Practice Exam in Electrodynamics (T3) June 26, 2018

Size: px
Start display at page:

Download "Practice Exam in Electrodynamics (T3) June 26, 2018"

Transcription

1 Practice Exam in Electrodynamics T3) June 6, 018 Please fill in: Name and Surname: Matriculation number: Number of additional sheets: Please read carefully: Write your name and matriculation number on every sheet that you hand in. State the exact number of handed in sheets. Only the use of a two-sided handwritten DIN A4 sheet is allowed, whereas books, lecture notes, and calculators are not! You have hours at your disposal. Only readable and comprehensible solutions will be corrected. Exclusively SI units are used. The metric reads η = diag1, 1, 1, 1). Do not write below this line. Comments: Problem 1 Problem Problem 3 / 14 P / 5 P / 5 P Total Grade / 64 P

2 1 Problem: Short questions Total 14 P) i) Is the following quantity, µ A µ, invariant under a gauge transformation of the four vector potential? Explain. 1 P ) Solution: No, because under gauge transformation A µ = A µ + µ λ, we get µ A µ = µ A µ + µ µ λ. 1 P for the explanation) ii) Let X µν = be a tensor defined on Minkowski space, calculate Xµ µ. 3 P ) Solution: X µ ν = and X µ µ = 3. 3 P ) iii) A loop of radius R is placed on the x y plane such that it is concentric to the origin. A magnetic t field B = B 0 T ẑ is turned on inside the ring, where t is the time, B 0 and T are constants. Calculate E ds, where the integration is along one cycle of the ring in the counter clockwise direction. 3 P ) Solution: E ds = E) da 1 P) 1) = t B da 1 P) ) = πr B 0 T 1 P) 3) iv) Calculate ρ F αβ + α F βρ + β F ρα. Simplify as much as possible. P ) Solution: Plug in F µν = µ A ν ν A µ 1 P for writing F µν ) to get 0. 1 P for the final solution) v) Consider a static electromagnetic problem. For a bounded region in space, can V = V 0 e y /a, a xye y /a, z/a) be an electric or a magnetic field? If so, find the corresponding charge density or current density V 0 and a are constants). 5 P ) Solution: V = V 0 a xe y /a + 4a 4 xy e y /a + a 1 ). P) V = 0. P) Can be an electric field with charge density ρ = ɛ 0 V 0 a xe y /a + 4a 4 xy e y /a + a 1 )1 P). Exam in Electrodynamics Page 1 of 6 June 6, 018

3 Problem: Moving charged wire Consider an infinitely long and infinitesimally thin wire with constant linear charge density λ localized on the z-axis in Cartesian coordinates. i) What is the charge density ρ and the current density j in this problem? Show that the continuity equation holds. Solution: ρ = λδx)δy) 1P); j = 0 1P). Since ρ is time independent, we have t ρ + j = 0 1P). ii) Show that the four-potential ) r A 0 r) = C ln x 0 and A i = 0, with x 0 real and r = x + y, solves Maxwell s equations. What is the relation between the constants C and λ? Hint: Use that x + y) lnr/x 0 ) = πδx)δy).) Solution: Since we work with the four potential, we can focus on the inhomogeneous Maxwell s equations. The others are automatically satisfied. Using the hint we find E = c A 0 t A) = πcδx)δy), t E = 0. The equation involving the current is therefore trivially satisfied. From E = ρ ɛ 0 we find C = λ πcɛ 0 P). For the three trivial Maxwell equations: 3P). iii) Write down the corresponding electric and magnetic fields. Solution: B = 0 1P), E = φ = λ πɛ 0r n rp), where n r is the normal vector in the r-direction. iv) Now we want to consider the same charged wire, but moving with constant velocity v in the x-direction. Give the Lorentz transformation relating the old problem to the new problem. Solution: γ γβ 0 0 Λ α γβ γ 0 0 β) =, where β = v c and γ = 1 1 β P). v) Calculate the new four-potential. Solution: A µ r ) = Λ µ νa ν r)1p)= γc ln r x 0 ), βc ln r x 0 )), 0, 0) with r = x vt) + y P). vi) Calculate the electric and magnetic field in this new setup. Solution: E = γe P). B = A = γβcy r n z P). Exam in Electrodynamics Page of 6 June 6, 018

