Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares

Size: px
Start display at page:

Download "Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares"

Transcription

1 Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares L Magee Fall, Consider a regression model y = Xβ +ɛ, where it is assumed that E(ɛ X) = 0 and E(ɛɛ X) = Σ The OLS estimator of β is b = (X X) 1 X y (a) First, suppose that you allow for heteroskedasticity in ɛ, but assume there is no autocorrelation (i) What do we know about the numerical values of Σ? (ii) Describe how to compute the heteroskedasticity-robust variance-covariance matrix estimator (HCCME) of Var(b) (b) Next, suppose that you allow for heteroskedasticity and autocorrelation in ɛ (i) What do we know about the numerical values of Σ? (ii) Describe how to compute the Newey-West HAC variance-covariance matrix estimator of Var(b) 2 The White heteroskedasticity-consistent covariance estimator estimates the matrix (X X) 1 X (σ 2 Ω)X(X X) 1 by replacing the (i, i) th element of σ 2 Ω (this element is E(ɛ 2 i x i) with e 2 i, where e i is from the OLS residual vector e = y Xb, and it replaces the (i, j) th element of σ 2 Ω with zero The Newey-West autocorrelation-consistent covariance estimator attempts to deal with autocorrelation as well as heteroskedasticity By analogy with the White estimator, one might expect that the Newey-West estimator would replace the (i, j) th element of σ 2 Ω (which is E(ɛ i ɛ j x i )) with e i e j But instead, the Newey-West estimator does something more complicated Why doesn t the simpler method work? 3 Suppose ɛ t follows a stationary AR(1) process: ɛ t = ρɛ t 1 + u t, t = 1, 2, 3 where u t is white noise Let ɛ = [ɛ 1 ɛ 2 ɛ 3 ] (a) Defining E(ɛɛ ) = σɛ 2 Ω, where σɛ 2 = E(ɛ 2 i ), express the 3 3 matrix Ω as a function of ρ (b) For this Ω, write a 3 3 matrix P for which P ɛ is not autocorrelated 1

2 (c) Calculate every element of the following 3 3 matrices as functions of ρ only, using standard matrix multiplication: (i) P Ω (ii) (P Ω)P (iii) P P (iv) (P P )Ω (d) Suppose that you have obtained an estimate of ρ for this model as ˆρ = 040 Calculate the OLS, the Prais-Winsten, and the Cochrane-Orcutt estimators of β in the model y = xβ + ɛ for the data: i x y Prais-Winsten is FGLS Cochrane-Orcutt is like FGLS, but it omits the first observation of the transformed data y and X from the calculation 4 Consider a regression model: y = Xβ + ɛ where E(ɛ X) = 0 and E(ɛɛ X) = Σ (a) Describe how to compute the heteroskedasticity-robust variance-covariance matrix estimator (HCCME) of Var(b) (b) Describe how to compute the Newey-West HAC variance-covariance matrix estimator of Var(b), which is valid when ɛ has autocorrelation and heteroskedasticity 5 One way to write the GLS estimator of β in the model y = Xβ + ɛ, E(ɛ X) = 0, E(ɛɛ ) = Σ is ˆβ = (X X ) 1 X y, where X = P X and y = P y for a certain n n matrix P (a) Write a mathematical relation involving P and Σ that must hold for ˆβ to be the GLS estimator (b) Suppose ɛ t follows a stationary AR(1) process: ɛ t = ρɛ t 1 + u t, t = 1, 2,, n where u t is white noise (i) Describe the Σ and P matrices in this case 2

3 Answers (ii) Describe how the vector y is related to the original dependent variable vector y in this case 1 (a) (i) off-diagonal elements equal zero diagonal elements are 0, not necessarily equal (ii) Compute OLS residual vector e = y Xb e e Construct S = diag(e i ) = e 2 n Then the HCCME is (X X) 1 X SX(X X) 1 (b) (i) Σ is symmetric and positive semidefinite diagonal elements are 0, not necessarily equal (ii) Like in the answer to q8(a)(ii) except now the (i, j) th element of S is S ij = w ij e i e j where w ij = { 1 i j L if i j < L 0 if i j L L is an increasing function of n A common choice is L = n 1/4 2 Replacing the (i, j) th element of σ 2 Ω with e i e j, is the same as replacing the matrix σ 2 Ω with the matrix ee, where e is the vector of OLS residuals Then the covariance matrix estimator would be (X X) 1 X (ee )X(X X) 1 = (X X) 1 (X e)(e X)(X X) 1 = (X X) 1 (X e)(x e) (X X) 1 But since X e = 0, this covariance matrix estimator would always consist of a matrix of zeroes 3 (a) Ω = 1 ρ ρ 2 ρ 1 ρ ρ 2 ρ 1 (b) 3

