Estimating the slope and standard error of a long-term. linear trend fitted to adjusted annual temperatures

Size: px
Start display at page:

Download "Estimating the slope and standard error of a long-term. linear trend fitted to adjusted annual temperatures"

Transcription

1 Estimating the slope and standard error of a long-term linear trend fitted to adjusted annual temperatures Brett Mullan National Institute of Water and Atmospheric Research New Zealand Stephen Stuart National Institute of Water and Atmospheric Research New Zealand Peter Thomson Statistics Research Associates Ltd New Zealand

2 Outline 1. Introduction 2. Model framework 3. Global adjustment 4. Local adjustment 5. Fitting a linear trend to adjusted data 6. Conclusions

3 1. Introduction An accurate understanding of the long-term evolution of temperature is key to understanding the impact of global warming. However temperatures at a given site rarely come as one homogeneous time series; typically comprise a collection of separate time series segments due to re-siting recorders, changes in instrumentation etc. Temperature segments are typically sewn together by adjusting for level shifts and other factors (homogenisation). Adjustments are often ignored with linear trends fitted to homogenised temperatures as if they were one long homogeneous time series. What is the impact of adjustment on estimated slopes and standard errors?

4 Temperature Year Annual average daily maximum, mean and minimum temperatures at Wellington, New Zealand. The OLS linear trends for the combined temperatures (dotted) and the central segment (solid) are superimposed.

5 2. Model framework Focus on annual average temperatures Y k (t) = average temperature for year t at site k over a period of T years and a region of K + 1 sites (k = 0,..., K). For Site 0 suppose where Y 0 (t) = µ 0 + T (t) + p j=1 δ j d(t t j ) + ɛ 0 (t) µ 0 is a temperature offset; T (t) is the common regional temperature signal; the δ j are level shifts with d(t) = 1 (t 0) and 0 otherwise; the changepoints t j are known; the measurement errors ɛ 0 (t) are white noise and uncorrelated with T (t).

6 Further assume that T (t) is trend-stationary with T (t) = α + βt + X(t) where X(t) is stationary with mean zero. Now Y 0 (t) = µ 0 + βt + p j=1 δ j d(t t j ) + e 0 (t) where α has been absorbed in µ 0 and the stationary errors e 0 (t) = X(t) + ɛ 0 (t) are correlated over time and space through X(t). This is a simple model which is widely used, in one form or another; approximates the true trend by a simple linear trend; reflects the properties of New Zealand temperatures; considers the simplest case of level shifts at known changepoints.

7 Temperature Auc New Kel Han Chr Wma Time Temperature anomaly Auc New Kel Han Chr Wma Time Adjusted temperature anomaly Auc New Kel Han Chr Wma Time Time series and boxplots of annual average daily mean New Zealand temperatures at Auckland, New Plymouth, Kelburn, Hanmer Springs, Christchurch and Waimate. The middle plots show temperature anomalies and the average temperature anomaly; the bottom plots show the anomalies adjusted for average anomaly.

8 'Seven-Station' location! Comparison site m a.s.l. > 1250 m a.s.l. 35 S TA S M A N S EA Auckland New Plymouth! Te Aroha!! Rotorua Taihape! 40 S Nelson Masterton Wellington Hokitika Hanmer! Lake Coleridge! Christchurch! Lincoln! Timaru Naseby! Waimate! S O U T H PA C IF I C O CE A N 45 S Tapanui!! Gore Dunedin km 170 E 175 E 180

9 If the δ j were known, then the temperatures can be prior adjusted to give Y 0 (t) p j=1 δ j d(t t j ) = µ 0 + βt + e 0 (t) which is a simple linear trend with stationary errors. In practice, the δ j are replaced by estimates ˆδ j and the model fitted to the adjusted temperatures Ỹ 0 (t) = Y 0 (t) p j=1 ˆδ j d(t t j ). This procedure is considered here with the δ j estimated by local adjustment and data from nearby sites, or by fitting the model directly (global adjustment).