4 vii) Calculate E B in the new reference frame. What can you say about this quantity in general? Solution: E B = 0 in the rest frame, since B = 0. P). In general this quantity is Lorentz invariant and therefore, since it was zero in the rest frame it is zero everywhere. 1P) viii) Is there a reference frame in which E = 0? If yes, find it. If no, explain why. Solution: No, since the invariant quantity E this quantity to be negative P). B is positive in every frame. But E = 0 implies Exam in Electrodynamics Page 3 of 6 June 6, 018

5 3 Problem: Wave propagation between conducting planes Consider two infinte planes, that lie in the vacuuum parallel to the y, z)-plane and are made out of a perfectly conducting material. One plane lies at x = 0 and the other at x = L. i) Which boundary conditions must the E-field and B-field satisfy at x = 0 and x = L? Solution: At the conducting plates we have E = 0 and B = 0. Thus, we deduce E y x=0,x=l = 0 = E z x=0,x=l and B x x=0,x=l = 0 1P) 4) ii) Derive the differential equations x + λ ) E 0) x) = 0 and x + λ ) B 0) x) = 0 for the fields E 0) x) and B 0) x), where λ is an appropriate constant, which depends on ω, k y and k z. Solution: Using the wave equations E = 0 and B = 0 1P) we find 0 = 1c ) ) t E = x + ω k y kz E 0 e ikyy+kzz ωt) 1P) 5) as well as 0 = 1c ) ) t B = x + ω k y kz B 0 e ikyy+kzz ωt) 1P) 6) so that x + λ ) B 0 = 0 and x + λ ) E 0 = 0 7) with λ = ω k y k z 1P). iii) Find an expression for E x and E y as a function of E z and B z by starting with the dynamical Maxwell equations. Solution: Using the dynamical Maxwell equations E = t B and B = 1 te 1P) we compute iω B0 x By 0 = ik ye 0 z ik z E 0 y ik z E 0 x x E 0 z 1P) 8) as well as i ω E0 x Ey 0 = ik yb 0 z ik z B 0 y ik z B 0 x x B 0 z 1P) 9) and therefore ωb 0 x = k y E 0 z k z E 0 y 10) iωb 0 y = ik z E 0 x x E 0 z 11) Exam in Electrodynamics Page 4 of 6 June 6, 018

6 Solving 10) and 11) for B 0 x and B 0 y we get ω E0 x = k y B 0 z k z B 0 y 1) i ω E0 y = ik z B 0 x x B 0 z 13) B 0 x = 1 ω k ye 0 z k y E 0 y) 14) and 1P for both equations) B 0 y = 1 ω k ze 0 x + i x E 0 z) 15) Inserting 15) into 1) we get ω E0 x = k y B 0 z k z ω k ze 0 x + i x E 0 z) = k y Bz 0 k z ω E0 x k z ω xez) 0 1P) 1 ) ω ω k z Ex 0 = k y Bz 0 i k z ω xez 0 16) which yields E 0 x = ω 1 k z ikz x E 0 z k y ωb 0 z) 1P) 17) Furthermore, inserting 14) in 13) we deduce ω E0 y = i k z ω k ye 0 z k z E 0 y) x B 0 z = i k yk z ω E0 z i k z ω E0 y x Bz 0 1P) i 1 ) ω ω k z Ey 0 = i k yk z ω E0 z x Bz 0 18) yielding E 0 y = ω 1 k z iωx B 0 z + k y k z E 0 z) 1P) 19) iv) From now until the end of the exercise consider a E z = 0. Rewrite the equations for E x and E y that you found in iv) for this case. Solution: For TE-waves it holds E z = 0. Therefore, equations 17) and 19) become E 0 x = E 0 y = ω ω 1 k y ωb 0 kz z 0) 1 iω x B 0 kz z 1) 1P for both equations) v) Make the ansatz B 0) z x) = B 0 cos k x x) and use the boundary conditions that you found in i) to determine the allowed values for k x. Exam in Electrodynamics Page 5 of 6 June 6, 018