4 (c) (i) P = P Ω = 1 ρ ρ ρ 2 ρ 1 ρ 2 ρ 2 1 ρ ρ 2 ρ ρ 3 (ii) 1 ρ 2 ρ 1 ρ 2 ρ 2 1 ρ 2 1 ρ 2 ρ 0 (P Ω)P = 0 1 ρ 2 ρ ρ ρ (iii) P P = = 1 ρ ρ = (1 ρ 2 )I 1 ρ 2 ρ 0 1 ρ ρ ρ 1 0 (iv) = (P P )Ω = 1 ρ 0 ρ 1 + ρ 2 ρ 1 ρ 0 ρ 1 + ρ 2 ρ 1 ρ ρ 2 ρ 1 ρ ρ 2 ρ 1 = 1 ρ ρ 2 0 = (1 ρ 2 )I (d) OLS = i=1 x iy i i=1 x2 i = = 220 FGLS (Prais-Winsten) = i=1 x iy i i=1 x2 i =

5 where i x i y i and Cochrane-Orcutt = i=2 x iy i i=2 x2 i = = 50 4 (a) Compute the OLS residual vector e = y Xb e e Construct S = diag(e i ) = e 2 n Then the HCCME is (X X) 1 X SX(X X) 1 (b) Let the (i, j) th element of S be S ij = w ij e i e j where { 1 i j w ij = L if i j < L 0 if i j L L is an increasing function of n A common choice is L = n 1/4 5 (a) P ΣP = I, or P P = Σ 1 (b) (i) 1 ρ ρ 2 ρ n 1 ρ 1 ρ ρ n 2 Σ = σɛ 2 ρ n 2 ρ 1 ρ ρ n 1 ρ 2 ρ 1 or describe as: the (i, j) th element of Σ is σ 2 ɛ ρ i j 5

6 1 ρ P = 1 ρ σ u 0 0 y 1 1 ρ 2 y 1 y (ii) Letting y = 2 then y y = 2 ρy 1 y n y n ρy n 1 6

1 Introduction to Generalized Least Squares

1 Introduction to Generalized Least Squares ECONOMICS 7344, Spring 2017 Bent E. Sørensen April 12, 2017 1 Introduction to Generalized Least Squares Consider the model Y = Xβ + ɛ, where the N K matrix of regressors X is fixed, independent of the

More information

Model Mis-specification

Model Mis-specification Model Mis-specification Carlo Favero Favero () Model Mis-specification 1 / 28 Model Mis-specification Each specification can be interpreted of the result of a reduction process, what happens if the reduction

More information

Heteroscedasticity and Autocorrelation

Heteroscedasticity and Autocorrelation Heteroscedasticity and Autocorrelation Carlo Favero Favero () Heteroscedasticity and Autocorrelation 1 / 17 Heteroscedasticity, Autocorrelation, and the GLS estimator Let us reconsider the single equation

More information

Ordinary Least Squares Regression

Ordinary Least Squares Regression Ordinary Least Squares Regression Goals for this unit More on notation and terminology OLS scalar versus matrix derivation Some Preliminaries In this class we will be learning to analyze Cross Section

More information

Auto correlation 2. Note: In general we can have AR(p) errors which implies p lagged terms in the error structure, i.e.,

Auto correlation 2. Note: In general we can have AR(p) errors which implies p lagged terms in the error structure, i.e., 1 Motivation Auto correlation 2 Autocorrelation occurs when what happens today has an impact on what happens tomorrow, and perhaps further into the future This is a phenomena mainly found in time-series

More information

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 4 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 23 Recommended Reading For the today Serial correlation and heteroskedasticity in

More information

Greene, Econometric Analysis (7th ed, 2012) Chapters 9, 20: Generalized Least Squares, Heteroskedasticity, Serial Correlation

Greene, Econometric Analysis (7th ed, 2012) Chapters 9, 20: Generalized Least Squares, Heteroskedasticity, Serial Correlation EC771: Econometrics, Spring 2012 Greene, Econometric Analysis (7th ed, 2012) Chapters 9, 20: Generalized Least Squares, Heteroskedasticity, Serial Correlation The generalized linear regression model The

More information

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance.