10 3. Global adjustment Here the Site 0 model Y 0 (t) = µ 0 + βt + p j=1 δ j d(t t j ) + e 0 (t) is fitted directly using standard time series regression methods. These methods include ordinary least squares (OLS) with standard errors adjusted for autocorrelation; generalised least squares (GLS) with e 0 (t) modelled by a suitable ARMA process which yield linear unbiased estimators with minimum variance (GLS).

11 Let ˆβ = estimate of β when the δ j are unknown ˆβ 0 = estimate of β when the δ j are known and consider the case of one changepoint (p = 1) with e 0 (t) white noise. Then Var(ˆβ 0 ) Var(ˆβ) = 1 3f 1(1 f 1 ) 1 1/T 2 where f 1 is the fraction of observations before the changepoint. For T large this ratio varies between 0.25 (f 1 = 0.5) and 1 (f 1 = 0 or 1). When f 1 = 0.5 std dev(ˆβ) = 2 std dev(ˆβ 0 ) so the presence of a changepoint can lead to a significant loss of precision. Now apply OLS and GLS to annual average daily temperatures at Wellington over the 103 year period 1907 to 2009.

12 Temperature Year Annual average daily maximum, mean and minimum temperatures at Wellington. In each case a time series regression model with common slope and site specific level shifts has been fittted by GLS and the fit superimposed. The OLS fit with common slope is also shown.

13 Fitted OLS and GLS trends for annual average daily maximum, mean and minimum Wellington temperatures where slope = temperature increase per century and GLS used an MA(1) error. The OLS slope standard errors are given with and without correction for autocorrelation. Maximum Mean Minimum GLS Est SE Est SE Est SE Slope MA coefficient OLS Slope (uncorrected) Slope (corrected) What improvement, if any, comes from using locally adjusted data?

14 4. Local adjustment Consider a local time window about changepoint t j (changepoint window t j ) within which and t j is the only Site 0 changepoint; temperatures at K j neighbouring sites Y k (t) have no changepoints where Y k (t) = µ k + T (t) + ɛ k (t) µ k is the Site k temperature offset; T (t) is the regional temperature signal as before; the ɛ k (t) are mutually uncorrelated white noise processes, uncorrelated with T (t) and ɛ 0 (t), all with the same variance as ɛ 0 (t).

15 Over changepoint window t j the temperature differences D k (t) = Y 0 (t) Y k (t) = µ 0 µ k + δ j d(t t j ) + ɛ 0 (t) ɛ k (t) no longer involve T (t). In particular the D k (t) are temporally independent; have variance 2σ 2 with Var(ɛ k (t)) = σ 2 ; have a constant correlation of 0.5 across sites. Now estimate δ j by linear estimators of the form ˆδ j = T K t=1 k=1 w (j) k (t)d k(t) where K is the total number of comparison sites and the known weights w (j) k (t) are zero for times t and sites k unrelated to changepoint window t j.

16 5. Fitting a linear trend to adjusted data A natural estimator of β commonly used in practice is where β = Ỹ 0 (t) = Y 0 (t) T t=1 p j=1 u 0 (t)ỹ 0 (t) = T 1 t=1 ˆδ j d(t t j ), v 0 (t) = v 0 (t) Ỹ 0 (t + 1) T s=t+1 u 0 (s) = t s=1 u 0 (s) are the locally adjusted data and the u 0 (t) are the OLS or GLS weights that would be used in the case of known changepoints. What are the statistical properties of β? First note that β can be written as β = ˆβ 0 + p j=1 v 0 (t j )(ˆδ j δ j ) where ˆβ 0 denotes the estimator of β when the δ j are known.