7 Solution: Using boundary condition 4) in 1) we directly infer x=0,x=l = 0 x Bz 0 x=0,x=l = 0 ) E 0 y This suggests the Ansatz B 0 z = B 0 cosk x x). If we insert this into ) this yields k x B 0 sink x x) x=0,x=l = 0 1P) k x L πz 1P) k x π Z 1P) 3) L vi) What is the minimal frequency ω min, such that there is no wave propagation for values smaller than ω min? Solution: According to part vi) one has k x = nπ L for some n Z. Using this in 7) for the z- component we find ω 0 = x λ)bz 0 = π n ) L ky kz Bz 0 1P) 4) which yields a nontrivial solution iff ω π n L ky kz = 0 ω π n L = ky + kz 0 1P) 5) Thus, since kx + ky 0 we deduce that in order for 5) to be possible the frequency ω of the wave needs to satisfy ω c πn := ωn) min n N 1P) 6) L That is, for a given n Z the minimal possible frequency below which no propagation can take place nay more is given by ω n) min = nπ L. vii) Consider now the same problem as before, but with the additional boundary condition E x, y, z, t) = E x, y + qd, z, t) for all q Z, where d is some fixed length. What is the spectrum of ω, assuming that k z = π L constant)? is fixed i.e. L is a Solution: In part i) we made the Ansatz E expik y y). Now, due to the periodicity assumption in the y-direction this implies that expik y y + qd))! = expik y y) 1P) which yields e ik yd ) q = 1 q Z 1P) ky d πz k y π d Z 1P) 7) Furthermore since k z = π L this then gives ω n k x ky kz = 0 ω = cπ L + 4m d + 1 L for any n, m Z 1P) 8) Exam in Electrodynamics Page 6 of 6 June 6, 018

E&M. 1 Capacitors. January 2009

E&M. 1 Capacitors. January 2009 E&M January 2009 1 Capacitors Consider a spherical capacitor which has the space between its plates filled with a dielectric of permittivity ɛ. The inner sphere has radius r 1 and the outer sphere has

More information

FYS 3120: Classical Mechanics and Electrodynamics

FYS 3120: Classical Mechanics and Electrodynamics FYS 3120: Classical Mechanics and Electrodynamics Formula Collection Spring semester 2014 1 Analytical Mechanics The Lagrangian L = L(q, q, t), (1) is a function of the generalized coordinates q = {q i

More information

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121 Classical Mechanics/Electricity and Magnetism Preliminary Exam August 20, 2008 09:00-15:00 in P-121 Answer THREE (3) questions from each of the TWO (2) sections A and B for a total of SIX (6) solutions.

More information

Electricity & Magnetism Qualifier

Electricity & Magnetism Qualifier Electricity & Magnetism Qualifier For each problem state what system of units you are using. 1. Imagine that a spherical balloon is being filled with a charged gas in such a way that the rate of charge

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2013 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00 1 Preliminary Exam: Electromagnetism, Thursday January 12, 2017. 9:00-12:00 Answer a total of any THREE out of the four questions. For your answers you can use either the blue books or individual sheets

More information

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 1. An electric dipole is formed from two charges ±q separated by a distance b. For large distances r b from the dipole, the electric potential falls like

More information

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST:

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST: E & M Qualifier 1 January 11, 2017 To insure that the your work is graded correctly you MUST: 1. use only the blank answer paper provided, 2. use only the reference material supplied (Schaum s Guides),

More information

Electrodynamics Exam Solutions

Electrodynamics Exam Solutions Electrodynamics Exam Solutions Name: FS 215 Prof. C. Anastasiou Student number: Exercise 1 2 3 4 Total Max. points 15 15 15 15 6 Points Visum 1 Visum 2 The exam lasts 18 minutes. Start every new exercise

More information

Electromagnetic Theory I

Electromagnetic Theory I Electromagnetic Theory I Final Examination 18 December 2009, 12:30-2:30 pm Instructions: Answer the following 10 questions, each of which is worth 10 points. Explain your reasoning in each case. Use SI