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance. Heteroskedasticity y i = β + β x i + β x i +... + β k x ki + e i where E(e i ) σ, non-constant variance. Common problem with samples over individuals. ê i e ˆi x k x k AREC-ECON 535 Lec F Suppose y i =

More information

Asymptotic Theory. L. Magee revised January 21, 2013

Asymptotic Theory. L. Magee revised January 21, 2013 Asymptotic Theory L. Magee revised January 21, 2013 1 Convergence 1.1 Definitions Let a n to refer to a random variable that is a function of n random variables. Convergence in Probability The scalar a

More information

Ch.10 Autocorrelated Disturbances (June 15, 2016)

Ch.10 Autocorrelated Disturbances (June 15, 2016) Ch10 Autocorrelated Disturbances (June 15, 2016) In a time-series linear regression model setting, Y t = x tβ + u t, t = 1, 2,, T, (10-1) a common problem is autocorrelation, or serial correlation of the

More information

AUTOCORRELATION. Phung Thanh Binh

AUTOCORRELATION. Phung Thanh Binh AUTOCORRELATION Phung Thanh Binh OUTLINE Time series Gauss-Markov conditions The nature of autocorrelation Causes of autocorrelation Consequences of autocorrelation Detecting autocorrelation Remedial measures

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

MA Advanced Econometrics: Applying Least Squares to Time Series

MA Advanced Econometrics: Applying Least Squares to Time Series MA Advanced Econometrics: Applying Least Squares to Time Series Karl Whelan School of Economics, UCD February 15, 2011 Karl Whelan (UCD) Time Series February 15, 2011 1 / 24 Part I Time Series: Standard

More information

Cross Sectional Time Series: The Normal Model and Panel Corrected Standard Errors

Cross Sectional Time Series: The Normal Model and Panel Corrected Standard Errors Cross Sectional Time Series: The Normal Model and Panel Corrected Standard Errors Paul Johnson 5th April 2004 The Beck & Katz (APSR 1995) is extremely widely cited and in case you deal

More information

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Reading Assignment Serial Correlation and Heteroskedasticity Chapters 1 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1 Serial Correlation or Autocorrelation y t = β 0 + β 1 x 1t + β x t +... + β k

More information

GENERALISED LEAST SQUARES AND RELATED TOPICS

GENERALISED LEAST SQUARES AND RELATED TOPICS GENERALISED LEAST SQUARES AND RELATED TOPICS Haris Psaradakis Birkbeck, University of London Nonspherical Errors Consider the model y = Xβ + u, E(u) =0, E(uu 0 )=σ 2 Ω, where Ω is a symmetric and positive

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

Section 6: Heteroskedasticity and Serial Correlation

Section 6: Heteroskedasticity and Serial Correlation From the SelectedWorks of Econ 240B Section February, 2007 Section 6: Heteroskedasticity and Serial Correlation Jeffrey Greenbaum, University of California, Berkeley Available at: https://works.bepress.com/econ_240b_econometrics/14/

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Generalized Least Squares Theory

Generalized Least Squares Theory Chapter 4 Generalized Least Squares Theory In Section 3.6 we have seen that the classical conditions need not hold in practice. Although these conditions have no effect on the OLS method per se, they do

More information

Time Series. April, 2001 TIME SERIES ISSUES

Time Series. April, 2001 TIME SERIES ISSUES Time Series Nathaniel Beck Department of Political Science University of California, San Diego La Jolla, CA 92093 beck@ucsd.edu http://weber.ucsd.edu/ nbeck April, 2001 TIME SERIES ISSUES Consider a model

More information

9. AUTOCORRELATION. [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s.

9. AUTOCORRELATION. [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s. 9. AUTOCORRELATION [1] Definition of Autocorrelation (AUTO) 1) Model: y t = x t β + ε t. We say that AUTO exists if cov(ε t,ε s ) 0, t s. ) Assumptions: All of SIC except SIC.3 (the random sample assumption).

