then we can define a surjective homomorphism

More information

Lecture 7 Cyclic groups and subgroups

Lecture 7 Cyclic groups and subgroups Lecture 7 Cyclic groups and subgroups Review Types of groups we know Numbers: Z, Q, R, C, Q, R, C Matrices: (M n (F ), +), GL n (F ), where F = Q, R, or C. Modular groups: Z/nZ and (Z/nZ) Dihedral groups:

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

Groups, Rings, and Finite Fields. Andreas Klappenecker. September 12, 2002

Groups, Rings, and Finite Fields. Andreas Klappenecker. September 12, 2002 Background on Groups, Rings, and Finite Fields Andreas Klappenecker September 12, 2002 A thorough understanding of the Agrawal, Kayal, and Saxena primality test requires some tools from algebra and elementary

More information

WHY WORD PROBLEMS ARE HARD

WHY WORD PROBLEMS ARE HARD WHY WORD PROBLEMS ARE HARD KEITH CONRAD 1. Introduction The title above is a joke. Many students in school hate word problems. We will discuss here a specific math question that happens to be named the

More information

Volume in n Dimensions

Volume in n Dimensions Volume in n Dimensions MA 305 Kurt Bryan Introduction You ve seen that if we have two vectors v and w in two dimensions then the area spanned by these vectors can be computed as v w = v 1 w 2 v 2 w 1 (where

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

ABSTRACT ALGEBRA. Romyar Sharifi

ABSTRACT ALGEBRA. Romyar Sharifi ABSTRACT ALGEBRA Romyar Sharifi Contents Introduction 7 Part 1. A First Course 11 Chapter 1. Set theory 13 1.1. Sets and functions 13 1.2. Relations 15 1.3. Binary operations 19 Chapter 2. Group theory

More information

EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY

EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY EXAMPLES AND EXERCISES IN BASIC CATEGORY THEORY 1. Categories 1.1. Generalities. I ve tried to be as consistent as possible. In particular, throughout the text below, categories will be denoted by capital

More information

Eigenvalues & Eigenvectors

Eigenvalues & Eigenvectors Eigenvalues & Eigenvectors Page 1 Eigenvalues are a very important concept in linear algebra, and one that comes up in other mathematics courses as well. The word eigen is German for inherent or characteristic,

More information

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31 Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

More information

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4 MATH 25 CLASS 21 NOTES, NOV 7 2011 Contents 1. Groups: definition 1 2. Subgroups 2 3. Isomorphisms 4 1. Groups: definition Even though we have been learning number theory without using any other parts

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

CHAPTER 3: THE INTEGERS Z

CHAPTER 3: THE INTEGERS Z CHAPTER 3: THE INTEGERS Z MATH 378, CSUSM. SPRING 2009. AITKEN 1. Introduction The natural numbers are designed for measuring the size of finite sets, but what if you want to compare the sizes of two sets?

More information

and this makes M into an R-module by (1.2). 2

and this makes M into an R-module by (1.2). 2 1. Modules Definition 1.1. Let R be a commutative ring. A module over R is set M together with a binary operation, denoted +, which makes M into an abelian group, with 0 as the identity element, together

More information

1 r r 2 r 3 r 4 r 5. s rs r 2 s r 3 s r 4 s r 5 s

1 r r 2 r 3 r 4 r 5. s rs r 2 s r 3 s r 4 s r 5 s r r r r r s rs r s r s r s r s Warmup: Draw the symmetries for the triangle. () How many symmetries are there? () If we call the move rotate clockwise r, what is the order of r? Is there a way to write

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a Q: What s purple and commutes? A: An abelian grape! Anonymous Group Theory Last lecture, we learned about a combinatorial method for characterizing spaces: using simplicial complexes as triangulations

More information

DIHEDRAL GROUPS II KEITH CONRAD

DIHEDRAL GROUPS II KEITH CONRAD DIHEDRAL GROUPS II KEITH CONRAD We will characterize dihedral groups in terms of generators and relations, and describe the subgroups of D n, including the normal subgroups. We will also introduce an infinite

More information

Homework #05, due 2/17/10 = , , , , , Additional problems recommended for study: , , 10.2.

Homework #05, due 2/17/10 = , , , , , Additional problems recommended for study: , , 10.2. Homework #05, due 2/17/10 = 10.3.1, 10.3.3, 10.3.4, 10.3.5, 10.3.7, 10.3.15 Additional problems recommended for study: 10.2.1, 10.2.2, 10.2.3, 10.2.5, 10.2.6, 10.2.10, 10.2.11, 10.3.2, 10.3.9, 10.3.12,

More information

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley Chap. 2 AN ALGEBRAIC FIELD To introduce the notion of an abstract algebraic structure we consider (algebraic) fields. (These should not to

More information

3 Fields, Elementary Matrices and Calculating Inverses

3 Fields, Elementary Matrices and Calculating Inverses 3 Fields, Elementary Matrices and Calculating Inverses 3. Fields So far we have worked with matrices whose entries are real numbers (and systems of equations whose coefficients and solutions are real numbers).

