# ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

Size: px
Start display at page:

Transcription

1 ALGERAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE AOUT VARIETIES AND REGULAR FUNCTIONS. ANDREW SALCH. More about some claims from the last lecture. Perhaps you have noticed by now that the Zariski topology has very few open sets compared to the familiar, standard topology on R n or C n or a real or complex manifold. In fact, every open set in the Zariski topology on a variety is dense. Since the open sets in the Zariski topology are so big, it is reasonable to ask not only about the regular functions defined on all of a variety X, but also the regular functions defined almost everywhere, in particular, defined on an open subset of a variety X. We can then put an equivalence relation on that set by letting two such functions be equivalent if they agree on the (necessarily open) overlap between their domains. This leads us to the definition of the function field of X: Definition.. Let X be a variety. y the function field of X, written K(X), we mean the ring of equivalence classes of pairs (U, f ), where U is an open subset of X, and f : U k is a regular function; the equivalence relation is given by letting (U, f ) (V, g) if and only if f = g on the overlap U V. The addition and multiplication on these pairs is defined as follows: given elements (U, f ), (V, g) of K(X), we let the sum (U, f ) + (V, g) be (U V, ( f + g) U V ), and we let the product be (U V, ( f g) U V ). Observation.2. Suppose f : X k is a regular function. Then f may or may not be invertible in O(X). If f is not invertible, then this is because there exists some set of zeroes Z X of f, so we cannot divide by f since it would involve dividing by zero at the points in Z. ut (this is the whole point of the Zariski topology!) the set of zeroes of f is closed, so the complement X\Z is open, and (X, f ) is equivalent to (Z, f Z ) in the equivalence relation we have defined, and f Z is invertible. Hence the function field of X really is a field! Suppose that k is algebraically closed. Quoted in the last lecture: Theorem.3. Let X A n k be an affine variety. Then O(X) A(X), that is, the ring of regular functions on X is isomorphic to the coordinate ring of X. Furthermore, we get a one-to-one correspondence between points of X and maximal ideals of A(X), and for each maximal ideal m A(X), the local ring A(X) m has Krull dimension equal to the dimension of X. Finally, the ring K(X) of rational functions on X is isomorphic to the field of fractions of A(X), and K(X) is a field extension of k of transcendence degree equal to the dimension of X. Proof. Suppose f k[x,..., x n ]. Then f is a regular function on A n k, and by composition of f with the inclusion X A n k, f is also a regular function on X. Hence we have a map of Date: January 205.

2 2 ANDREW SALCH rings (.0.) k[x,..., x n ] O(X). Clearly I(X) k[x,..., x n ] vanishes on X, so the map.0. factors through the projection k[x,..., x n ] k[x,..., x n ]/I(X) = A(X). Hence A(X) maps by a one-to-one ring homomorphism to O(X). For a proof that this ring homomorphism is surjective, consult Hartshorne, Theorem 3.2; take a look at the same theorem for a proof that the local rings of X all have the claimed Krull dimension, and the claim about K(X), as well. To each point x X we can associate the ideal m x A(X) consisting of the functions which vanish at x. First, I claim that m x is maximal. The proof is as follows: if m x I for some maximal ideal I A(X), then I corresponds to some maximal ideal J k[x,..., x n ] containing I(X). The vanishing set V J (k) of J is some subset of A n k contained in {x}, hence is either {x} or is empty. If V J (k) is empty, then J = k[x,..., x n ] by Hilbert s Nullstellensatz, so I = A(X), which contradicts the assumption that I is maximal (maximal ideals are proper ideals, by definition). If V J (k) = {x}, then m x = I({x}) = I(V J (k)) = rad(j) = J, with the last equality rad(j) = J due to J being assumed maximal. So J = m x. So m x is maximal. On the other hand, if m is a maximal ideal of A(X), then it corresponds to a maximal ideal I k[x,..., x n ] containing I(X), so the vanishing set V I (k) must be a minimal nonempty subset of X, i.e., a single point. It is easily seen that the function sending m to that single point is inverse to the function sending x X to m x. For projective varieties, basically the opposite is true, that is, basically nothing about the variety can be read off from its ring of regular functions: Theorem.4. Let X P n k be a projective variety. Then O(X) k, that is, the ring of regular functions on X is isomorphic to the ground field k. Furthermore, the ring K(X) of rational functions on X is isomorphic to the field of fractions of the coordinate ring PA(X). Consult Hartshorne s Theorem 3.4 for a proof. I will say a bit about it in class. A very simple one to begin with: 2. A few small examples. Example 2.. Let k be an algebraically closed field. I claim that the algebraic set V (xy ) (k) A 2 k is an affine variety. To prove this, we just need to show that (xy ) is a prime ideal, i.e., that xy is irreducible. Now this is an elementary problem! Suppose xy = f g for some polynomials f, g k[x, y]. Since deg( f g) = deg( f ) + deg(g) = deg(xy ) = 2, either x, y are both linear polynomials, or one is quadratic and one is constant. Clearly, if one is quadratic and one is constant, then the constant one is a unit, and the factorization f g = xy has no bearing on whether xy is irreducible if one of the polynomials f, g is a unit constant. So suppose that x, y are both linear. Now we can write with α, β, γ, δ, ɛ, θ k. Now we solve! f (x, y) = αx + βy + γ, g(x, y) = δx + ɛy + θ, f g = αδx 2 + (αɛ + βδ)xy + βɛy 2 + (αθ + γδ)x + (βθ + γɛ)y + γθ = xy +,