More information

Special Relativity - QMII - Mechina

Special Relativity - QMII - Mechina Special Relativity - QMII - Mechina 2016-17 Daniel Aloni Disclaimer This notes should not replace a course in special relativity, but should serve as a reminder. I tried to cover as many important topics

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Advanced Electrodynamics Exercise 11 Guides

Advanced Electrodynamics Exercise 11 Guides Advanced Electrodynamics Exercise 11 Guides Here we will calculate in a very general manner the modes of light in a waveguide with perfect conductor boundary-conditions. Our derivations are widely independent

More information

Joel A. Shapiro January 21, 2010

Joel A. Shapiro January 21, 2010 Joel A. shapiro@physics.rutgers.edu January 21, 20 rmation Instructor: Joel Serin 325 5-5500 X 3886, shapiro@physics Book: Jackson: Classical Electrodynamics (3rd Ed.) Web home page: www.physics.rutgers.edu/grad/504

More information

PHYS4210 Electromagnetic Theory Spring Final Exam Wednesday, 6 May 2009

PHYS4210 Electromagnetic Theory Spring Final Exam Wednesday, 6 May 2009 Name: PHYS4210 Electromagnetic Theory Spring 2009 Final Exam Wednesday, 6 May 2009 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES Physics 4D ELECTROMAGNETIC WAVE Hans P. Paar 26 January 2006 i Chapter 1 Vector Calculus 1.1 Introduction Vector calculus is a branch of mathematics that allows differentiation and integration of (scalar)

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc

Symmetry and Duality FACETS Nemani Suryanarayana, IMSc Symmetry and Duality FACETS 2018 Nemani Suryanarayana, IMSc What are symmetries and why are they important? Most useful concept in Physics. Best theoretical models of natural Standard Model & GTR are based

More information

Physics 4183 Electricity and Magnetism II. Covariant Formulation of Electrodynamics-1

Physics 4183 Electricity and Magnetism II. Covariant Formulation of Electrodynamics-1 Physics 4183 Electricity and Magnetism II Covariant Formulation of Electrodynamics 1 Introduction Having briefly discussed the origins of relativity, the Lorentz transformations, 4-vectors and tensors,

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 217 3:PM to 5:PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for the

More information

2nd Year Electromagnetism 2012:.Exam Practice

2nd Year Electromagnetism 2012:.Exam Practice 2nd Year Electromagnetism 2012:.Exam Practice These are sample questions of the type of question that will be set in the exam. They haven t been checked the way exam questions are checked so there may

More information

Tutorial 3 - Solutions Electromagnetic Waves

Tutorial 3 - Solutions Electromagnetic Waves Tutorial 3 - Solutions Electromagnetic Waves You can find formulas you require for vector calculus at the end of this tutorial. 1. Find the Divergence and Curl of the following functions - (a) k r ˆr f

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2012 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for

More information

Physics 506 Winter 2006 Homework Assignment #8 Solutions

Physics 506 Winter 2006 Homework Assignment #8 Solutions Physics 506 Winter 2006 Homework Assignment #8 Solutions Textbook problems: Ch. 11: 11.13, 11.16, 11.18, 11.27 11.13 An infinitely long straight wire of negligible cross-sectional area is at rest and has

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

MP204 Electricity and Magnetism

MP204 Electricity and Magnetism MATHEMATICAL PHYSICS SEMESTER 2 2016 2017 MP204 Electricity and Magnetism Prof. S. J. Hands, Dr. M. Haque and Dr. J.-I. Skullerud Time allowed: 1 1 2 hours Answer ALL questions MP204, 2016 2017, May Exam

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν =

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν = Lagrangian L = 1 4 F µνf µν j µ A µ where F µν = µ A ν ν A µ = F νµ. F µν = ν = 0 1 2 3 µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0 field tensor. Note that F µν = g µρ F ρσ g σν

More information

5.24If the arrows represent observer the vector potential A (note that A is the same everywhere), is there a nonzero B in the dashed region?