More information

A Primer on Homological Algebra

A Primer on Homological Algebra A Primer on Homological Algebra Henry Y Chan July 12, 213 1 Modules For people who have taken the algebra sequence, you can pretty much skip the first section Before telling you what a module is, you probably

More information

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Bryan Félix Abril 12, 2017 Section 2.1 Exercise (6). Let G be an abelian group. Prove that T = {g G g < } is a subgroup of G.

More information

DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY

DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY HANDOUT ABSTRACT ALGEBRA MUSTHOFA DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY 2012 BINARY OPERATION We are all familiar with addition and multiplication of two numbers. Both

More information

0.2 Vector spaces. J.A.Beachy 1

0.2 Vector spaces. J.A.Beachy 1 J.A.Beachy 1 0.2 Vector spaces I m going to begin this section at a rather basic level, giving the definitions of a field and of a vector space in much that same detail as you would have met them in a

More information

chapter 11 ALGEBRAIC SYSTEMS GOALS

chapter 11 ALGEBRAIC SYSTEMS GOALS chapter 11 ALGEBRAIC SYSTEMS GOALS The primary goal of this chapter is to make the reader aware of what an algebraic system is and how algebraic systems can be studied at different levels of abstraction.

More information

GROUPS AND THEIR REPRESENTATIONS. 1. introduction

GROUPS AND THEIR REPRESENTATIONS. 1. introduction GROUPS AND THEIR REPRESENTATIONS KAREN E. SMITH 1. introduction Representation theory is the study of the concrete ways in which abstract groups can be realized as groups of rigid transformations of R

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

Section 18 Rings and fields

Section 18 Rings and fields Section 18 Rings and fields Instructor: Yifan Yang Spring 2007 Motivation Many sets in mathematics have two binary operations (and thus two algebraic structures) For example, the sets Z, Q, R, M n (R)

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS. ALGERAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE AOUT VARIETIES AND REGULAR FUNCTIONS. ANDREW SALCH. More about some claims from the last lecture. Perhaps you have noticed by now that the Zariski topology

More information

Introduction to Groups

Introduction to Groups Introduction to Groups S F Ellermeyer November 2, 2006 A group, G, is a set, A, endowed with a single binary operation,, such that: The operation is associative, meaning that a (b c) = (a b) c for all

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

Binary Operations. Chapter Groupoids, Semigroups, Monoids

Binary Operations. Chapter Groupoids, Semigroups, Monoids 36 Chapter 5 Binary Operations In the last lecture, we introduced the residue classes Z n together with their addition and multiplication. We have also shown some properties that these two operations have.

More information

REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW

REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW 20 CHAPTER 1 Systems of Linear Equations REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW The last type of operation is slightly more complicated. Suppose that we want to write down the elementary

More information

Groups. Contents of the lecture. Sergei Silvestrov. Spring term 2011, Lecture 8

Groups. Contents of the lecture. Sergei Silvestrov. Spring term 2011, Lecture 8 Groups Sergei Silvestrov Spring term 2011, Lecture 8 Contents of the lecture Binary operations and binary structures. Groups - a special important type of binary structures. Isomorphisms of binary structures.

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0.

ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0. ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0. ANDREW SALCH During the last lecture, we found that it is natural (even just for doing undergraduatelevel complex analysis!)

More information

1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M.

1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M. 1 Monoids and groups 1.1 Definition. A monoid is a set M together with a map M M M, (x, y) x y such that (i) (x y) z = x (y z) x, y, z M (associativity); (ii) e M such that x e = e x = x for all x M (e

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 02 Vector Spaces, Subspaces, linearly Dependent/Independent of

More information

Modular Arithmetic and Elementary Algebra

Modular Arithmetic and Elementary Algebra 18.310 lecture notes September 2, 2013 Modular Arithmetic and Elementary Algebra Lecturer: Michel Goemans These notes cover basic notions in algebra which will be needed for discussing several topics of

More information

a b (mod m) : m b a with a,b,c,d real and ad bc 0 forms a group, again under the composition as operation.

a b (mod m) : m b a with a,b,c,d real and ad bc 0 forms a group, again under the composition as operation. Homework for UTK M351 Algebra I Fall 2013, Jochen Denzler, MWF 10:10 11:00 Each part separately graded on a [0/1/2] scale. Problem 1: Recalling the field axioms from class, prove for any field F (i.e.,

More information

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra MTH6140 Linear Algebra II Notes 2 21st October 2010 2 Matrices You have certainly seen matrices before; indeed, we met some in the first chapter of the notes Here we revise matrix algebra, consider row

More information

Categories and functors

Categories and functors Lecture 1 Categories and functors Definition 1.1 A category A consists of a collection ob(a) (whose elements are called the objects of A) for each A, B ob(a), a collection A(A, B) (whose elements are called

More information

Sample algebra qualifying exam

Sample algebra qualifying exam Sample algebra qualifying exam University of Hawai i at Mānoa Spring 2016 2 Part I 1. Group theory In this section, D n and C n denote, respectively, the symmetry group of the regular n-gon (of order 2n)

More information

Lecture 5: closed sets, and an introduction to continuous functions

Lecture 5: closed sets, and an introduction to continuous functions Lecture 5: closed sets, and an introduction to continuous functions Saul Glasman September 16, 2016 Clarification on URL. To warm up today, let s talk about one more example of a topology. Definition 1.

