Magnetic Force on Current Carrying Wires

Size: px
Start display at page:

Download "Magnetic Force on Current Carrying Wires"

Transcription

1 Purpose: To explore the magnetic force exerted on a current-carrying wire, and how it varies with current, length, magnetic field and angle. Equipment: Basic Current Balance and Accessory Quadruple-Beam Gram Balance DIGI Power Supply DMM Patch cords Theory: Magnetism is a phenomenon that has been known, if not understood, for thousands of years. The term magnetism comes from the region of Magnesia (once a province of Greece, now a part of Turkey) where certain stones were found that had the property of attracting pieces of iron. These stones, called lodestones, were also known by the Chinese who fashioned them into navigational compasses in the twelfth century. In the late 1500 s, William Gilbert, later principal physician to Queen Elizabeth, made artificial magnets by rubbing a lodestone against a piece of iron. He also was the first to suggest that the Earth itself was a very large magnet, the source of the compass s tendency to align itself North to South. In 1750, John Michell, a geologist/astronomer who invented the torsional balance through his study of earthquakes and who also predicted the existence of black holes, published a treatise on magnetism in which he showed that magnetic poles obey an inverse-square law (as does the force of gravity). The Greeks also had an understanding of the rudiments of electrical theory. In fact, the word electron comes from the Greek word for amber. Studying amber, they found that when they rubbed it with a cloth, it was able to attract small bits of things, like straw. The same William Gilbert discovered other materials with the strange properties of amber...he called them electrics. Gilbert also defined as separate the similar phenomena of static electrical attraction from that of magnetic attraction. Stephen Gray, in the early 1700 s, was the first to show that the electrical attraction (or effluvia as it was called then...electricity was considered at that time to be a fluid) may be transmitted through an object: many objects were tried, including cork, various metals, green vegetables, and his students. This was the first indication of an electric current. 1 of 8

2 Stephen Gray, in 1729, discovered that the electric force, made by rubbing glass, could be sent for long distances over a wire. The electricity could, thus, be separated from the rubbed bodies and wasn't an exclusive property of some material. The figure shows that the electric force of a rubbed glass could be sent, through a wire, to the body of a person. There is not a direct contact. REF: Benjamin Franklin also made great advances in the study of electricity, particularly in linking the natural phenomenon of lightning to the small electric sparks produced in laboratory. He is remembered in the terminology we use today; positive and negative, plus and minus, battery, armature, charge, condensor and conductor. In April of 1820 Hans Christian Ørsted, a professor of Physics at the University of Copenhagen, Denmark, made an accidental discovery that re-linked the electric and magnetic theory. One of the many stories has it that the technician in charge of setting-up and dismantling lecture demonstrations was slacking one day, and while he put out the equipment for the day s demo in magnetism, he did not remove the electrical equipment from the previous lecture period. Ørsted attempted to work around the electrical wires, some of which were still hooked up and had current flowing through them. When he brought a magnetic compass near one of the live wires, he found that the needle turned and pointed toward the wire. In further investigations, he found that a live wire will be deflected in the presence of a magnetic field, which led the way to the development of the electric motor. Though excited about his discoveries, he left the further investigation of the connection between electricity and magnetism to others, particularly one André-Marie Ampère. Ørsted went on with work in other areas of physics and chemistry, particularly the first preparation of metallic aluminum in You can hear a nice little song about him at the following website: Ampère made his living primarily as a professor of Mathematics, though his interests ranged to physics, metaphysics, chemistry and poetry. In the early 1820s he expanded on Ørsted s discovery, able to quantify the effect, and put forth an explanation. An electric current, he said, is the source of a magnetic field, just as an electric charge is 2 of 8

3 the source of an electric field. The magnetic field, B, around a wire is proportional to the current flowing through the wire, and curls around the wire according to the right-handrule. He also demonstrated that two current-carrying wires will attract or repel each other depending on the relative directions of current. Such an experiment, of which ours is a modification, is often called Ampère s Experiment. Another nice little song, this one about Ampère s Law, can be found here: The interaction between a moving charge and a magnetic field can be described by the force relationship: r r r F = qv B where q is the magnitude of the moving charge, v is the velocity of the moving charge, and B is the magnetic field. For a segment of wire of length ds carrying a current I, the force can be derived from the relationship above by letting dq I = dq = Idt dt ds v = dt r r r r r r F = qv B df = dqv B r v ds r v r df = Idt B = Ids B dt This relationship can then be integrated over a given length of wire to determine the force. If ds and B are perpendicular to each other, then a wire of length L in a magnetic field B, experiences a force described as: r r r F = IL B which reduces to F = ILB Using this relationship, it is easy to see that the SI unit of magnetic field strength, the Tesla is related to the current (Amp) and the length of the wire (Meter) by: 1N 1T = Amp m So how are we going to measure the force on a current-carrying wire imprinted on a circuit board, such as we have amongst our equipment? Unfortunately, there is no good direct method (that I know of). But luckily, the laws of Newtonian Physics you learned long ago still apply to today s topics! Remember specifically Newton s Third Law: If two bodies interact, the force exerted on body 1 by body 2 is equal in magnitude but opposite in direction to the force exerted on body 2 by body 1. F 12 = -F of 8