5.24If the arrows represent observer the vector potential A (note that A is the same everywhere), is there a nonzero B in the dashed region? QUZ: No quiz on Thursday Static Vector Fields Homework 6 Due 11/8/13 PRACTCE: Here are some great quick problems (little to no calculation) to test your knowledge before the exam. Bring your questions

More information

B(r) = µ 0a 2 J r 2ρ 2

B(r) = µ 0a 2 J r 2ρ 2 28 S8 Covariant Electromagnetism: Problems Questions marked with an asterisk are more difficult.. Eliminate B instead of H from the standard Maxwell equations. Show that the effective source terms are

More information

MP204 Electricity and Magnetism

MP204 Electricity and Magnetism MATHEMATICAL PHYSICS SEMESTER 2, REPEAT 2016 2017 MP204 Electricity and Magnetism Prof. S. J. Hands, Dr. M. Haque and Dr. J.-I. Skullerud Time allowed: 1 1 2 hours Answer ALL questions MP204, 2016 2017,

More information

Maxwell s Equations & Electromagnetic Waves. The Equations So Far...

Maxwell s Equations & Electromagnetic Waves. The Equations So Far... Maxwell s Equations & Electromagnetic Waves Maxwell s equations contain the wave equation Velocity of electromagnetic waves c = 2.99792458 x 1 8 m/s Relationship between E and B in an EM wave Energy in

More information

MATH 423 January 2011

MATH 423 January 2011 MATH 423 January 2011 Examiner: Prof. A.E. Faraggi, Extension 43774. Time allowed: Two and a half hours Full marks can be obtained for complete answers to FIVE questions. Only the best FIVE answers will

More information

Solution to Final Exam, Problem 1

Solution to Final Exam, Problem 1 UC Berkeley, Deparment of Physics Fall 202 Phys 7B: Electromagnetism and Thermodynamics Section 200 Solution to Final Exam, Problem This problem is broken into two parts. In the first part, we compute

More information

Electromagnetic Theory (Hecht Ch. 3)

Electromagnetic Theory (Hecht Ch. 3) Phys 531 Lecture 2 30 August 2005 Electromagnetic Theory (Hecht Ch. 3) Last time, talked about waves in general wave equation: 2 ψ(r, t) = 1 v 2 2 ψ t 2 ψ = amplitude of disturbance of medium For light,

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Physics 7B, Speliotopoulos Final Exam, Spring 2014 Berkeley, CA

Physics 7B, Speliotopoulos Final Exam, Spring 2014 Berkeley, CA Physics 7B, Speliotopoulos Final Exam, Spring 4 Berkeley, CA Rules: This final exam is closed book and closed notes. In particular, calculators are not allowed during this exam. Cell phones must be turned

More information

A cylinder in a magnetic field (Jackson)

A cylinder in a magnetic field (Jackson) Problem 1. A cylinder in a magnetic field (Jackson) A very long hollow cylinder of inner radius a and outer radius b of permeability µ is placed in an initially uniform magnetic field B o at right angles

More information

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da How much power is dissipated (per unit area?). 2 ways: 1) Flow of energy into conductor: Energy flow given by S = E H, for real fields E H. so 1 S ( ) = 1 2 Re E H, dp loss /da = ˆn S, so dp loss = 1 µc

More information

Nonlinear wave-wave interactions involving gravitational waves

Nonlinear wave-wave interactions involving gravitational waves Nonlinear wave-wave interactions involving gravitational waves ANDREAS KÄLLBERG Department of Physics, Umeå University, Umeå, Sweden Thessaloniki, 30/8-5/9 2004 p. 1/38 Outline Orthonormal frames. Thessaloniki,

More information

Special Theory of Relativity

Special Theory of Relativity June 17, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

Physics 506 Winter 2008 Homework Assignment #8 Solutions. Textbook problems: Ch. 11: 11.5, 11.13, 11.14, 11.18

Physics 506 Winter 2008 Homework Assignment #8 Solutions. Textbook problems: Ch. 11: 11.5, 11.13, 11.14, 11.18 Physics 506 Winter 2008 Homework Assignment #8 Solutions Textbook problems: Ch. 11: 11.5, 11.13, 11.14, 11.18 11.5 A coordinate system K moves with a velocity v relative to another system K. In K a particle