3 ALGERAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE AOUT VARIETIES AND REGULAR FUNCTIONS.3 so either α or δ are zero, and either β or ɛ are zero. If α = β = 0 then αɛ + βδ, and similarly for the case δ = ɛ = 0. So suppose α = ɛ = 0. Solving the remaining equations, we get that γ = 0 and θ = 0, which means that γθ = is impossible. We get a similar contradiction if β = δ = 0. Consequently the equation f g = xy has no solutions except when f or g is a unit constant. So V (xy ) (k) A 2 k is an affine variety. Example 2.2. Let k be an algebraically closed field. I claim that the quasi-affine variety X A k consisting of all points in A k except zero (i.e., X is the open complement of the variety V (x) (k) A k ) is isomorphic to the affine variety V (xy )(k) A 2 k. An isomorphism is as follows: with inverse f : X V (xy ) (k) ( f (x) = x, ), x g : V (xy ) (k) X g(x, y) = x. Since f, g are given by quotients of polynomials which are everywhere defined, composition with f and g sends regular functions to regular functions, hence f and g are each morphisms of varieties. Clearly f and g are mutually inverse, i.e., f g = id V(xy ) (k) and g f = id X. That s it! Example 2.2 shows something interesting: the variety X is quasi-affine, but not affine, since it is clearly not the vanishing set of any collection of polynomials in k[x]. Yet it is isomorphic (but not equal to) an affine variety, V (xy ) (k) A 2 k. In other words, X looks like (for most purposes) the vanishing set of a set of polynomials, but in A 2 k, not in A k. This is one of the important reasons to think about isomorphism of varieties and not just equalities: sometimes the particular way that a variety is given as embedded in affine (or projective) space obscures some important geometry of that variety that would be more visible if we saw the variety as embedded in a different way in affine or projective space (perhaps an affine or projective space of larger dimension, as we saw in Example 2.2). One of the main reasons we will develop cohomological tools in this course (when we reach chapter 3 of Hartshorne s textbook) is to have ways of determining intrinsic properties of varieties (such as whether or not a variety is isomorphic to an affine variety; we will see that this is equivalent to the vanishing of all its positive-dimensional cohomology with quasicoherent coefficients!) that are very difficult to determine if we have to fool around with trying to find the right embedding in affine or projective space. Exercise 2.3. Let k be an algebraically closed field, and let A, k be nonzero. Prove that the algebraic set V (x 2 +Ay 2 2 )(k) A 2 k is an affine variety if and only if the characteristic of k is not 2. (Hint: this comes down a brute-force algebra problem, that of finding when a certain polynomial factors.) In exercise. in Hartshorne s book, you are supposed to determine which quadratic curves in A 2 k are isomorphic to A k, and which ones are isomorphic to V (xy )(k) A 2 k. One way that you can study this question is as follows: suppose you choose an irreducible quadratic f (x, y) k[x, y]. You want to know if k[x, y]/( f (x, y)) is isomorphic to k[t] or to k[s, t]/(st ). What you need is an invariant of commutative k-algebras which isn t too hard to compute and which distinguishes k[t] from k[s, t]/(st ). One such invariant