4 Thus, if a magnetic field exerts a force on a current-carrying wire, the current-carrying wire (or, more accurately, the B-field created by the current) exerts a force back on the original magnetic field (or, more accurately, the magnets, current-carrying wire, or whatever happens to be producing the magnetic field). Instead of measuring the force exerted on the wire, we will measure the force exerted on a small bank of magnets, knowing with full confidence that these two forces are equal in magnitude. Still, you may ask, how are we going to measure the (presumably smallish) force exerted by the current-carrying wire on the stack of magnets? Surely the force produced is too small to accelerate the magnets across the table (and then we d have to account for friction, of course). There must be an easier way Hopefully, back in Physics 8A or in Physics 8C you did the experiment on Archimedes Principle. If not, hopefully you at least discussed it in class. Why is this applicable, you ask? Remember that in the Archimedes lab we measured the mass (weight) of a dry object in air, then measured the mass (weight) of that same object while submerged in water. The mass (weight) appeared to be less when the object was submerged, right? This is because the buoyant force exerted on the object by the water is in the upward (opposite to gravity) direction. If we orient the magnets and wire such that the force between them is exerted in the vertical direction, we can measure the apparent change in mass of the magnets either greater or smaller, depending on whether the force is attractive or repulsive, depending upon the direction of the current through the wire. Since we know that the mass of the magnets does not actually increase or decrease, we can interpret this change in mass as a secondary force acting on the magnets. We can determine the magnitude of the force by multiplying the change in mass, m, by the gravitational acceleration constant, g = 9.8 m/s 2. Remember: what we call your weight is simply the magnitude of the force of gravity acting upon your mass: F g = W = mg where g =.8 m 2 9 s Thus, we will set our bank of magnets on a gram-sensitive quadruple-beam balance. We will suspend the circuit-board such that the printed section runs between the north and south poles of the magnets. We will then run a current through the wire, exerting a force on the magnets, and we will measure that force by: F = m g = ( m. m g. magnets measured no current current ) 1 1 The theory for this lab was written by Jennifer LK Whalen 4 of 8

5 Experiment: main unit current loop quadruple-beam balance lab stand Figure 1 Part A: Force vs. Current 1. Set up the apparatus as shown in Figure 1. NOTE: You do not need to add additional resistance for this set-up to work! DO NOT hook up a resistance box everything is fine the way it is written. 2. Determine the mass of the magnet holder and magnets with no current flowing. Record this value as m Set the current to 0.5 amp. Determine the new mass of the magnet assembly. Record this value as m(c). 4. Subtract m 0 from m(c). Record this value as m(c). 5. Repeat Steps 3 & 4, increasing the current in 0.25 amp increments until you have reached the maximum possible current. Part B: Force vs. Length of Wire 1. Set up the apparatus as in Figure With no current flowing, determine the mass of the magnet assembly. Record this value as m Determine the length of the conductive foil on the current loop. Record this value as l. 4. Set the current to 2.0 amps. Determine the new mass of the magnet assembly. Record this value as m(l). 5. Subtract m 0 from m(l). Record this value as m(l). 6. Turn the current off. Remove the current loop and replace it with another. Repeat Steps 3-5 until you have used all available current loops. Part C: Force vs. Magnetic Field 1. Set up the apparatus as shown in Figure Mount a single magnet in the center of the holder. 3. With no current flowing, determine the mass of the magnet assembly. Record this value as m(n). 4. Set the current to 2.0 amps. Determine the new mass of the magnet assembly. Record this value as m(n,c). 5. Subtract m(n) from m(n,c) and record this difference as m(n). 5 of 8