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

E & M Qualifier. August 16, To insure that the your work is graded correctly you MUST: 5. number every page starting with 1 for each problem,

E & M Qualifier. August 16, To insure that the your work is graded correctly you MUST: 5. number every page starting with 1 for each problem, E & M Qualifier August 16, 2012 To insure that the your work is graded correctly you MUST: 1. use only the blank answer paper provided, 2. write only on one side of the page, 3. put your alias on every

More information

Primer in Special Relativity and Electromagnetic Equations (Lecture 13)

Primer in Special Relativity and Electromagnetic Equations (Lecture 13) Primer in Special Relativity and Electromagnetic Equations (Lecture 13) January 29, 2016 212/441 Lecture outline We will review the relativistic transformation for time-space coordinates, frequency, and

More information

Relativistic Mechanics

Relativistic Mechanics Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

More information

ESG Fall 2006 Final Exam

ESG Fall 2006 Final Exam ESG 8.022 Fall 2006 Final Exam Instructor: Michael Shaw Tuesday, December 19th, 1:30PM to 4:30PM Instructions Show work on all problems. Partial credit cannot be granted without adequate progress. Please

More information

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA Physics 7B, Speliotopoulos Final Exam, Fall 4 Berkeley, CA Rules: This final exam is closed book and closed notes. In particular, calculators are not allowed during this exam. Cell phones must be turned

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

MATH 3150: PDE FOR ENGINEERS FINAL EXAM (VERSION A)

MATH 3150: PDE FOR ENGINEERS FINAL EXAM (VERSION A) MAH 35: PDE FOR ENGINEERS FINAL EXAM VERSION A). Draw the graph of 2. y = tan x labelling all asymptotes and zeros. Include at least 3 periods in your graph. What is the period of tan x? See figure. Asymptotes

More information

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015.

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. PHYS 408, Optics Problem Set 1 - Spring 2016 Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. 1. An electric field in vacuum has the wave equation, Let us consider the solution, 2 E 1 c 2 2 E =

More information

Dynamics of Relativistic Particles and EM Fields

Dynamics of Relativistic Particles and EM Fields October 7, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 12 Lagrangian Hamiltonian for a Relativistic Charged Particle The equations of motion [ d p dt = e E + u ] c B de dt = e

More information

Linearized Gravity Return to Linearized Field Equations

Linearized Gravity Return to Linearized Field Equations Physics 411 Lecture 28 Linearized Gravity Lecture 28 Physics 411 Classical Mechanics II November 7th, 2007 We have seen, in disguised form, the equations of linearized gravity. Now we will pick a gauge

More information

Lorentz Transformations and Special Relativity

Lorentz Transformations and Special Relativity Lorentz Transformations and Special Relativity Required reading: Zwiebach 2.,2,6 Suggested reading: Units: French 3.7-0, 4.-5, 5. (a little less technical) Schwarz & Schwarz.2-6, 3.-4 (more mathematical)

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 10, 2011 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

Casimir effect in background of static domain wall

Casimir effect in background of static domain wall Casimir effect in background of static domain wall M. R. Setare a, 1 and A. Saharian b, 2 a) Department of Physics, Sharif University of Technology, P.O.Box 11365-9161, Tehran, Iran b) Department of Physics,

More information

Gravitational radiation

Gravitational radiation Lecture 28: Gravitational radiation Gravitational radiation Reading: Ohanian and Ruffini, Gravitation and Spacetime, 2nd ed., Ch. 5. Gravitational equations in empty space The linearized field equations

More information

Relativistic Electrodynamics

Relativistic Electrodynamics Relativistic Electrodynamics Notes (I will try to update if typos are found) June 1, 2009 1 Dot products The Pythagorean theorem says that distances are given by With time as a fourth direction, we find

More information

FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES

FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES Progress In Electromagnetics Research, PIER 5, 3 38, 000 FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES Q. A. Naqvi and A. A. Rizvi Communications Lab. Department of Electronics Quaidi-i-Azam University