4 4 ANDREW SALCH is the group of units: notice that k[t] k, while (k[s, t]/(st )) k Z. Hence, if k[x, y]/( f (x, y)) k[t], then the only units in k[x, y]/( f (x, y)) will be units in k multiplied by the element k[x, y]/( f (x, y)); if instead k[x, y]/( f (x, y)) k[s, t]/(st ), then k[x, y]/( f (x, y)) will have more units than just units in k multiplied by k[x, y]/( f (x, y)). This leads to, for example, the following computation: Example 2.4. Let k be an algebraically closed field of characteristic not equal to 2. If A, k and A, are nonzero, then I claim that the affine variety V (x 2 +Ay 2 2 )(k) A 2 k, an ellipse, is isomorphic to the affine variety V (xy ) (k) A 2 k. First, I note that ( (x + ) ( Ay) (x ) Ay) = x2 + Ay 2 2 mod (x 2 + Ay 2 2 ), so (x + Ay) is a unit in k[x, y]/(x 2 + Ay 2 2 ), with inverse (x y). This is exactly what we need to get a ring homomorphism! Here it is: f : k[s, t]/(st ) k[x, y]/(x 2 + Ay 2 2 ) f (s) = (x + Ay) f (t) = (x y). Notice that, if you restrict the domain and codomain of f, you get a k-linear homomorphism from the k-vector space of homogeneous degree polynomials in k[s, t]/(st ) to the homogeneous degree polynomials in k[x, y]/(x 2 + Ay 2 2 ), given by the matrix A. This matrix has inverse 2 2 A so now we check that g : k[x, y]/(x 2 + Ay 2 2 ) k[s, t]/(st ) g(x) = (s + t) 2 g(y) = 2 (s t) A

5 ALGERAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE AOUT VARIETIES AND REGULAR FUNCTIONS.5 is a ring homomorphism, as follows: g(x) 2 + Ag(y) 2 = ( ) 2 ( 2 (s + t) + = 2 st = 2 = g(x 2 + Ay 2 ), 2 A ) 2 (s t) as desired. So g is a ring homomorphism. Clearly f, g are mutually inverse. So V (x 2 +Ay 2 2 )(k) is isomorphic to V (st ) (k).

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

### CHEVALLEY S THEOREM AND COMPLETE VARIETIES

CHEVALLEY S THEOREM AND COMPLETE VARIETIES BRIAN OSSERMAN In this note, we introduce the concept which plays the role of compactness for varieties completeness. We prove that completeness can be characterized

### ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

ALGEBRAIC GROUPS Disclaimer: There are millions of errors in these notes! 1. Some algebraic geometry The subject of algebraic groups depends on the interaction between algebraic geometry and group theory.

### PROBLEMS, MATH 214A. Affine and quasi-affine varieties

PROBLEMS, MATH 214A k is an algebraically closed field Basic notions Affine and quasi-affine varieties 1. Let X A 2 be defined by x 2 + y 2 = 1 and x = 1. Find the ideal I(X). 2. Prove that the subset

### Math 418 Algebraic Geometry Notes

Math 418 Algebraic Geometry Notes 1 Affine Schemes Let R be a commutative ring with 1. Definition 1.1. The prime spectrum of R, denoted Spec(R), is the set of prime ideals of the ring R. Spec(R) = {P R

### ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ANDREW SALCH 1. Affine schemes. About notation: I am in the habit of writing f (U) instead of f 1 (U) for the preimage of a subset

### Summer Algebraic Geometry Seminar

Summer Algebraic Geometry Seminar Lectures by Bart Snapp About This Document These lectures are based on Chapters 1 and 2 of An Invitation to Algebraic Geometry by Karen Smith et al. 1 Affine Varieties

