Advanced Electrodynamics Exercise 11 Guides

Size: px
Start display at page:

Download "Advanced Electrodynamics Exercise 11 Guides"

Transcription

1 Advanced Electrodynamics Exercise 11 Guides Here we will calculate in a very general manner the modes of light in a waveguide with perfect conductor boundary-conditions. Our derivations are widely independent of the cross-section, i.e. the profile of the waveguide. In the case of a straight waveguide we will arrive at a rather simple differential equation for the transverse magnetic (TM) modes which we will solve explicitly for the rectangular and the circular waveguide. By using the hodge star and his property of interchanging E and B we will get the transverse electric (TE) modes with only little further calculations. Next we will consider the case of a slightly bent waveguide. Again we can do the calculations independent of the form of the cross-section and derive more involved differential equations. However, with the afore derived solutions of the straight waveguide we can set up a perturbation scheme to calculate the new TM and TE modes. 1 Straight waveguide A typical waveguide is assumed infinitely extended along a specific axis. Possible waveguide-forms are the circular or the rectangular ones. In a more abstract language we say the waveguide is a manifold Ω with boundary Ω. The light-wave is traveling in the volume Ω and is reflected at the surface Ω. Assume a problem adopted coordinate system (x 0 = ct, x, y, z) with the Figure 1: Waveguide-forms ( 1

2 associated Minkowski-metric g µν = 0 g xx g yy where g xx = g xx (x, y) and g yy = g yy (x, y) do not depend on the z-coordinate. The waveguide extends infinitely along the z-axis. In the case of a circular waveguide we will use cylindrical coordinates and in the rectangular case we will choose Cartesian ones. The boundary conditions for a perfect conductor read E ( Ω) = B ( Ω) = 0 where E ( Ω) is parallel and B ( Ω) perpendicular to the boundary Ω of the waveguide. Hence, the parallel electric field at the boundary of our waveguide is zero as well as the perpendicular magnetic field. 1.1 TM modes We will start with the Ansatz for the 4-potential A TM = e i(ωt kz) ( ψ(x, y)dz + φ(x, y)dx 0), where ψ and φ are functions and ω and k are constants. The wave travels along the z-axis with the wavenumber k and frequency ω but is a standing one perpendicular to the propagation direction z. a) Show that this Ansatz leads to TM-modes, i.e. it has no magnetic field component along the propagation direction. By using the Lorentz gaugecondition deduce that d A TM = 0 φ(x, y) = kc ψ(x, y). ω b) Deduce that the perfect conductor boundary conditions lead to Dirichlet boundary conditions for the yet unknown function ψ(x, y), i.e. ψ( Ω) = 0. In order to guarantee the boundary conditions for the magnetic field use that ψ( Ω) = 0 implies dψ is normal to the boundary. Then interpret the wedge-product geometrically, i.e. has the same properties for the covectors as for the vectors. 2

3 Figure 2: Rectangular waveguide ( c) Calculate Maxwell s equations df TM = 0 d F TM = 0 for the given Ansatz. You should find that there is only one non-trivial equation left, i.e. [ ( ) ( )] ψ ψ x x gxx g + y y gyy g = (k 2 ω2 c 2 )ψ g, (1) where g = det(g µν ). Until now we did not specify the cross-section of the waveguide, hence we have derived a very general result. In general we assume that this differential equation admits eigenfunctions ψ mn with eigenvalues ω 2 mn. In a next step we will solve the above equation for two simple cases. d) Solve equation (1) for a rectangular waveguide. Use Cartesian coordinates with 0 x a and 0 y b. You should find eigenfunctions ψ mn with eigenvalues where m, n N. (1 point) ω 2 mn = ω2 c 2 k2 = ( mπ ) 2 ( nπ + a a e) Solve equation (1) for a circular waveguide. Use cylindrical coordinates with 0 r a and 0 φ < 2π. (Hint: You can separate (1) into an equation depending only on φ and one which only depends on r. The differential equation for the r-coordinate can be recast as a Bessel differential equation.) You should find eigenfunctions ψ mn with eigenvalues ω 2 mn = ω2 c 2 k2 = x2 mn a 2, ) 2, where x mn are zeros of the Bessel function of the first kind. 3