More information

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30-

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30- Class 30: Outline Hour 1: Traveling & Standing Waves Hour : Electromagnetic (EM) Waves P30-1 Last Time: Traveling Waves P30- Amplitude (y 0 ) Traveling Sine Wave Now consider f(x) = y = y 0 sin(kx): π

More information

INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY

INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY Living script Astro 405/505 ISU Fall 2004 Dirk Pützfeld Iowa State University 2004 Last update: 9th December 2004 Foreword This material was prepared by

More information

Microscopic electrodynamics. Trond Saue (LCPQ, Toulouse) Microscopic electrodynamics Virginia Tech / 46

Microscopic electrodynamics. Trond Saue (LCPQ, Toulouse) Microscopic electrodynamics Virginia Tech / 46 Microscopic electrodynamics Trond Saue (LCPQ, Toulouse) Microscopic electrodynamics Virginia Tech 2015 1 / 46 Maxwell s equations for electric field E and magnetic field B in terms of sources ρ and j The

More information

NASSP Honours Electrodynamics Part 1. Tutorial Problem Set 2: Magnetic Materials, Time Varying Fields

NASSP Honours Electrodynamics Part 1. Tutorial Problem Set 2: Magnetic Materials, Time Varying Fields NASSP Honours Electrodynamics Part 1 Tutorial Problem Set 2: Magnetic Materials, Time Varying Fields Q.1. At the interface between one linear magnetic material and another (relative permeabilities and

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Physics 9 Friday, April 4, 2014

Physics 9 Friday, April 4, 2014 Physics 9 Friday, April 4, 2014 FYI: final exam is Friday, May 9th, at 9am, in DRL A2. Turn in HW10 today. I ll post HW11 tomorrow. For Monday: read concepts half of Ch31 (electric circuits); read equations

More information

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field.

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 2: Vector and integral identities. Here ψ is a scalar

More information

MATH45061: SOLUTION SHEET 1 V

MATH45061: SOLUTION SHEET 1 V 1 MATH4561: SOLUTION SHEET 1 V 1.) a.) The faces of the cube remain aligned with the same coordinate planes. We assign Cartesian coordinates aligned with the original cube (x, y, z), where x, y, z 1. The

More information

Chapter 5 Cylindrical Cavities and Waveguides

Chapter 5 Cylindrical Cavities and Waveguides Chapter 5 Cylindrical Cavities and Waveguides We shall consider an electromagnetic field propagating inside a hollow (in the present case cylindrical) conductor. There are no sources inside the conductor,

More information

A Brief Introduction to Relativistic Quantum Mechanics

A Brief Introduction to Relativistic Quantum Mechanics A Brief Introduction to Relativistic Quantum Mechanics Hsin-Chia Cheng, U.C. Davis 1 Introduction In Physics 215AB, you learned non-relativistic quantum mechanics, e.g., Schrödinger equation, E = p2 2m

More information

CYK\2009\PH102\Tutorial 10

CYK\2009\PH102\Tutorial 10 CYK\2009\PH02\Tutorial 0 Physics II. [G 6.3] Find the force of attraction between two magnetic dipoles, m and m 2, oriented as shown in the Fig., a distance r apart, (a) using F = 2πIRB cos θ, and (b)

More information

Übungen zur Elektrodynamik (T3)

Übungen zur Elektrodynamik (T3) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. vo Sachs SoSe 8 Übungen zur Elektrodynamik T3 Übungsblatt Bearbeitung: Juni - Juli 3, 8 Conservation of Angular Momentum Consider

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 8, 2018 2:00PM to 4:00PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for

More information

Module II: Relativity and Electrodynamics

Module II: Relativity and Electrodynamics Module II: Relativity and Electrodynamics Lecture 2: Lorentz transformations of observables Amol Dighe TIFR, Mumbai Outline Length, time, velocity, acceleration Transformations of electric and magnetic

More information

Part IB. Electromagnetism. Year

Part IB. Electromagnetism. Year Part IB Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2017 10 Paper 2, Section I 6C State Gauss s Law in the context of electrostatics. A spherically symmetric capacitor consists

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors:

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors: Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions Reading: Carroll, Ch. 3 1. Derive the explicit expression for the components of the commutator (a.k.a. Lie bracket): [X, Y ] u = X λ λ Y µ Y λ λ

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

Note 1: Some Fundamental Mathematical Properties of the Tetrad.