17 This gives and Var( β) = Var(ˆβ 0 )+2 where and p j=1 cov(ˆβ 0, ˆδ j ) = σ 2 cov(ˆδ i, ˆδ j ) = σ 2 w (ij) (t) = K k=1 E( β) = β v 0 (t j )cov(ˆβ 0, ˆδ j )+ T t=1 T t=1 u 0 (t)w (j) (t) p p i=1 j=1 (w (ij) (t) + w (i) (t)w (j) (t)) w (i) k (t)w(j) k (t), w(i) (t) = All terms on the right-hand side are readily computed with Var(ˆβ 0 ) a function of Var(Y 0 (t)) = Var(T (t)) + σ 2 ; v 0 (t i )v 0 (t j )cov(ˆδ i, ˆδ j ) K k=1 w (i) k (t). the other terms proportional to the measurement error σ 2 only.

18 Restrict attention to estimating the level shifts δ j by ˆδ j = 1 ( D K k (t j) D k + (t j)) j k where the sum is over the K j comparison sites for changepoint window t j and D k (t j) = mean of the n j D + k (t j) = mean of the n + j temperature differences D k(t) up to t j temperature differences D k (t) after t j Commonly used estimator with simple weights w (i) k (t). Local or global adjustment: which gives the best estimate of β? Consider the simple case where there are no missing values; there is only one changepoint centrally located in the changepoint window; the errors e 0 (t) are white noise; λ = σ 2 /Var(e 0 (t)) = Var(ɛ k (t))/var(y 0 (t)).

19 Ratio f 1 = 0.25, r 1 = f 1 = 0.25, r 1 = Ratio f 1 = 0.5, r 1 = f 1 = 0.5, r 1 = λ λ Ratio of the standard error of the slope estimate β for locally adjusted temperatures to that of the GLS slope estimate ˆβ as a function of λ. Assume a central changepoint at f 1 T in a window of width r 1 T and white noise errors. Here T is the series length and the number of comparison stations is K 1 = 1, K 1 = 4 and K 1 =.

20 Now apply these results to annual average daily temperatures at Wellington over the 103 year period 1907 to Key design parameters for the Wellington site changes are Buckle Street Thorndon Kelburn Changepoint t j Changepoint window Window length Number of missing values in window Number of comparison stations K j Comparison stations Auc, Chr, Nel Auc, Chr, Tai, Wai Chr The comparison stations are Auckland (Auc), Christchurch (Chr), Nelson (Nel), Taihape (Tai) and Waingawa (Wai).

21 Temperature Time Locally adjusted annual average daily maximum, mean and minimum temperatures at Wellington. Linear time trends have been fitted by GLS with the OLS fits superimposed. Original data (dotted) also shown for reference.

22 Estimates of the rate of increase per 100 years at Wellington, New Zealand, for annual average daily maximum, mean and minimum temperatures. Maximum Mean Minimum Local adjustment Est SE Est SE Est SE OLS: no corrections OLS: corrected for autocorrelation OLS: both corrections GLS: no homogenisation correction GLS: corrected for homogenisation Global adjustment OLS: no autocorrelation correction OLS: corrected for autocorrelation GLS Note that OLS and GLS slope estimates are similar; standard errors of the slope estimates for local adjustment are around 20% lower than those for global adjustment. Local adjustment helps!

23 6. Conclusions OLS and GLS slope estimates are generally consistent and unbiased. Failure to account for local adjustment (homogenisation) can lead to slope estimates with standard errors that are biased downwards (in this case around 15%; up to 30% if OLS without autocorrelation correction used). Slope estimates from locally adjusted data should be more accurate than estimates from single-site global regression models. Future work includes extension to monthly data and seasonality; allowance for overlapping records; other forms of homogenisation.