4 Figure 3: Circular waveguide ( 1.2 TE modes In the case of TE modes the electric field is perpendicular to the propagation direction z. We could now start with an appropriate Ansatz similar to the case above. However, here we will use a special property of the Hodge-star operator. Namely that it interchanges E and B fields (see for example equation (116) in lecture notes 8). With this we will construct the TE modes from the above calculated TM modes. Therefore we define F TE = F TM. f) Show that the above defined F TE solves Maxwell s equations by using the fact that F TM does. (1 point) g) Show that the 4-potential A TE = e i(ωt kz) gc iω ( ψ y gyy dx ψ ) x gxx dy, leads to the field F TE if ψ is a solution of equation (1). Although in the TE case we can solve the same differential equation as in the TM case, we have to use different boundary conditions. One can proceed in an analogous manner as in b) and interpret the covectors geometrically to find that we need to use the Neumann boundary-conditions for ψ, i.e. n ψ( Ω) = 0 with n is the normal vector to the boundary Ω. h) Solve the rectangular and the circular case for equation (1) with the Neumann boundary-conditions. 4

5 2 Bent waveguide In the case of a bent waveguide the equations become more complicated. We do not pursue a full solution of that problem here but rather derive an perturbative scheme to find approximate solutions for slightly bent waveguides. Under certain assumptions we can use the solutions of the straight waveguide as a starting point. In this case the problem adopted coordinate-system (x 0, u, v, w) has the metric g µν = g uu g vv g ww, (2) where g uu = g uu (u, v), g vv = g vv (u, v) and g ww = g ww (u, v) do not depend on the w-coordinate. For example in the circular case we could use toroidal coordinates similar to (1) in lecture notes 5 (though we have renamed the coordinates here), i.e. R h(u, v) cos(w/r) ϕ 1 (u, v, w) = R h(u, v) sin(w/r) b ζ sin(v) with h = (1 + δζ cos(v)), δ = a/r, ζ = u/a and 0 u a, 0 v < 2π. Here R is the major radius and we only look at a part of the whole torus, i.e. 0 w ɛr with 0 < ɛ < 2π. For the rectangular case we could use R h(u) cos(w/r) ϕ 1 (u, v, w) = R h(u) sin(w/r) v with h = (1 + δζ) and 0 u a, 0 v b, 0 w < ɛr. Here R would be the distance between the origin of the coordinate system and the boundary of the bent waveguide. In both examples we have g ww = h 2 and h has the form h = 1 + δf(u, v). If we now look at the limit of an unbent waveguide, i.e. R while the cross-section of the waveguide stays the same, we see that δ 0. Hence we have a metric similar to the one we assumed before. Therefore we will try the previous Ansatz to deduce an approximate solution of the bent waveguide. i) Use the previous Ansatz for the 4-potential ( A TM = e i(ωt kw) ψ(u, v)dw kc ) ψ(u, v)dx0, ω to derive Maxwell s equations. (3 points) 5

6 You immediately see that only in the case of δ = 0 we can solve the resulting equations exactly. j) Nevertheless, use these results to derive the following differential equation ( ) ω 2 c 2 k2 ψ ( ) ( ) ψ ψ g + u u guu g + v v gvv g [ ( ) f ψ = δ u u guu g + f ( )] ψ 2 v v gvv g h (1 point) With the assumption ˆψ 0 mn ˆψ 0 m n = du dv g uu g vv ( ˆψ0 mn (u, v)) ˆψ0 m n (u, v) = δ mn,m n, where ˆψ 0 mn is a normalized eigenfunctions of (1) to the eigenvalues ω 2 mn, we want to derive a perturbation scheme in δ. We make the Ansatz k 2 = k δk ψ mn = ψ 0 mn + δψ 1 mn +... k) Derive with the operators 1 [ u g uu g uu g vv u + v g vv ] g uu g vv v = (2) guu g vv and [ 2 f h u guu u + f ] v gvv v = L the first order perturbation equation [ (2) + ω 2 mn] ˆψ1 mn = (k L) ˆψ 0 mn, where ω 2 mn = ω2 c 2 k0 2. Then use the expansion ˆψ 1 mn = kl c mn,kl ˆψ0 kl to derive ˆψ 1 mn = kl mn ˆψ 0 kl L ˆψ 0 mn ω 2 mn ω 2 kl ˆψ 0 kl. and k