More information

Microeconometrics: Clustering. Ethan Kaplan

Microeconometrics: Clustering. Ethan Kaplan Microeconometrics: Clustering Ethan Kaplan Gauss Markov ssumptions OLS is minimum variance unbiased (MVUE) if Linear Model: Y i = X i + i E ( i jx i ) = V ( i jx i ) = 2 < cov i ; j = Normally distributed

More information

Heteroskedasticity and Autocorrelation

Heteroskedasticity and Autocorrelation Lesson 7 Heteroskedasticity and Autocorrelation Pilar González and Susan Orbe Dpt. Applied Economics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 7. Heteroskedasticity

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 48 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 48 Serial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

7. GENERALIZED LEAST SQUARES (GLS)

7. GENERALIZED LEAST SQUARES (GLS) 7. GENERALIZED LEAST SQUARES (GLS) [1] ASSUMPTIONS: Assume SIC except that Cov(ε) = E(εε ) = σ Ω where Ω I T. Assume that E(ε) = 0 T 1, and that X Ω -1 X and X ΩX are all positive definite. Examples: Autocorrelation:

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 11, 2012 Outline Heteroskedasticity

More information

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54

ECON2228 Notes 10. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 54 ECON2228 Notes 10 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 10 2014 2015 1 / 54 erial correlation and heteroskedasticity in time series regressions Chapter 12:

More information

Lecture 24: Weighted and Generalized Least Squares

Lecture 24: Weighted and Generalized Least Squares Lecture 24: Weighted and Generalized Least Squares 1 Weighted Least Squares When we use ordinary least squares to estimate linear regression, we minimize the mean squared error: MSE(b) = 1 n (Y i X i β)

More information

STAT Regression Methods

STAT Regression Methods STAT 501 - Regression Methods Unit 9 Examples Example 1: Quake Data Let y t = the annual number of worldwide earthquakes with magnitude greater than 7 on the Richter scale for n = 99 years. Figure 1 gives

More information

GLS and related issues

GLS and related issues GLS and related issues Bernt Arne Ødegaard 27 April 208 Contents Problems in multivariate regressions 2. Problems with assumed i.i.d. errors...................................... 2 2 NON-iid errors 2 2.

More information

LECTURE 10: MORE ON RANDOM PROCESSES

LECTURE 10: MORE ON RANDOM PROCESSES LECTURE 10: MORE ON RANDOM PROCESSES AND SERIAL CORRELATION 2 Classification of random processes (cont d) stationary vs. non-stationary processes stationary = distribution does not change over time more

More information

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 GLS and FGLS Econ 671 Purdue University Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 In this lecture we continue to discuss properties associated with the GLS estimator. In addition we discuss the practical

More information

Solutions to Problem Set 5 (Due December 4) Maximum number of points for Problem set 5 is: 62. Problem 9.C3

Solutions to Problem Set 5 (Due December 4) Maximum number of points for Problem set 5 is: 62. Problem 9.C3 Solutions to Problem Set 5 (Due December 4) EC 228 01, Fall 2013 Prof. Baum, Mr. Lim Maximum number of points for Problem set 5 is: 62 Problem 9.C3 (i) (1 pt) If the grants were awarded to firms based

More information

Topic 6: Non-Spherical Disturbances

Topic 6: Non-Spherical Disturbances Topic 6: Non-Spherical Disturbances Our basic linear regression model is y = Xβ + ε ; ε ~ N[0, σ 2 I n ] Now we ll generalize the specification of the error term in the model: E[ε] = 0 ; E[εε ] = Σ = σ

More information

F9 F10: Autocorrelation

F9 F10: Autocorrelation F9 F10: Autocorrelation Feng Li Department of Statistics, Stockholm University Introduction In the classic regression model we assume cov(u i, u j x i, x k ) = E(u i, u j ) = 0 What if we break the assumption?