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Damaging Wind Gust Index. Prepared for Ministry for the Environment

Damaging Wind Gust Index. Prepared for Ministry for the Environment Damaging Wind Gust Index Prepared for Ministry for the Environment March 2017 Prepared by: Gregor Macara For any information regarding this report please contact: Gregor Macara Climate Scientist, Climate

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1989 (Fig. 1) MONTHLY HIGHLIGHTS JUNE-AUGUST Weather and Climate (1990) 10: 27-31

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1989 (Fig. 1) MONTHLY HIGHLIGHTS JUNE-AUGUST Weather and Climate (1990) 10: 27-31 Weather and Climate (1990) 10: 27-31 27 NEW ZEALAND WEATHER BRIEF REVIEW OF THE WEATHER (Fig. 1) WARMER THAN USUAL This was the third warmer than normal winter in a row, but not as warm as those of 1987

More information

Creating a Composite Temperature Series for Masterton

Creating a Composite Temperature Series for Masterton Creating a Composite Temperature Series for Mastern December 2010 Figure 1: Looking east ward the aumatic weather station at East Taratahi near Mastern (agent number 2612) in 2007. NIWA has previously

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Are we feeling warmer yet?

Are we feeling warmer yet? The New Zealand Climate Science Coalition Hon Secretary, Terry Dunleavy MBE, 14A Bayview Road, Hauraki, North Shore City 0622 Phone (09) 486 3859 - Mobile 0274 836688 - Email terry.dunleavy@nzclimatescience.org.nz

More information

Uncertainty in Ranking the Hottest Years of U.S. Surface Temperatures

Uncertainty in Ranking the Hottest Years of U.S. Surface Temperatures 1SEPTEMBER 2013 G U T T O R P A N D K I M 6323 Uncertainty in Ranking the Hottest Years of U.S. Surface Temperatures PETER GUTTORP University of Washington, Seattle, Washington, and Norwegian Computing

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Ref.: Spring SOS3003 Applied data analysis for social science Lecture note

Ref.:   Spring SOS3003 Applied data analysis for social science Lecture note SOS3003 Applied data analysis for social science Lecture note 05-2010 Erling Berge Department of sociology and political science NTNU Spring 2010 Erling Berge 2010 1 Literature Regression criticism I Hamilton

More information

Chapter 15 Panel Data Models. Pooling Time-Series and Cross-Section Data

Chapter 15 Panel Data Models. Pooling Time-Series and Cross-Section Data Chapter 5 Panel Data Models Pooling Time-Series and Cross-Section Data Sets of Regression Equations The topic can be introduced wh an example. A data set has 0 years of time series data (from 935 to 954)

More information

Ordinary Least Squares Regression

Ordinary Least Squares Regression Ordinary Least Squares Regression Goals for this unit More on notation and terminology OLS scalar versus matrix derivation Some Preliminaries In this class we will be learning to analyze Cross Section

More information

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40 When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 40 When is the Ordinary Least Squares Estimator (OLSE) the Best Linear Unbiased Estimator (BLUE)? Copyright

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 16, 2013 Outline Univariate

More information

Issues in estimating past climate change at local scale.

Issues in estimating past climate change at local scale. 14th EMS Annual Meeting, Prague Oct. 6th 2014 Issues in estimating past climate change at local scale. Case study: the recent warming (1959-2009) over France. Lola Corre (Division de la Climatologie, Météo-France)

More information

Applied Time Series Topics

Applied Time Series Topics Applied Time Series Topics Ivan Medovikov Brock University April 16, 2013 Ivan Medovikov, Brock University Applied Time Series Topics 1/34 Overview 1. Non-stationary data and consequences 2. Trends and

More information

A warm, sunny and very dry month for most of the country.