7 With this we could calculate the first order perturbation of the bent waveguide as ˆψ mn = ˆψ 0 mn + kl mn ˆψ 0 kl L ˆψ 0 mn ω 2 mn ω 2 kl ˆψ 0 kl. Maximal points: 20 Hand in Monday at latest 18:00 o clock - mailbox of Robert van Leeuwen, second floor Nanoscience Building 7

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da How much power is dissipated (per unit area?). 2 ways: 1) Flow of energy into conductor: Energy flow given by S = E H, for real fields E H. so 1 S ( ) = 1 2 Re E H, dp loss /da = ˆn S, so dp loss = 1 µc

More information

Joel A. Shapiro January 21, 2010

Joel A. Shapiro January 21, 2010 Joel A. shapiro@physics.rutgers.edu January 21, 20 rmation Instructor: Joel Serin 325 5-5500 X 3886, shapiro@physics Book: Jackson: Classical Electrodynamics (3rd Ed.) Web home page: www.physics.rutgers.edu/grad/504

More information

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Waveguides Continued - In the previous lecture we made the assumption that

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

Physics 504, Lecture 9 Feb. 21, 2011

Physics 504, Lecture 9 Feb. 21, 2011 Last Latexed: February 17, 011 at 15:8 1 1 Ionosphere, Redux Physics 504, Lecture 9 Feb. 1, 011 Let us return to the resonant cavity formed by the surface of the Earth a spherical shell of radius r = R

More information

Electromagnetic waves in free space

Electromagnetic waves in free space Waveguide notes 018 Electromagnetic waves in free space We start with Maxwell s equations for an LIH medum in the case that the source terms are both zero. = =0 =0 = = Take the curl of Faraday s law, then

More information

Practice Exam in Electrodynamics (T3) June 26, 2018

Practice Exam in Electrodynamics (T3) June 26, 2018 Practice Exam in Electrodynamics T3) June 6, 018 Please fill in: Name and Surname: Matriculation number: Number of additional sheets: Please read carefully: Write your name and matriculation number on

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

RF cavities (Lecture 25)

RF cavities (Lecture 25) RF cavities (Lecture 25 February 2, 2016 319/441 Lecture outline A good conductor has a property to guide and trap electromagnetic field in a confined region. In this lecture we will consider an example

More information

Exam in TFY4240 Electromagnetic Theory Wednesday Dec 9, :00 13:00

Exam in TFY4240 Electromagnetic Theory Wednesday Dec 9, :00 13:00 NTNU Page 1 of 5 Institutt for fysikk Contact during the exam: Paul Anton Letnes Telephone: Office: 735 93 648, Mobile: 98 62 08 26 Exam in TFY4240 Electromagnetic Theory Wednesday Dec 9, 2009 09:00 13:00

More information

Cartesian Coordinates

Cartesian Coordinates Cartesian Coordinates Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Cartesian Coordinates Outline Outline Separation of Variables Away from sources,

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

1 Lectures 10 and 11: resonance cavities

1 Lectures 10 and 11: resonance cavities 1 1 Lectures 10 and 11: resonance cavities We now analyze cavities that consist of a waveguide of length h, terminated by perfectly conducting plates at both ends. The coordinate system is oriented such

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Mathematical Tripos, Part IB : Electromagnetism

Mathematical Tripos, Part IB : Electromagnetism Mathematical Tripos, Part IB : Electromagnetism Proof of the result G = m B Refer to Sec. 3.7, Force and couples, and supply the proof that the couple exerted by a uniform magnetic field B on a plane current

More information

Waveguides and Cavities

Waveguides and Cavities Waveguides and Cavities John William Strutt also known as Lord Rayleigh (1842-1919) September 17, 2001 Contents 1 Reflection and Transmission at a Conducting Wall 2 1.1 Boundary Conditions...........................