More information

Equational Logic and Term Rewriting: Lecture I

Equational Logic and Term Rewriting: Lecture I Why so many logics? You all know classical propositional logic. Why would we want anything more? Equational Logic and Term Rewriting: Lecture I One reason is that we might want to change some basic logical

More information

Abstract Algebra Part I: Group Theory

Abstract Algebra Part I: Group Theory Abstract Algebra Part I: Group Theory From last time: Let G be a set. A binary operation on G is a function m : G G G Some examples: Some non-examples Addition and multiplication Dot and scalar products

More information

Abstract Algebra I. Randall R. Holmes Auburn University. Copyright c 2012 by Randall R. Holmes Last revision: November 11, 2016

Abstract Algebra I. Randall R. Holmes Auburn University. Copyright c 2012 by Randall R. Holmes Last revision: November 11, 2016 Abstract Algebra I Randall R. Holmes Auburn University Copyright c 2012 by Randall R. Holmes Last revision: November 11, 2016 This work is licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives

More information

MATH 430 PART 2: GROUPS AND SUBGROUPS

MATH 430 PART 2: GROUPS AND SUBGROUPS MATH 430 PART 2: GROUPS AND SUBGROUPS Last class, we encountered the structure D 3 where the set was motions which preserve an equilateral triangle and the operation was function composition. We determined

More information

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b . FINITE-DIMENSIONAL VECTOR SPACES.. Fields By now you ll have acquired a fair knowledge of matrices. These are a concrete embodiment of something rather more abstract. Sometimes it is easier to use matrices,

More information

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG)

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Warm up: 1. Let n 1500. Find all sequences n 1 n 2... n s 2 satisfying n i 1 and n 1 n s n (where s can vary from sequence to

More information

QUALIFYING EXAM IN ALGEBRA August 2011

QUALIFYING EXAM IN ALGEBRA August 2011 QUALIFYING EXAM IN ALGEBRA August 2011 1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories. I. Linear Algebra 1 problem II. Group Theory 3 problems III. Ring

More information

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers.

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers. 2 VECTORS, POINTS, and LINEAR ALGEBRA. At first glance, vectors seem to be very simple. It is easy enough to draw vector arrows, and the operations (vector addition, dot product, etc.) are also easy to

More information

Modules Over Principal Ideal Domains

Modules Over Principal Ideal Domains Modules Over Principal Ideal Domains Brian Whetter April 24, 2014 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this

More information

CITS2211 Discrete Structures (2017) Cardinality and Countability

CITS2211 Discrete Structures (2017) Cardinality and Countability CITS2211 Discrete Structures (2017) Cardinality and Countability Highlights What is cardinality? Is it the same as size? Types of cardinality and infinite sets Reading Sections 45 and 81 84 of Mathematics

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Solution Set 2. Problem 1. [a] + [b] = [a + b] = [b + a] = [b] + [a] ([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b + c])

Solution Set 2. Problem 1. [a] + [b] = [a + b] = [b + a] = [b] + [a] ([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + [b + c] = [a] + ([b + c]) Solution Set Problem 1 (1) Z/nZ is the set of equivalence classes of Z mod n. Equivalence is determined by the following rule: [a] = [b] if and only if b a = k n for some k Z. The operations + and are

More information

2 Measure Theory. 2.1 Measures

2 Measure Theory. 2.1 Measures 2 Measure Theory 2.1 Measures A lot of this exposition is motivated by Folland s wonderful text, Real Analysis: Modern Techniques and Their Applications. Perhaps the most ubiquitous measure in our lives

More information

Higher Algebra Lecture Notes

Higher Algebra Lecture Notes Higher Algebra Lecture Notes October 2010 Gerald Höhn Department of Mathematics Kansas State University 138 Cardwell Hall Manhattan, KS 66506-2602 USA gerald@math.ksu.edu This are the notes for my lecture

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

INTRODUCTION TO SEMIGROUPS AND MONOIDS

INTRODUCTION TO SEMIGROUPS AND MONOIDS INTRODUCTION TO SEMIGROUPS AND MONOIDS PETE L. CLARK We give here some basic definitions and very basic results concerning semigroups and monoids. Aside from the mathematical maturity necessary to follow

More information