A warm, sunny and very dry month for most of the country. New Zealand Climate Summary: January 2015 Issued: 3 February 2015 A warm, sunny and very dry month for most of the country. Rainfall Soil Moisture Temperature Sunshine Rainfall was well below normal (

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin

Regression Review. Statistics 149. Spring Copyright c 2006 by Mark E. Irwin Regression Review Statistics 149 Spring 2006 Copyright c 2006 by Mark E. Irwin Matrix Approach to Regression Linear Model: Y i = β 0 + β 1 X i1 +... + β p X ip + ɛ i ; ɛ i iid N(0, σ 2 ), i = 1,..., n

More information

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Linear Regression Specication Let Y be a univariate quantitative response variable. We model Y as follows: Y = f(x) + ε where

More information

1. Fundamental concepts

1. Fundamental concepts . Fundamental concepts A time series is a sequence of data points, measured typically at successive times spaced at uniform intervals. Time series are used in such fields as statistics, signal processing

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 The Aitken Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 The Aitken Model (AM): Suppose where y = Xβ + ε, E(ε) = 0 and Var(ε) = σ 2 V for some σ 2 > 0 and some known

More information

Time Series and Forecasting

Time Series and Forecasting Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?

More information

Multivariate Regression Analysis

Multivariate Regression Analysis Matrices and vectors The model from the sample is: Y = Xβ +u with n individuals, l response variable, k regressors Y is a n 1 vector or a n l matrix with the notation Y T = (y 1,y 2,...,y n ) 1 x 11 x

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

L2: Two-variable regression model

L2: Two-variable regression model L2: Two-variable regression model Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revision: September 4, 2014 What we have learned last time...

More information

Simple Linear Regression: The Model

Simple Linear Regression: The Model Simple Linear Regression: The Model task: quantifying the effect of change X in X on Y, with some constant β 1 : Y = β 1 X, linear relationship between X and Y, however, relationship subject to a random

More information

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 17th Class 7/1/10

Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis. 17th Class 7/1/10 Econ 300/QAC 201: Quantitative Methods in Economics/Applied Data Analysis 17th Class 7/1/10 The only function of economic forecasting is to make astrology look respectable. --John Kenneth Galbraith show

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series Econometrics I Professor William Greene Stern School of Business Department of Economics 25-1/25 Econometrics I Part 25 Time Series 25-2/25 Modeling an Economic Time Series Observed y 0, y 1,, y t, What

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

A dry month for much of New Zealand

A dry month for much of New Zealand New Zealand Climate Summary: October 2018 Issued: 6 November 2018 A dry month for much of New Zealand Temperature Mean temperatures for October were near average (-0.50 to +0.50 C) for nearly all locations

More information

Lesson 17: Vector AutoRegressive Models

Lesson 17: Vector AutoRegressive Models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Vector AutoRegressive models The extension of ARMA models into a multivariate framework

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs Questions and Answers on Unit Roots, Cointegration, VARs and VECMs L. Magee Winter, 2012 1. Let ɛ t, t = 1,..., T be a series of independent draws from a N[0,1] distribution. Let w t, t = 1,..., T, be

More information

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016 Linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark October 5, 2016 1 / 16 Outline for today linear models least squares estimation orthogonal projections estimation

More information

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017 Introduction to Regression Analysis Dr. Devlina Chatterjee 11 th August, 2017 What is regression analysis? Regression analysis is a statistical technique for studying linear relationships. One dependent

More information

Problem set 1: answers. April 6, 2018

Problem set 1: answers. April 6, 2018 Problem set 1: answers April 6, 2018 1 1 Introduction to answers This document provides the answers to problem set 1. If any further clarification is required I may produce some videos where I go through

More information

Homogenization of monthly and daily climatological time series

Homogenization of monthly and daily climatological time series Homogenization of monthly and daily climatological time series Petr Štěpánek Czech Hydrometeorological Institute, Czech Republic E-mail: petr.stepanek@chmi.cz Latsis Foundation 1st International Summer

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1991 (Fig. 1) CONTRASTING RAINFALL, COLD IN THE SOUTH-WEST OF THE SOUTH ISLAND

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1991 (Fig. 1) CONTRASTING RAINFALL, COLD IN THE SOUTH-WEST OF THE SOUTH ISLAND Weather and Climate (1992) 12: 47-52 47 NEW ZEALAND WEATHER BRIEF REVIEW OF THE WEATHER (Fig. 1) CONTRASTING RAINFALL, COLD IN THE SOUTH-WEST OF THE SOUTH ISLAND An El Nino event (negative phase of the