### Exercise Sheet 3 - Solutions

Algebraic Geometry D-MATH, FS 2016 Prof. Pandharipande Exercise Sheet 3 - Solutions 1. Prove the following basic facts about algebraic maps. a) For f : X Y and g : Y Z algebraic morphisms of quasi-projective

### Math 203A - Solution Set 3

Math 03A - Solution Set 3 Problem 1 Which of the following algebraic sets are isomorphic: (i) A 1 (ii) Z(xy) A (iii) Z(x + y ) A (iv) Z(x y 5 ) A (v) Z(y x, z x 3 ) A Answer: We claim that (i) and (v)

### 3. The Sheaf of Regular Functions

24 Andreas Gathmann 3. The Sheaf of Regular Functions After having defined affine varieties, our next goal must be to say what kind of maps between them we want to consider as morphisms, i. e. as nice

### 10. Smooth Varieties. 82 Andreas Gathmann

82 Andreas Gathmann 10. Smooth Varieties Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C a X as a way to study X locally around a (see Construction 9.20). It

### COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY BRIAN OSSERMAN Classical algebraic geometers studied algebraic varieties over the complex numbers. In this setting, they didn t have to worry about the Zariski

### MATH 631: ALGEBRAIC GEOMETRY: HOMEWORK 1 SOLUTIONS

MATH 63: ALGEBRAIC GEOMETRY: HOMEWORK SOLUTIONS Problem. (a.) The (t + ) (t + ) minors m (A),..., m k (A) of an n m matrix A are polynomials in the entries of A, and m i (A) = 0 for all i =,..., k if and

### Math 203A - Solution Set 1

Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

### ALGEBRAIC GEOMETRY CAUCHER BIRKAR

ALGEBRAIC GEOMETRY CAUCHER BIRKAR Contents 1. Introduction 1 2. Affine varieties 3 Exercises 10 3. Quasi-projective varieties. 12 Exercises 20 4. Dimension 21 5. Exercises 24 References 25 1. Introduction

### Math 203A - Solution Set 1

Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

### Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Contents 7 Affine Varieties 1 7.1 The polynomial ring....................... 1 7.2 Hypersurfaces........................... 1 7.3 Ideals...............................

### COMPLEX ALGEBRAIC SURFACES CLASS 9

COMPLEX ALGEBRAIC SURFACES CLASS 9 RAVI VAKIL CONTENTS 1. Construction of Castelnuovo s contraction map 1 2. Ruled surfaces 3 (At the end of last lecture I discussed the Weak Factorization Theorem, Resolution

### 4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset

4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset Z X. Replacing X by Z we might as well assume that Z

### Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo Alex Massarenti SISSA, VIA BONOMEA 265, 34136 TRIESTE, ITALY E-mail address: alex.massarenti@sissa.it These notes collect a series of

### Algebraic varieties. Chapter A ne varieties

Chapter 4 Algebraic varieties 4.1 A ne varieties Let k be a field. A ne n-space A n = A n k = kn. It s coordinate ring is simply the ring R = k[x 1,...,x n ]. Any polynomial can be evaluated at a point

### 12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

### 2. Prime and Maximal Ideals

18 Andreas Gathmann 2. Prime and Maximal Ideals There are two special kinds of ideals that are of particular importance, both algebraically and geometrically: the so-called prime and maximal ideals. Let

### Introduction to Arithmetic Geometry Fall 2013 Lecture #15 10/29/2013

18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #15 10/29/2013 As usual, k is a perfect field and k is a fixed algebraic closure of k. Recall that an affine (resp. projective) variety is an

### Here is another way to understand what a scheme is 1.GivenaschemeX, and a commutative ring R, the set of R-valued points

Chapter 7 Schemes III 7.1 Functor of points Here is another way to understand what a scheme is 1.GivenaschemeX, and a commutative ring R, the set of R-valued points X(R) =Hom Schemes (Spec R, X) This is

### A course in. Algebraic Geometry. Taught by Prof. Xinwen Zhu. Fall 2011

A course in Algebraic Geometry Taught by Prof. Xinwen Zhu Fall 2011 1 Contents 1. September 1 3 2. September 6 6 3. September 8 11 4. September 20 16 5. September 22 21 6. September 27 25 7. September