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Guided waves - Lecture 11

Guided waves - Lecture 11 Guided waves - Lecture 11 1 Wave equations in a rectangular wave guide Suppose EM waves are contained within the cavity of a long conducting pipe. To simplify the geometry, consider a pipe of rectangular

More information

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS The vector Helmholtz equations satisfied by the phasor) electric and magnetic fields are where. In low-loss media and for a high frequency, i.e.,

More information

21 Laplace s Equation and Harmonic Functions

21 Laplace s Equation and Harmonic Functions 2 Laplace s Equation and Harmonic Functions 2. Introductory Remarks on the Laplacian operator Given a domain Ω R d, then 2 u = div(grad u) = in Ω () is Laplace s equation defined in Ω. If d = 2, in cartesian

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Chapter 5 Cylindrical Cavities and Waveguides

Chapter 5 Cylindrical Cavities and Waveguides Chapter 5 Cylindrical Cavities and Waveguides We shall consider an electromagnetic field propagating inside a hollow (in the present case cylindrical) conductor. There are no sources inside the conductor,

More information

Hertz potentials in curvilinear coordinates

Hertz potentials in curvilinear coordinates Hertz potentials in curvilinear coordinates Jeff Bouas Texas A&M University July 9, 2010 Quantum Vacuum Workshop Jeff Bouas (Texas A&M University) Hertz potentials in curvilinear coordinates July 9, 2010

More information

In what follows, we examine the two-dimensional wave equation, since it leads to some interesting and quite visualizable solutions.

In what follows, we examine the two-dimensional wave equation, since it leads to some interesting and quite visualizable solutions. ecture 22 igher-dimensional PDEs Relevant section of text: Chapter 7 We now examine some PDEs in higher dimensions, i.e., R 2 and R 3. In general, the heat and wave equations in higher dimensions are given

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator TC412 Microwave Communications Lecture 8 Rectangular waveguides and cavity resonator 1 TM waves in rectangular waveguides Finding E and H components in terms of, WG geometry, and modes. From 2 2 2 xye

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information

B(r) = µ 0a 2 J r 2ρ 2

B(r) = µ 0a 2 J r 2ρ 2 28 S8 Covariant Electromagnetism: Problems Questions marked with an asterisk are more difficult.. Eliminate B instead of H from the standard Maxwell equations. Show that the effective source terms are

More information

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves Guided Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Guided Waves Outline Outline The Circuit Model of Transmission Lines R + jωl I(z + z) I(z)

More information

Chapter 5 Cylindrical Cavities and Waveguides

Chapter 5 Cylindrical Cavities and Waveguides Chapter 5 Cylindrical Cavities and Waveguides We shall consider an electromagnetic field propagating inside a hollow (in the present case cylindrical) conductor. There are no sources inside the conductor,

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

Coordinate Systems and Canonical Forms

Coordinate Systems and Canonical Forms Appendix D Coordinate Systems and Canonical Forms D.1. Local Coordinates Let O be an open set in R n. We say that an n-tuple of smooth realvalued functions defined in O, (φ 1,...,φ n ), forms a local coordinate

More information

Physics 380H - Wave Theory Homework #10 - Solutions Fall 2004 Due 12:01 PM, Monday 2004/11/29

Physics 380H - Wave Theory Homework #10 - Solutions Fall 2004 Due 12:01 PM, Monday 2004/11/29 Physics 380H - Wave Theory Homework #10 - Solutions Fall 004 Due 1:01 PM, Monday 004/11/9 [45 points total] Journal questions: How do you feel about the usefulness and/or effectiveness of these Journal

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

3 Green s functions in 2 and 3D

3 Green s functions in 2 and 3D William J. Parnell: MT34032. Section 3: Green s functions in 2 and 3 57 3 Green s functions in 2 and 3 Unlike the one dimensional case where Green s functions can be found explicitly for a number of different

More information

A GENERAL APPROACH FOR CALCULATING COUPLING IMPEDANCES OF SMALL DISCONTINUITIES

A GENERAL APPROACH FOR CALCULATING COUPLING IMPEDANCES OF SMALL DISCONTINUITIES Presented at 16th IEEE Particle Accelerator Conference (PAC 95) and Int l Conference on on High Energy Accelerators, 5/1/1995-5/5/1995, Dallas, TX, USA SLAC-PUB-9963 acc-phys/9504001 A GENERAL APPROACH