More information

STATISTICS OF CLIMATE EXTREMES// TRENDS IN CLIMATE DATASETS

STATISTICS OF CLIMATE EXTREMES// TRENDS IN CLIMATE DATASETS STATISTICS OF CLIMATE EXTREMES// TRENDS IN CLIMATE DATASETS Richard L Smith Departments of STOR and Biostatistics, University of North Carolina at Chapel Hill and Statistical and Applied Mathematical Sciences

More information

Nonstationary time series models

Nonstationary time series models 13 November, 2009 Goals Trends in economic data. Alternative models of time series trends: deterministic trend, and stochastic trend. Comparison of deterministic and stochastic trend models The statistical

More information

MA Advanced Econometrics: Applying Least Squares to Time Series

MA Advanced Econometrics: Applying Least Squares to Time Series MA Advanced Econometrics: Applying Least Squares to Time Series Karl Whelan School of Economics, UCD February 15, 2011 Karl Whelan (UCD) Time Series February 15, 2011 1 / 24 Part I Time Series: Standard

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 17, 2012 Outline Heteroskedasticity

More information

Environmental Econometrics

Environmental Econometrics Environmental Econometrics Syngjoo Choi Fall 2008 Environmental Econometrics (GR03) Fall 2008 1 / 37 Syllabus I This is an introductory econometrics course which assumes no prior knowledge on econometrics;

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik MAT2377 Rafa l Kulik Version 2015/November/26 Rafa l Kulik Bivariate data and scatterplot Data: Hydrocarbon level (x) and Oxygen level (y): x: 0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

More information

Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares

Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares L Magee Fall, 2008 1 Consider a regression model y = Xβ +ɛ, where it is assumed that E(ɛ X) = 0 and E(ɛɛ X) =

More information

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Reading Assignment Serial Correlation and Heteroskedasticity Chapters 1 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Serial Correlation or Autocorrelation y t = β 0 + β 1 x 1t + β x t +... + β k

More information

CLUSTER EFFECTS AND SIMULTANEITY IN MULTILEVEL MODELS

CLUSTER EFFECTS AND SIMULTANEITY IN MULTILEVEL MODELS HEALTH ECONOMICS, VOL. 6: 439 443 (1997) HEALTH ECONOMICS LETTERS CLUSTER EFFECTS AND SIMULTANEITY IN MULTILEVEL MODELS RICHARD BLUNDELL 1 AND FRANK WINDMEIJER 2 * 1 Department of Economics, University

More information

STAT 153: Introduction to Time Series

STAT 153: Introduction to Time Series STAT 153: Introduction to Time Series Instructor: Aditya Guntuboyina Lectures: 12:30 pm - 2 pm (Tuesdays and Thursdays) Office Hours: 10 am - 11 am (Tuesdays and Thursdays) 423 Evans Hall GSI: Brianna

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF WINTER AND SPRING 1990 WINTER 1990 (Fig. 1) Weather and Climate (1991) 11: 31-36

NEW ZEALAND WEATHER. BRIEF REVIEW OF WINTER AND SPRING 1990 WINTER 1990 (Fig. 1) Weather and Climate (1991) 11: 31-36 Weather and Climate (1991) 11: 31-36 31 NEW ZEALAND WEATHER BRIEF REVIEW OF WINTER AND SPRING 1990 WINTER 1990 (Fig. 1) Winter 1990 was very dry in the far south. Northeasterlies brought sunny conditions

More information

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ)

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ) 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y Ordinary Least Squares Estimation The classical models we have fit so far with a continuous response

More information

Week 2: Pooling Cross Section across Time (Wooldridge Chapter 13)

Week 2: Pooling Cross Section across Time (Wooldridge Chapter 13) Week 2: Pooling Cross Section across Time (Wooldridge Chapter 13) Tsun-Feng Chiang* *School of Economics, Henan University, Kaifeng, China March 3, 2014 1 / 30 Pooling Cross Sections across Time Pooled