More information

Outline. Nature of the Problem. Nature of the Problem. Basic Econometrics in Transportation. Autocorrelation

Outline. Nature of the Problem. Nature of the Problem. Basic Econometrics in Transportation. Autocorrelation 1/30 Outline Basic Econometrics in Transportation Autocorrelation Amir Samimi What is the nature of autocorrelation? What are the theoretical and practical consequences of autocorrelation? Since the assumption

More information

GLS. Miguel Sarzosa. Econ626: Empirical Microeconomics, Department of Economics University of Maryland

GLS. Miguel Sarzosa. Econ626: Empirical Microeconomics, Department of Economics University of Maryland GLS Miguel Sarzosa Department of Economics University of Maryland Econ626: Empirical Microeconomics, 2012 1 When any of the i s fail 2 Feasibility 3 Now we go to Stata! GLS Fixes i s Failure Remember that

More information

The BLP Method of Demand Curve Estimation in Industrial Organization

The BLP Method of Demand Curve Estimation in Industrial Organization The BLP Method of Demand Curve Estimation in Industrial Organization 9 March 2006 Eric Rasmusen 1 IDEAS USED 1. Instrumental variables. We use instruments to correct for the endogeneity of prices, the

More information

Non-independence due to Time Correlation (Chapter 14)

Non-independence due to Time Correlation (Chapter 14) Non-independence due to Time Correlation (Chapter 14) When we model the mean structure with ordinary least squares, the mean structure explains the general trends in the data with respect to our dependent

More information

Economics 582 Random Effects Estimation

Economics 582 Random Effects Estimation Economics 582 Random Effects Estimation Eric Zivot May 29, 2013 Random Effects Model Hence, the model can be re-written as = x 0 β + + [x ] = 0 (no endogeneity) [ x ] = = + x 0 β + + [x ] = 0 [ x ] = 0

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

Fixed Effects Models for Panel Data. December 1, 2014

Fixed Effects Models for Panel Data. December 1, 2014 Fixed Effects Models for Panel Data December 1, 2014 Notation Use the same setup as before, with the linear model Y it = X it β + c i + ɛ it (1) where X it is a 1 K + 1 vector of independent variables.

More information

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ)

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ) 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y Ordinary Least Squares Estimation The classical models we have fit so far with a continuous response

More information

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic Chapter 6 ESTIMATION OF THE LONG-RUN COVARIANCE MATRIX An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymptotic standard errors for the OLS and linear IV estimators presented

More information

Week 11 Heteroskedasticity and Autocorrelation

Week 11 Heteroskedasticity and Autocorrelation Week 11 Heteroskedasticity and Autocorrelation İnsan TUNALI Econ 511 Econometrics I Koç University 27 November 2018 Lecture outline 1. OLS and assumptions on V(ε) 2. Violations of V(ε) σ 2 I: 1. Heteroskedasticity

More information

ECONOMICS 8346, Fall 2013 Bent E. Sørensen

ECONOMICS 8346, Fall 2013 Bent E. Sørensen ECONOMICS 8346, Fall 2013 Bent E Sørensen Introduction to Panel Data A panel data set (or just a panel) is a set of data (y it, x it ) (i = 1,, N ; t = 1, T ) with two indices Assume that you want to estimate

More information

Need for Several Predictor Variables

Need for Several Predictor Variables Multiple regression One of the most widely used tools in statistical analysis Matrix expressions for multiple regression are the same as for simple linear regression Need for Several Predictor Variables

More information

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs

Questions and Answers on Unit Roots, Cointegration, VARs and VECMs Questions and Answers on Unit Roots, Cointegration, VARs and VECMs L. Magee Winter, 2012 1. Let ɛ t, t = 1,..., T be a series of independent draws from a N[0,1] distribution. Let w t, t = 1,..., T, be

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 4 Jakub Mućk Econometrics of Panel Data Meeting # 4 1 / 30 Outline 1 Two-way Error Component Model Fixed effects model Random effects model 2 Non-spherical

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series Econometrics I Professor William Greene Stern School of Business Department of Economics 25-1/25 Econometrics I Part 25 Time Series 25-2/25 Modeling an Economic Time Series Observed y 0, y 1,, y t, What

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

x 1 = x i1 x i2 y = x 1 β x K β K + ε, x i =

x 1 = x i1 x i2 y = x 1 β x K β K + ε, x i = x k T x k k = 1,, K T K X X 1 1 1 x 1 = 1 β 1 y T y 1 y T ε T T 1 x i1 x i2 y = x 1 β 1 + + x K β K + ε, x i = y T 1 = X T K β K 1 + ε T 1. x it T 1 y x 1 x K y = Xβ + ε X T K K E[ε i x j1, x j2,, x jk

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Regression #4: Properties of OLS Estimator (Part 2)