More information

Maxwell s equations in Carnot groups

Maxwell s equations in Carnot groups Maxwell s equations in Carnot groups B. Franchi (U. Bologna) INDAM Meeting on Geometric Control and sub-riemannian Geometry Cortona, May 21-25, 2012 in honor of Andrey Agrachev s 60th birthday Researches

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Analysis III (BAUG Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Question 1 et a 0,..., a n be constants. Consider the function. Show that a 0 = 1 0 φ(xdx. φ(x = a 0 + Since the integral

More information

Part IB. Electromagnetism. Year

Part IB. Electromagnetism. Year Part IB Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2017 10 Paper 2, Section I 6C State Gauss s Law in the context of electrostatics. A spherically symmetric capacitor consists

More information

Physics 505 Fall Homework Assignment #9 Solutions

Physics 505 Fall Homework Assignment #9 Solutions Physics 55 Fall 25 Textbook problems: Ch. 5: 5.2, 5.22, 5.26 Ch. 6: 6.1 Homework Assignment #9 olutions 5.2 a) tarting from the force equation (5.12) and the fact that a magnetization M inside a volume

More information

It is obvious that any boundary is closed. That is, the boundary of a boundary is equal to zero. For example, [kb ij] =2 [k i A j] =0.

It is obvious that any boundary is closed. That is, the boundary of a boundary is equal to zero. For example, [kb ij] =2 [k i A j] =0. VIOLATION OF THE GAUGE EQUIVALENCE R. I. Khrapko 1 Abstract F. V. Gubarev et al. [4] ( On the significance of the vector potential squared ) have argued that the minimum value of the volume integral of

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

PHY752, Fall 2016, Assigned Problems

PHY752, Fall 2016, Assigned Problems PHY752, Fall 26, Assigned Problems For clarification or to point out a typo (or worse! please send email to curtright@miami.edu [] Find the URL for the course webpage and email it to curtright@miami.edu

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2012 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for

More information

44 CHAPTER 3. CAVITY SCATTERING

44 CHAPTER 3. CAVITY SCATTERING 44 CHAPTER 3. CAVITY SCATTERING For the TE polarization case, the incident wave has the electric field parallel to the x 3 -axis, which is also the infinite axis of the aperture. Since both the incident

More information

Dielectric wave guides, resonance, and cavities

Dielectric wave guides, resonance, and cavities Dielectric wave guides, resonance, and cavities 1 Dielectric wave guides Instead of a cavity constructed of conducting walls, a guide can be constructed of dielectric material. In analogy to a conducting

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

Propagation of discontinuities in solutions of First Order Partial Differential Equations

Propagation of discontinuities in solutions of First Order Partial Differential Equations Propagation of discontinuities in solutions of First Order Partial Differential Equations Phoolan Prasad Department of Mathematics Indian Institute of Science, Bangalore 560 012 E-mail: prasad@math.iisc.ernet.in

More information

General Relativity I

General Relativity I General Relativity I presented by John T. Whelan The University of Texas at Brownsville whelan@phys.utb.edu LIGO Livingston SURF Lecture 2002 July 5 General Relativity Lectures I. Today (JTW): Special

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

Slow Photons in Vacuum as Elementary Particles. Chander Mohan Singal

Slow Photons in Vacuum as Elementary Particles. Chander Mohan Singal Ref ETOP98 Slow Photons in Vacuum as Elementary Particles Chander Mohan Singal Department of Physics, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi-1116, INDIA E-Mail: drcmsingal@yahoocom

More information

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 1. An electric dipole is formed from two charges ±q separated by a distance b. For large distances r b from the dipole, the electric potential falls like

More information

Dispersion Information for Photonic Fiber Modes from CUDOS Simulations

Dispersion Information for Photonic Fiber Modes from CUDOS Simulations July 14, 005 ARDB Note Dispersion Information for Photonic Fiber Modes from CUDOS Simulations Robert J. Noble Stanford Linear Accelerator Center, Stanford University 575 Sand Hill Road, Menlo Park, California