More information

ECON3150/4150 Spring 2016

ECON3150/4150 Spring 2016 ECON3150/4150 Spring 2016 Lecture 6 Multiple regression model Siv-Elisabeth Skjelbred University of Oslo February 5th Last updated: February 3, 2016 1 / 49 Outline Multiple linear regression model and

More information

Econ 583 Final Exam Fall 2008

Econ 583 Final Exam Fall 2008 Econ 583 Final Exam Fall 2008 Eric Zivot December 11, 2008 Exam is due at 9:00 am in my office on Friday, December 12. 1 Maximum Likelihood Estimation and Asymptotic Theory Let X 1,...,X n be iid random

More information

Lecture 24: Weighted and Generalized Least Squares

Lecture 24: Weighted and Generalized Least Squares Lecture 24: Weighted and Generalized Least Squares 1 Weighted Least Squares When we use ordinary least squares to estimate linear regression, we minimize the mean squared error: MSE(b) = 1 n (Y i X i β)

More information

ECON 4230 Intermediate Econometric Theory Exam

ECON 4230 Intermediate Econometric Theory Exam ECON 4230 Intermediate Econometric Theory Exam Multiple Choice (20 pts). Circle the best answer. 1. The Classical assumption of mean zero errors is satisfied if the regression model a) is linear in the

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

The general linear regression with k explanatory variables is just an extension of the simple regression as follows

The general linear regression with k explanatory variables is just an extension of the simple regression as follows 3. Multiple Regression Analysis The general linear regression with k explanatory variables is just an extension of the simple regression as follows (1) y i = β 0 + β 1 x i1 + + β k x ik + u i. Because

More information

Time Series and Forecasting

Time Series and Forecasting Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?

More information

Auto correlation 2. Note: In general we can have AR(p) errors which implies p lagged terms in the error structure, i.e.,

Auto correlation 2. Note: In general we can have AR(p) errors which implies p lagged terms in the error structure, i.e., 1 Motivation Auto correlation 2 Autocorrelation occurs when what happens today has an impact on what happens tomorrow, and perhaps further into the future This is a phenomena mainly found in time-series

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

Regression Analysis: Basic Concepts

Regression Analysis: Basic Concepts The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

Lecture 2: Linear and Mixed Models

Lecture 2: Linear and Mixed Models Lecture 2: Linear and Mixed Models Bruce Walsh lecture notes Introduction to Mixed Models SISG, Seattle 18 20 July 2018 1 Quick Review of the Major Points The general linear model can be written as y =

More information

Model Mis-specification

Model Mis-specification Model Mis-specification Carlo Favero Favero () Model Mis-specification 1 / 28 Model Mis-specification Each specification can be interpreted of the result of a reduction process, what happens if the reduction

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Financial Time Series Analysis: Part II

Financial Time Series Analysis: Part II Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2017 1 Unit root Deterministic trend Stochastic trend Testing for unit root ADF-test (Augmented Dickey-Fuller test) Testing

More information

Using wavelet tools to estimate and assess trends in atmospheric data

Using wavelet tools to estimate and assess trends in atmospheric data NRCSE Using wavelet tools to estimate and assess trends in atmospheric data Wavelets Fourier analysis uses big waves Wavelets are small waves Requirements for wavelets Integrate to zero Square integrate

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Please answer all of the questions and show your work. If you think a question is ambiguous, clearly state how you interpret it before

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares ST 430/514 Recall the linear regression equation E(Y ) = β 0 + β 1 x 1 + β 2 x 2 + + β k x k We have estimated the parameters β 0, β 1, β 2,..., β k by minimizing the sum of squared

More information

Heteroscedasticity and Autocorrelation

Heteroscedasticity and Autocorrelation Heteroscedasticity and Autocorrelation Carlo Favero Favero () Heteroscedasticity and Autocorrelation 1 / 17 Heteroscedasticity, Autocorrelation, and the GLS estimator Let us reconsider the single equation