Regression #4: Properties of OLS Estimator (Part 2) Regression #4: Properties of OLS Estimator (Part 2) Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #4 1 / 24 Introduction In this lecture, we continue investigating properties associated

More information

Economics 308: Econometrics Professor Moody

Economics 308: Econometrics Professor Moody Economics 308: Econometrics Professor Moody References on reserve: Text Moody, Basic Econometrics with Stata (BES) Pindyck and Rubinfeld, Econometric Models and Economic Forecasts (PR) Wooldridge, Jeffrey

More information

Linear Model Under General Variance Structure: Autocorrelation

Linear Model Under General Variance Structure: Autocorrelation Linear Model Under General Variance Structure: Autocorrelation A Definition of Autocorrelation In this section, we consider another special case of the model Y = X β + e, or y t = x t β + e t, t = 1,..,.

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Regression #3: Properties of OLS Estimator

Regression #3: Properties of OLS Estimator Regression #3: Properties of OLS Estimator Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #3 1 / 20 Introduction In this lecture, we establish some desirable properties associated with

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

11.1 Gujarati(2003): Chapter 12

11.1 Gujarati(2003): Chapter 12 11.1 Gujarati(2003): Chapter 12 Time Series Data 11.2 Time series process of economic variables e.g., GDP, M1, interest rate, echange rate, imports, eports, inflation rate, etc. Realization An observed

More information

Semester 2, 2015/2016

Semester 2, 2015/2016 ECN 3202 APPLIED ECONOMETRICS 5. HETEROSKEDASTICITY Mr. Sydney Armstrong Lecturer 1 The University of Guyana 1 Semester 2, 2015/2016 WHAT IS HETEROSKEDASTICITY? The multiple linear regression model can

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Heteroskedasticity-Robust Inference in Finite Samples

Heteroskedasticity-Robust Inference in Finite Samples Heteroskedasticity-Robust Inference in Finite Samples Jerry Hausman and Christopher Palmer Massachusetts Institute of Technology December 011 Abstract Since the advent of heteroskedasticity-robust standard

More information

Final Exam. Economics 835: Econometrics. Fall 2010

Final Exam. Economics 835: Econometrics. Fall 2010 Final Exam Economics 835: Econometrics Fall 2010 Please answer the question I ask - no more and no less - and remember that the correct answer is often short and simple. 1 Some short questions a) For each

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Tuesday 9 th May, 07 4:30 Consider a system whose response can be modeled by R = M (Θ) where Θ is a vector of m parameters. We take a series of measurements, D (t) where t represents

More information

Econ 582 Fixed Effects Estimation of Panel Data

Econ 582 Fixed Effects Estimation of Panel Data Econ 582 Fixed Effects Estimation of Panel Data Eric Zivot May 28, 2012 Panel Data Framework = x 0 β + = 1 (individuals); =1 (time periods) y 1 = X β ( ) ( 1) + ε Main question: Is x uncorrelated with?

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Autocorrelation. Jamie Monogan. Intermediate Political Methodology. University of Georgia. Jamie Monogan (UGA) Autocorrelation POLS / 20

Autocorrelation. Jamie Monogan. Intermediate Political Methodology. University of Georgia. Jamie Monogan (UGA) Autocorrelation POLS / 20 Autocorrelation Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Autocorrelation POLS 7014 1 / 20 Objectives By the end of this meeting, participants should be

More information

the error term could vary over the observations, in ways that are related

the error term could vary over the observations, in ways that are related Heteroskedasticity We now consider the implications of relaxing the assumption that the conditional variance Var(u i x i ) = σ 2 is common to all observations i = 1,..., n In many applications, we may

More information

Formulary Applied Econometrics

Formulary Applied Econometrics Department of Economics Formulary Applied Econometrics c c Seminar of Statistics University of Fribourg Formulary Applied Econometrics 1 Rescaling With y = cy we have: ˆβ = cˆβ With x = Cx we have: ˆβ

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 2 Jakub Mućk Econometrics of Panel Data Meeting # 2 1 / 26 Outline 1 Fixed effects model The Least Squares Dummy Variable Estimator The Fixed Effect (Within

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Economic modelling and forecasting