### Math 145. Codimension

Math 145. Codimension 1. Main result and some interesting examples In class we have seen that the dimension theory of an affine variety (irreducible!) is linked to the structure of the function field in

### Algebraic varieties and schemes over any scheme. Non singular varieties

Algebraic varieties and schemes over any scheme. Non singular varieties Trang June 16, 2010 1 Lecture 1 Let k be a field and k[x 1,..., x n ] the polynomial ring with coefficients in k. Then we have two

### CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES During this first part of the course, we will establish a correspondence between various geometric notions and algebraic ones. Some references for this part of the

### Algebraic Geometry. Instructor: Stephen Diaz & Typist: Caleb McWhorter. Spring 2015

Algebraic Geometry Instructor: Stephen Diaz & Typist: Caleb McWhorter Spring 2015 Contents 1 Varieties 2 1.1 Affine Varieties....................................... 2 1.50 Projective Varieties.....................................

### This is a closed subset of X Y, by Proposition 6.5(b), since it is equal to the inverse image of the diagonal under the regular map:

Math 6130 Notes. Fall 2002. 7. Basic Maps. Recall from 3 that a regular map of affine varieties is the same as a homomorphism of coordinate rings (going the other way). Here, we look at how algebraic properties

### MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

### ALGEBRAIC GEOMETRY (NMAG401) Contents. 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30

ALGEBRAIC GEOMETRY (NMAG401) JAN ŠŤOVÍČEK Contents 1. Affine varieties 1 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30 1. Affine varieties The basic objects

### HARTSHORNE EXERCISES

HARTSHORNE EXERCISES J. WARNER Hartshorne, Exercise I.5.6. Blowing Up Curve Singularities (a) Let Y be the cusp x 3 = y 2 + x 4 + y 4 or the node xy = x 6 + y 6. Show that the curve Ỹ obtained by blowing

### D-MATH Algebraic Geometry FS 2018 Prof. Emmanuel Kowalski. Solutions Sheet 1. Classical Varieties

D-MATH Algebraic Geometry FS 2018 Prof. Emmanuel Kowalski Solutions Sheet 1 Classical Varieties Let K be an algebraically closed field. All algebraic sets below are defined over K, unless specified otherwise.

### Algebraic Geometry. Andreas Gathmann. Class Notes TU Kaiserslautern 2014

Algebraic Geometry Andreas Gathmann Class Notes TU Kaiserslautern 2014 Contents 0. Introduction......................... 3 1. Affine Varieties........................ 9 2. The Zariski Topology......................

### Exploring the Exotic Setting for Algebraic Geometry

Exploring the Exotic Setting for Algebraic Geometry Victor I. Piercey University of Arizona Integration Workshop Project August 6-10, 2010 1 Introduction In this project, we will describe the basic topology

### DIVISORS ON NONSINGULAR CURVES

DIVISORS ON NONSINGULAR CURVES BRIAN OSSERMAN We now begin a closer study of the behavior of projective nonsingular curves, and morphisms between them, as well as to projective space. To this end, we introduce

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 14 RAVI VAKIL Contents 1. Dimension 1 1.1. Last time 1 1.2. An algebraic definition of dimension. 3 1.3. Other facts that are not hard to prove 4 2. Non-singularity:

### CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic

### Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

### Projective Varieties. Chapter Projective Space and Algebraic Sets

Chapter 1 Projective Varieties 1.1 Projective Space and Algebraic Sets 1.1.1 Definition. Consider A n+1 = A n+1 (k). The set of all lines in A n+1 passing through the origin 0 = (0,..., 0) is called the

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27 RAVI VAKIL CONTENTS 1. Proper morphisms 1 2. Scheme-theoretic closure, and scheme-theoretic image 2 3. Rational maps 3 4. Examples of rational maps 5 Last day:

### Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 Throughout this lecture k denotes an algebraically closed field. 17.1 Tangent spaces and hypersurfaces For any polynomial f k[x