More information

MATH 124A Solution Key HW 05

MATH 124A Solution Key HW 05 3. DIFFUSION ON THE HALF-LINE Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 24A MATH 24A Solution Key HW 5 3. DIFFUSION ON THE HALF-LINE. Solve u t ku x x ; u(x, ) e x ; u(, t) on the half-line

More information

Chapter 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: H = αδ(x a/2) (1)

Chapter 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: H = αδ(x a/2) (1) Tor Kjellsson Stockholm University Chapter 6 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: where α is a constant. H = αδ(x a/ ( a Find the first-order correction

More information

dt dx dy dz dtdx dtdy dtdz dxdy dxdz dydz dxdydz dtdydz dtdxdz dtdxdy dtdxdydz

dt dx dy dz dtdx dtdy dtdz dxdy dxdz dydz dxdydz dtdydz dtdxdz dtdxdy dtdxdydz DIFFERENTIAL FORMS ON R 4 Thomas Wieting, 20 Differential Forms 0 One locates Events (t, x, y, z) in Time/Space by specifying a coordinate t for time and Cartesian coordinates x, y, andz for position.

More information

GUIDED MICROWAVES AND OPTICAL WAVES

GUIDED MICROWAVES AND OPTICAL WAVES Chapter 1 GUIDED MICROWAVES AND OPTICAL WAVES 1.1 Introduction In communication engineering, the carrier frequency has been steadily increasing for the obvious reason that a carrier wave with a higher

More information

Homework for Math , Fall 2016

Homework for Math , Fall 2016 Homework for Math 5440 1, Fall 2016 A. Treibergs, Instructor November 22, 2016 Our text is by Walter A. Strauss, Introduction to Partial Differential Equations 2nd ed., Wiley, 2007. Please read the relevant

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M.

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M. PhD QUALIFYING EXAMINATION PART A Tuesday, January 3, 212, 1: 5: PM Work each problem on a separate sheet(s) of paper and put your identifying number on each page Do not use your name Each problem has

More information

Hertz Potentials in Cylindrical Coordinates

Hertz Potentials in Cylindrical Coordinates Introduction 26 June 2009 Motivation Introduction Motivation Differential Forms and the Hodge Star Motivation 1 To extend Hertz Potentials to general curvilinear coordinates. 2 To explore the usefulness

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination January 10, 2007 1. This problem deals with magnetostatics, described by a time-independent magnetic field, produced by a current density which is divergenceless,

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

Chapter 30 Sources of the magnetic field

Chapter 30 Sources of the magnetic field Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? Biot-Savart Law Set-Up The magnetic field is

More information

Analysis III Solutions - Serie 12

Analysis III Solutions - Serie 12 .. Necessary condition Let us consider the following problem for < x, y < π, u =, for < x, y < π, u y (x, π) = x a, for < x < π, u y (x, ) = a x, for < x < π, u x (, y) = u x (π, y) =, for < y < π. Find

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Physics 504, Spring 2010 Electricity and Magnetism

Physics 504, Spring 2010 Electricity and Magnetism Resonant cavities do not need to be cylindrical, of course. The surface of the Earth R E 6400 m the ionosphere R = R E + h, h 100 m form concentric spheres which are sufficiently good conductors to form

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Physics 506 Winter 2008 Homework Assignment #8 Solutions. Textbook problems: Ch. 11: 11.5, 11.13, 11.14, 11.18

Physics 506 Winter 2008 Homework Assignment #8 Solutions. Textbook problems: Ch. 11: 11.5, 11.13, 11.14, 11.18 Physics 506 Winter 2008 Homework Assignment #8 Solutions Textbook problems: Ch. 11: 11.5, 11.13, 11.14, 11.18 11.5 A coordinate system K moves with a velocity v relative to another system K. In K a particle

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

PHYS4210 Electromagnetic Theory Spring Final Exam Wednesday, 6 May 2009

PHYS4210 Electromagnetic Theory Spring Final Exam Wednesday, 6 May 2009 Name: PHYS4210 Electromagnetic Theory Spring 2009 Final Exam Wednesday, 6 May 2009 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively

More information

Cavity basics. 1 Introduction. 2 From plane waves to cavities. E. Jensen CERN, Geneva, Switzerland

Cavity basics. 1 Introduction. 2 From plane waves to cavities. E. Jensen CERN, Geneva, Switzerland Cavity basics E. Jensen CERN, Geneva, Switerland Abstract The fields in rectangular and circular waveguides are derived from Maxwell s equations by superposition of plane waves. Subsequently the results

More information

GUIDED WAVES IN A RECTANGULAR WAVE GUIDE

GUIDED WAVES IN A RECTANGULAR WAVE GUIDE GUIDED WAVES IN A RECTANGULAR WAVE GUIDE Consider waves propagating along Oz but with restrictions in the and/or directions. The wave is now no longer necessaril transverse. The wave equation can be written

More information

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 23 p. 1/2 EECS 117 Lecture 23: Oblique Incidence and Reflection Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

Vectors and Fields. Vectors versus scalars

Vectors and Fields. Vectors versus scalars C H A P T E R 1 Vectors and Fields Electromagnetics deals with the study of electric and magnetic fields. It is at once apparent that we need to familiarize ourselves with the concept of a field, and in

More information

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n 1. What is a form? Since we re not following the development in Guillemin and Pollack, I d better write up an alternate approach. In this approach, we

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

l=0 The expansion coefficients can be determined, for example, by finding the potential on the z-axis and expanding that result in z.

l=0 The expansion coefficients can be determined, for example, by finding the potential on the z-axis and expanding that result in z. Electrodynamics I Exam - Part A - Closed Book KSU 15/11/6 Name Electrodynamic Score = 14 / 14 points Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try

More information

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 )

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Localisation of Rayleigh-Bloch waves and stability of resonant loads on arrays of bottom-mounted cylinders with respect to positional disorder

Localisation of Rayleigh-Bloch waves and stability of resonant loads on arrays of bottom-mounted cylinders with respect to positional disorder Localisation of Rayleigh-Bloch waves and stability of resonant loads on arrays of bottom-mounted cylinders with respect to positional disorder Luke Bennetts University of Adelaide, Australia Collaborators

More information

EXISTENCE OF GUIDED MODES ON PERIODIC SLABS

EXISTENCE OF GUIDED MODES ON PERIODIC SLABS SUBMITTED FOR: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS June 16 19, 2004, Pomona, CA, USA pp. 1 8 EXISTENCE OF GUIDED MODES ON PERIODIC SLABS Stephen

More information

Longitudinal Beam Dynamics

Longitudinal Beam Dynamics Longitudinal Beam Dynamics Shahin Sanaye Hajari School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran IPM Linac workshop, Bahman 28-30, 1396 Contents 1.

More information

Modelling of Ridge Waveguide Bends for Sensor Applications

Modelling of Ridge Waveguide Bends for Sensor Applications Modelling of Ridge Waveguide Bends for Sensor Applications Wilfrid Pascher FernUniversität, Hagen, Germany n 1 n2 n 3 R Modelling of Ridge Waveguide Bends for Sensor Applications Wilfrid Pascher FernUniversität,

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation A Variational Analysis of a Gauged Nonlinear Schrödinger Equation Alessio Pomponio, joint work with David Ruiz Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Variational and Topological

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS Progress In Electromagnetics Research Letters, Vol. 24, 69 76, 2011 EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS S. J. Lai 1, *, B. Z. Wang 1, and Y. Duan 2 1 Institute

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I Physics 342 Lecture 30 Solids Lecture 30 Physics 342 Quantum Mechanics I Friday, April 18th, 2008 We can consider simple models of solids these highlight some special techniques. 30.1 An Electron in a

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

1MA6 Partial Differentiation and Multiple Integrals: I

1MA6 Partial Differentiation and Multiple Integrals: I 1MA6/1 1MA6 Partial Differentiation and Multiple Integrals: I Dr D W Murray Michaelmas Term 1994 1. Total differential. (a) State the conditions for the expression P (x, y)dx+q(x, y)dy to be the perfect

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information