Note 1: Some Fundamental Mathematical Properties of the Tetrad. Note 1: Some Fundamental Mathematical Properties of the Tetrad. As discussed by Carroll on page 88 of the 1997 notes to his book Spacetime and Geometry: an Introduction to General Relativity (Addison-Wesley,

More information

Physics 2135 Exam 3 April 18, 2017

Physics 2135 Exam 3 April 18, 2017 Physics 2135 Exam 3 April 18, 2017 Exam Total / 200 Printed Name: Rec. Sec. Letter: Solutions for problems 6 to 10 must start from official starting equations. Show your work to receive credit for your

More information

Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Covariant Geometry - We would like to develop a mathematical framework

More information

Part II. Electrodynamics. Year

Part II. Electrodynamics. Year Part II Electrodynamics Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 38 Paper 1, Section II 35D Electrodynamics In some inertial reference frame S, there is a uniform electric

More information

Short Introduction to (Classical) Electromagnetic Theory

Short Introduction to (Classical) Electromagnetic Theory Short Introduction to (Classical) Electromagnetic Theory (.. and applications to accelerators) (http://cern.ch/werner.herr/cas2018 Archamps/em1.pdf) Reading Material J.D. Jackson, Classical Electrodynamics

More information

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes. Relativistic Electrodynamics An inertial frame = coordinate system where Newton's 1st law of motion - the law of inertia - is true. An inertial frame moves with constant velocity with respect to any other

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 4 Relativistic Dynamics The most important example of a relativistic particle moving in a potential is a charged particle, say an electron, moving in an electromagnetic field, which might be that

More information

Maxwell s equations for electrostatics

Maxwell s equations for electrostatics Maxwell s equations for electrostatics October 6, 5 The differential form of Gauss s law Starting from the integral form of Gauss s law, we treat the charge as a continuous distribution, ρ x. Then, letting

More information

Covariant Electromagnetic Fields

Covariant Electromagnetic Fields Chapter 8 Covariant Electromagnetic Fields 8. Introduction The electromagnetic field was the original system that obeyed the principles of relativity. In fact, Einstein s original articulation of relativity

More information

Physics 217 Practice Final Exam

Physics 217 Practice Final Exam Physics 217 Practice Final Exam Fall 2002 If this were a real exam, you would be reminded here of the exam rules: You may consult only one page of formulas and constants and a calculator while taking this

More information

MIT Course 8.033, Fall 2006, Relativistic Kinematics Max Tegmark Last revised October

MIT Course 8.033, Fall 2006, Relativistic Kinematics Max Tegmark Last revised October MIT Course 8.33, Fall 6, Relativistic Kinematics Max Tegmark Last revised October 17 6 Topics Lorentz transformations toolbox formula summary inverse composition (v addition) boosts as rotations the invariant

More information

A half submerged metal sphere (UIC comprehensive

A half submerged metal sphere (UIC comprehensive Problem 1. exam) A half submerged metal sphere (UIC comprehensive A very light neutral hollow metal spherical shell of mass m and radius a is slightly submerged by a distance b a below the surface of a

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H =

For the magnetic field B called magnetic induction (unfortunately) M called magnetization is the induced field H called magnetic field H = To review, in our original presentation of Maxwell s equations, ρ all J all represented all charges, both free bound. Upon separating them, free from bound, we have (dropping quadripole terms): For the

More information

Multipole Fields in the Vacuum Gauge. June 26, 2016

Multipole Fields in the Vacuum Gauge. June 26, 2016 Multipole Fields in the Vacuum Gauge June 26, 2016 Whatever you call them rubber bands, or Poincaré stresses, or something else there have to be other forces in nature to make a consistent theory of this

More information

Question 1: Some algebra

Question 1: Some algebra October 13, 017 Cornell University, Department of Physics PHYS 337, Advance E&M, HW # 6, due: 10/4/017, 11:15 AM Question 1: Some algebra 1. Prove the vector identity used in lecture to derive the energy

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information