### where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

### Math 203A - Solution Set 1

Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

### NONSINGULAR CURVES BRIAN OSSERMAN

NONSINGULAR CURVES BRIAN OSSERMAN The primary goal of this note is to prove that every abstract nonsingular curve can be realized as an open subset of a (unique) nonsingular projective curve. Note that

### Spring 2016, lecture notes by Maksym Fedorchuk 51

Spring 2016, lecture notes by Maksym Fedorchuk 51 10.2. Problem Set 2 Solution Problem. Prove the following statements. (1) The nilradical of a ring R is the intersection of all prime ideals of R. (2)

### 1. Algebraic vector bundles. Affine Varieties

0. Brief overview Cycles and bundles are intrinsic invariants of algebraic varieties Close connections going back to Grothendieck Work with quasi-projective varieties over a field k Affine Varieties 1.

### Math 248B. Applications of base change for coherent cohomology

Math 248B. Applications of base change for coherent cohomology 1. Motivation Recall the following fundamental general theorem, the so-called cohomology and base change theorem: Theorem 1.1 (Grothendieck).

### MATH32062 Notes. 1 Affine algebraic varieties. 1.1 Definition of affine algebraic varieties

MATH32062 Notes 1 Affine algebraic varieties 1.1 Definition of affine algebraic varieties We want to define an algebraic variety as the solution set of a collection of polynomial equations, or equivalently,

### Yuriy Drozd. Intriduction to Algebraic Geometry. Kaiserslautern 1998/99

Yuriy Drozd Intriduction to Algebraic Geometry Kaiserslautern 1998/99 CHAPTER 1 Affine Varieties 1.1. Ideals and varieties. Hilbert s Basis Theorem Let K be an algebraically closed field. We denote by

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### 10. Noether Normalization and Hilbert s Nullstellensatz

10. Noether Normalization and Hilbert s Nullstellensatz 91 10. Noether Normalization and Hilbert s Nullstellensatz In the last chapter we have gained much understanding for integral and finite ring extensions.

### LECTURE Affine Space & the Zariski Topology. It is easy to check that Z(S)=Z((S)) with (S) denoting the ideal generated by elements of S.

LECTURE 10 1. Affine Space & the Zariski Topology Definition 1.1. Let k a field. Take S a set of polynomials in k[t 1,..., T n ]. Then Z(S) ={x k n f(x) =0, f S}. It is easy to check that Z(S)=Z((S)) with

### ne varieties (continued)

Chapter 2 A ne varieties (continued) 2.1 Products For some problems its not very natural to restrict to irreducible varieties. So we broaden the previous story. Given an a ne algebraic set X A n k, we

### Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 As usual, all the rings we consider are commutative rings with an identity element. 18.1 Regular local rings Consider a local

### ABSTRACT NONSINGULAR CURVES

ABSTRACT NONSINGULAR CURVES Affine Varieties Notation. Let k be a field, such as the rational numbers Q or the complex numbers C. We call affine n-space the collection A n k of points P = a 1, a,..., a

### Algebraic Geometry. Andreas Gathmann. Notes for a class. taught at the University of Kaiserslautern 2002/2003

Algebraic Geometry Andreas Gathmann Notes for a class taught at the University of Kaiserslautern 2002/2003 CONTENTS 0. Introduction 1 0.1. What is algebraic geometry? 1 0.2. Exercises 6 1. Affine varieties

### NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

### AN INTRODUCTION TO AFFINE SCHEMES

AN INTRODUCTION TO AFFINE SCHEMES BROOKE ULLERY Abstract. This paper gives a basic introduction to modern algebraic geometry. The goal of this paper is to present the basic concepts of algebraic geometry,

### SOLUTION TO MATH 797N, PROBLEM SET #1.

SOLUTION TO MATH 797N, PROBLEM SET #1. SIMAN WONG Comments: As Silverman points on p. 461,... it is hoped that this book will lead the student on into the realm of active mathematics, and the benefits

### 214A HOMEWORK KIM, SUNGJIN

214A HOMEWORK KIM, SUNGJIN 1.1 Let A = k[[t ]] be the ring of formal power series with coefficients in a field k. Determine SpecA. Proof. We begin with a claim that A = { a i T i A : a i k, and a 0 k }.