Economic modelling and forecasting Economic modelling and forecasting 2-6 February 2015 Bank of England he generalised method of moments Ole Rummel Adviser, CCBS at the Bank of England ole.rummel@bankofengland.co.uk Outline Classical estimation

More information

Non-Spherical Errors

Non-Spherical Errors Non-Spherical Errors Krishna Pendakur February 15, 2016 1 Efficient OLS 1. Consider the model Y = Xβ + ε E [X ε = 0 K E [εε = Ω = σ 2 I N. 2. Consider the estimated OLS parameter vector ˆβ OLS = (X X)

More information

PhD/MA Econometrics Examination. January, 2015 PART A. (Answer any TWO from Part A)

PhD/MA Econometrics Examination. January, 2015 PART A. (Answer any TWO from Part A) PhD/MA Econometrics Examination January, 2015 Total Time: 8 hours MA students are required to answer from A and B. PhD students are required to answer from A, B, and C. PART A (Answer any TWO from Part

More information

1 Outline. 1. Motivation. 2. SUR model. 3. Simultaneous equations. 4. Estimation

1 Outline. 1. Motivation. 2. SUR model. 3. Simultaneous equations. 4. Estimation 1 Outline. 1. Motivation 2. SUR model 3. Simultaneous equations 4. Estimation 2 Motivation. In this chapter, we will study simultaneous systems of econometric equations. Systems of simultaneous equations

More information

Modeling the Covariance

Modeling the Covariance Modeling the Covariance Jamie Monogan University of Georgia February 3, 2016 Jamie Monogan (UGA) Modeling the Covariance February 3, 2016 1 / 16 Objectives By the end of this meeting, participants should

More information

The Linear Regression Model

The Linear Regression Model The Linear Regression Model Carlo Favero Favero () The Linear Regression Model 1 / 67 OLS To illustrate how estimation can be performed to derive conditional expectations, consider the following general

More information

Heteroskedasticity Example

Heteroskedasticity Example ECON 761: Heteroskedasticity Example L Magee November, 2007 This example uses the fertility data set from assignment 2 The observations are based on the responses of 4361 women in Botswana s 1988 Demographic

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 1. Construct a martingale difference process that is not weakly stationary. Simplest e.g.: Let Y t be a sequence of independent, non-identically

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

GMM and SMM. 1. Hansen, L Large Sample Properties of Generalized Method of Moments Estimators, Econometrica, 50, p

GMM and SMM. 1. Hansen, L Large Sample Properties of Generalized Method of Moments Estimators, Econometrica, 50, p GMM and SMM Some useful references: 1. Hansen, L. 1982. Large Sample Properties of Generalized Method of Moments Estimators, Econometrica, 50, p. 1029-54. 2. Lee, B.S. and B. Ingram. 1991 Simulation estimation

More information

HETEROSKEDASTICITY, TEMPORAL AND SPATIAL CORRELATION MATTER

HETEROSKEDASTICITY, TEMPORAL AND SPATIAL CORRELATION MATTER ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume LXI 239 Number 7, 2013 http://dx.doi.org/10.11118/actaun201361072151 HETEROSKEDASTICITY, TEMPORAL AND SPATIAL CORRELATION MATTER

More information

Linear Regression with Time Series Data

Linear Regression with Time Series Data u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f e c o n o m i c s Econometrics II Linear Regression with Time Series Data Morten Nyboe Tabor u n i v e r s i t y o f c o p e n h a g

More information

Linear Regression with Time Series Data

Linear Regression with Time Series Data Econometrics 2 Linear Regression with Time Series Data Heino Bohn Nielsen 1of21 Outline (1) The linear regression model, identification and estimation. (2) Assumptions and results: (a) Consistency. (b)

More information

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS We begin with a relatively simple special case. Suppose y ijk = µ + τ i + u ij + e ijk, (i = 1,..., t; j = 1,..., n; k = 1,..., m) β =

More information

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Please answer all of the questions and show your work. If you think a question is ambiguous, clearly state how you interpret it before

More information

Efficiency Tradeoffs in Estimating the Linear Trend Plus Noise Model. Abstract

Efficiency Tradeoffs in Estimating the Linear Trend Plus Noise Model. Abstract Efficiency radeoffs in Estimating the Linear rend Plus Noise Model Barry Falk Department of Economics, Iowa State University Anindya Roy University of Maryland Baltimore County Abstract his paper presents

More information