More information

The Multiple Regression Model Estimation

The Multiple Regression Model Estimation Lesson 5 The Multiple Regression Model Estimation Pilar González and Susan Orbe Dpt Applied Econometrics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 5 Regression model:

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

GovHack APIs from MetService

GovHack APIs from MetService GovHack s from MetService Introduction The MetService for the GovHack NZ event consists of a subset of weather data that has been exposed via a test created specifically for GovHack NZ. This will be made

More information

Multiple Regression Analysis. Part III. Multiple Regression Analysis

Multiple Regression Analysis. Part III. Multiple Regression Analysis Part III Multiple Regression Analysis As of Sep 26, 2017 1 Multiple Regression Analysis Estimation Matrix form Goodness-of-Fit R-square Adjusted R-square Expected values of the OLS estimators Irrelevant

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

Topic 16 Interval Estimation

Topic 16 Interval Estimation Topic 16 Interval Estimation Additional Topics 1 / 9 Outline Linear Regression Interpretation of the Confidence Interval 2 / 9 Linear Regression For ordinary linear regression, we have given least squares

More information

THE HOCKEY STICK CONTROVERSY AND PCA

THE HOCKEY STICK CONTROVERSY AND PCA THE HOCKEY STICK CONTROVERSY AND PCA 1 In 1998/1999, Mann, Bradley and Hughes (MBH) wrote two papers reconstructing temperatures over the last 1000 years from proxy data (tree rings, corals, ice cores

More information

Review of Econometrics

Review of Econometrics Review of Econometrics Zheng Tian June 5th, 2017 1 The Essence of the OLS Estimation Multiple regression model involves the models as follows Y i = β 0 + β 1 X 1i + β 2 X 2i + + β k X ki + u i, i = 1,...,

More information

Correlation in Linear Regression

Correlation in Linear Regression Vrije Universiteit Amsterdam Research Paper Correlation in Linear Regression Author: Yura Perugachi-Diaz Student nr.: 2566305 Supervisor: Dr. Bartek Knapik May 29, 2017 Faculty of Sciences Research Paper

More information

Statistical View of Least Squares

Statistical View of Least Squares Basic Ideas Some Examples Least Squares May 22, 2007 Basic Ideas Simple Linear Regression Basic Ideas Some Examples Least Squares Suppose we have two variables x and y Basic Ideas Simple Linear Regression

More information

SHSU ECONOMICS WORKING PAPER

SHSU ECONOMICS WORKING PAPER Sam Houston State University Department of Economics and International Business Working Paper Series Unbiased Estimation of the Half-Life to Price Index Convergence among US Cities Hiranya K Nath and Jayanta

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Instrumental Variables and Two-Stage Least Squares

Instrumental Variables and Two-Stage Least Squares Instrumental Variables and Two-Stage Least Squares Generalised Least Squares Professor Menelaos Karanasos December 2011 Generalised Least Squares: Assume that the postulated model is y = Xb + e, (1) where

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 GLS and FGLS Econ 671 Purdue University Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 In this lecture we continue to discuss properties associated with the GLS estimator. In addition we discuss the practical

More information

Applied Statistics Preliminary Examination Theory of Linear Models August 2017

Applied Statistics Preliminary Examination Theory of Linear Models August 2017 Applied Statistics Preliminary Examination Theory of Linear Models August 2017 Instructions: Do all 3 Problems. Neither calculators nor electronic devices of any kind are allowed. Show all your work, clearly

More information

Linear Regression. Junhui Qian. October 27, 2014

Linear Regression. Junhui Qian. October 27, 2014 Linear Regression Junhui Qian October 27, 2014 Outline The Model Estimation Ordinary Least Square Method of Moments Maximum Likelihood Estimation Properties of OLS Estimator Unbiasedness Consistency Efficiency

More information