### Algebraic Geometry Spring 2009

MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

### π X : X Y X and π Y : X Y Y

Math 6130 Notes. Fall 2002. 6. Hausdorffness and Compactness. We would like to be able to say that all quasi-projective varieties are Hausdorff and that projective varieties are the only compact varieties.

### ADVANCED COMMUTATIVE ALGEBRA: PROBLEM SETS

ADVANCED COMMUTATIVE ALGEBRA: PROBLEM SETS UZI VISHNE The 11 problem sets below were composed by Michael Schein, according to his course. Take into account that we are covering slightly different material.

### 14. Rational maps It is often the case that we are given a variety X and a morphism defined on an open subset U of X. As open sets in the Zariski

14. Rational maps It is often the case that we are given a variety X and a morphism defined on an open subset U of X. As open sets in the Zariski topology are very large, it is natural to view this as

### ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY DAVID WHITE Outline of talk: My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too much detail. This will be a survey of

### Algebraic Geometry I Lectures 14 and 15

Algebraic Geometry I Lectures 14 and 15 October 22, 2008 Recall from the last lecture the following correspondences {points on an affine variety Y } {maximal ideals of A(Y )} SpecA A P Z(a) maximal ideal

### Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

### 12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

12. Linear systems Theorem 12.1. Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n A (1) is an invertible sheaf on X, which is generated by the global sections s 0, s

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 5

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 5 RAVI VAKIL CONTENTS 1. The inverse image sheaf 1 2. Recovering sheaves from a sheaf on a base 3 3. Toward schemes 5 4. The underlying set of affine schemes 6 Last

### Extension theorems for homomorphisms

Algebraic Geometry Fall 2009 Extension theorems for homomorphisms In this note, we prove some extension theorems for homomorphisms from rings to algebraically closed fields. The prototype is the following

### MAS 6396 Algebraic Curves Spring Semester 2016 Notes based on Algebraic Curves by Fulton. Timothy J. Ford April 4, 2016

MAS 6396 Algebraic Curves Spring Semester 2016 Notes based on Algebraic Curves by Fulton Timothy J. Ford April 4, 2016 FLORIDA ATLANTIC UNIVERSITY, BOCA RATON, FLORIDA 33431 E-mail address: ford@fau.edu

### Chapter 2 Linear Transformations

Chapter 2 Linear Transformations Linear Transformations Loosely speaking, a linear transformation is a function from one vector space to another that preserves the vector space operations. Let us be more

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 1. Contents 1. Commutative algebra 2 2. Algebraic sets 2 3. Nullstellensatz (theorem of zeroes) 4

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 1 RAVI VAKIL Contents 1. Commutative algebra 2 2. Algebraic sets 2 3. Nullstellensatz (theorem of zeroes) 4 I m going to start by telling you about this course,

### CRing Project, Chapter 7

Contents 7 Integrality and valuation rings 3 1 Integrality......................................... 3 1.1 Fundamentals................................... 3 1.2 Le sorite for integral extensions.........................

### Dimension Theory. Mathematics 683, Fall 2013

Dimension Theory Mathematics 683, Fall 2013 In this note we prove some of the standard results of commutative ring theory that lead up to proofs of the main theorem of dimension theory and of the Nullstellensatz.

### Math 210B. Artin Rees and completions

Math 210B. Artin Rees and completions 1. Definitions and an example Let A be a ring, I an ideal, and M an A-module. In class we defined the I-adic completion of M to be M = lim M/I n M. We will soon show

### MASTER S THESIS MAT CHOW VARIETIES

MASTER S THESIS MAT-2003-06 CHOW VARIETIES David Rydh DEPARTMENT OF MATHEMATICS ROYAL INSTITUTE OF TECHNOLOGY SE-100 44 STOCKHOLM, SWEDEN Chow Varieties June, 2003 David Rydh Master s Thesis Department

### 12 Hilbert polynomials

12 Hilbert polynomials 12.1 Calibration Let X P n be a (not necessarily irreducible) closed algebraic subset. In this section, we ll look at a device which measures the way X sits inside P n. Throughout

### MA 252 notes: Commutative algebra

MA 252 notes: Commutative algebra (Distilled from [Atiyah-MacDonald]) Dan Abramovich Brown University April 1, 2017 Abramovich MA 252 notes: Commutative algebra 1 / 21 The Poincaré series of a graded module

### Math 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 )

Math 762 Spring 2016 Homework 3 Drew Armstrong Problem 1. Yoneda s Lemma. We have seen that the bifunctor Hom C (, ) : C C Set is analogous to a bilinear form on a K-vector space, : V V K. Recall that

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 41

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 41 RAVI VAKIL CONTENTS 1. Normalization 1 2. Extending maps to projective schemes over smooth codimension one points: the clear denominators theorem 5 Welcome back!

### Basic facts and definitions

Synopsis Thursday, September 27 Basic facts and definitions We have one one hand ideals I in the polynomial ring k[x 1,... x n ] and subsets V of k n. There is a natural correspondence. I V (I) = {(k 1,

### NOTES ON ALGEBRAIC GEOMETRY MATH 202A. Contents Introduction Affine varieties 22

NOTES ON ALGEBRAIC GEOMETRY MATH 202A KIYOSHI IGUSA BRANDEIS UNIVERSITY Contents Introduction 1 1. Affine varieties 2 1.1. Weak Nullstellensatz 2 1.2. Noether s normalization theorem 2 1.3. Nullstellensatz

### ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS.

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS. KEVIN MCGERTY. 1. RINGS The central characters of this course are algebraic objects known as rings. A ring is any mathematical structure where you can add

### Introduction to Algebraic Geometry. Jilong Tong

Introduction to Algebraic Geometry Jilong Tong December 6, 2012 2 Contents 1 Algebraic sets and morphisms 11 1.1 Affine algebraic sets.................................. 11 1.1.1 Some definitions................................

### Math Midterm Solutions

Math 145 - Midterm Solutions Problem 1. (10 points.) Let n 2, and let S = {a 1,..., a n } be a finite set with n elements in A 1. (i) Show that the quasi-affine set A 1 \ S is isomorphic to an affine set.

### Math 711: Lecture of September 7, Symbolic powers

Math 711: Lecture of September 7, 2007 Symbolic powers We want to make a number of comments about the behavior of symbolic powers of prime ideals in Noetherian rings, and to give at least one example of

### 3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection

3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection is called the objects of C and is denoted Obj(C). Given

### Lecture 6. s S} is a ring.

Lecture 6 1 Localization Definition 1.1. Let A be a ring. A set S A is called multiplicative if x, y S implies xy S. We will assume that 1 S and 0 / S. (If 1 / S, then one can use Ŝ = {1} S instead of

### 9. Integral Ring Extensions

80 Andreas Gathmann 9. Integral ing Extensions In this chapter we want to discuss a concept in commutative algebra that has its original motivation in algebra, but turns out to have surprisingly many applications

### Elliptic Curves Spring 2017 Lecture #5 02/22/2017

18.783 Elliptic Curves Spring 017 Lecture #5 0//017 5 Isogenies In almost every branch of mathematics, when considering a category of mathematical objects with a particular structure, the maps between

### ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0.

ALGEBRAIC K-THEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0. ANDREW SALCH During the last lecture, we found that it is natural (even just for doing undergraduatelevel complex analysis!)

### Rings and groups. Ya. Sysak

Rings and groups. Ya. Sysak 1 Noetherian rings Let R be a ring. A (right) R -module M is called noetherian if it satisfies the maximum condition for its submodules. In other words, if M 1... M i M i+1...

### POLYNOMIAL IDENTITY RINGS AS RINGS OF FUNCTIONS

POLYNOMIAL IDENTITY RINGS AS RINGS OF FUNCTIONS Z. REICHSTEIN AND N. VONESSEN Abstract. We generalize the usual relationship between irreducible Zariski closed subsets of the affine space, their defining

### My way to Algebraic Geometry. Varieties and Schemes from the point of view of a PhD student. Marco Lo Giudice

My way to Algebraic Geometry Varieties and Schemes from the point of view of a PhD student Marco Lo Giudice July 29, 2005 Introduction I began writing these notes during the last weeks of year 2002, collecting