6 6. Add additional magnets, one at a time. (Make sure that all the North Poles of the magnets are on the same side of the assembly). Each time you add a magnet, repeat Steps 3-5. main unit accessory unit lab stand Figure 2 Part D: Force vs. Angle 1. Set up the apparatus as shown in Figure Determine the mass of the magnet assembly. Record this value as m Set the angle of the accessory unit to 0 o with the direction of the coil of wire approximately parallel to the magnetic field. Set the current to 1.0 amp. Determine the new mass of the magnet assembly. Record this value as m(θ). 4. Subtract m 0 from m(θ) and record this difference as m(θ). 5. Increase the angle in 5 o increments up to 90 o, and then in 5 o increments to 90 o. At each angle repeat the mass/force measurement. Analysis: Part A: Force vs. Current 1. Multiply m(c) by g to get the force acting on the magnets, F(c). 2. Plot a graph of F(c) vs. current. 3. What is the nature of the relationship between these two variables? What does this tell us about how changes in the current will affect the force acting on a wire that is inside a magnetic field? 4. Decide what equation governs this relationship, and use the slope of your graph to quantitatively verify this relationship within experimental uncertainties. Part B: Force vs. Length of Wire 1. Multiply m(l) by g got get the force acting on the magnets, F(l). 2. Plot a graph of F(l) vs. l. 3. What is the nature of the relationship between these two variables? What does this tell us about how changes in the length of a current-carrying wire will affect the force that it feels when it is in a magnetic field? 4. Decide what equation governs this relationship, and use the slope of your graph to quantitatively verify this relationship within experimental uncertainties. 6 of 8

7 5. Using the slopes of the Force vs. Current and Force vs. Length of Wire, determine a value of the magnetic field, B. Part C: Force vs. Magnetic Field 1. Multiply m(n) by g to get the force acting on the magnets, F(n). 2. Plot a graph of F(n) vs. n. 3. What is the relationship between these two variables? How does the number of magnets affect the force between a current-carrying wire and a magnetic field? 4. Is it reasonable to assume that the strength of the magnetic field is directly proportional to the number of magnets? 5. What would happen if one of the magnets were put into the assembly backwards, with its north pole next to the other magnets south poles? If there is time, try it. 6. Decide what equation governs this relationship, and use the slope of your graph to quantitatively verify this relationship within experimental uncertainties. Part D: Force vs. Angle 1. Multiply m(θ) by g to get the force acting on the magnets, F(θ). 2. Plot a graph of F(θ) vs. θ. 3. What is the relationship between these two variables? How do changes in the angle between the current and the magnetic field affect the force acting between them? 4. What angle produces the greatest force? 5. What angle produces the least force? Length of Wire Loops Current Loop SF 40 SF 37 SF 39 SF 38 SF 41 SF 42 Length 1.2 cm 2.2 cm 3.2 cm 4.2 cm 6.4 cm 8.4 cm Results: Write at least one paragraph describing the following: what you expected to learn about the lab (i.e. what was the reason for conducting the experiment?) your results, and what you learned from them Think of at least one other experiment might you perform to verify these results Think of at least one new question or problem that could be answered with the physics you have learned in this laboratory, or be extrapolated from the ideas in this laboratory. 7 of 8

8 Clean-Up: Before you can leave the classroom, you must clean up your equipment, and have your instructor sign below. How you divide clean-up duties between lab members is up to you. Clean-up involves: Completely dismantling the experimental setup Removing tape from anything you put tape on Drying-off any wet equipment Putting away equipment in proper boxes (if applicable) Returning equipment to proper cabinets, or to the cart at the front of the room Throwing away pieces of string, paper, and other detritus (i.e. your water bottles) Shutting down the computer Anything else that needs to be done to return the room to its pristine, pre lab form. I certify that the equipment used by has been cleaned up. (student s name),. (instructor s name) (date) 8 of 8

Magnetic Force on Current Carrying Wires

Magnetic Force on Current Carrying Wires Purpose: To explore the magnetic force exerted on a current-carrying wire, and how it varies with current, length, magnetic field and angle. Equipment: Basic Current Balance and Accessory Quadruple-Beam

More information

Transverse Traveling Waves

Transverse Traveling Waves Purpose: To observe and study the behavior of standing transverse waves and to determine the speed of standing and traveling waves. Equipment: Cenco String Vibrator Hooked Mass Set Pulley Table Clamp String

More information

Newton's Laws and Atwood's Machine

Newton's Laws and Atwood's Machine Newton's Laws and Atwood's Machine Purpose: In this lab we will verify Newton's Second Law of Motion within estimated uncertainty and propose an explanation if verification is not within estimated uncertainty.

More information

Magnetic Fields. Physics 4B

Magnetic Fields. Physics 4B Physics 4B The term magnetism comes from the region of Magnesia, a province of Greece where certain stones were found by the Greeks more than 2000 years ago. Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide

More information

In a radioactive source containing a very large number of radioactive nuclei, it is not

In a radioactive source containing a very large number of radioactive nuclei, it is not Simulated Radioactive Decay Using Dice Nuclei Purpose: In a radioactive source containing a very large number of radioactive nuclei, it is not possible to predict when any one of the nuclei will decay.

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism From Parlor Games to Maxwell s Equations Electrical children, 1748 E & M as finalized physics Four moments in any topic of physics Identify the relevant phenomena Quantity relevant

More information

MAGNETIC FIELDS. - magnets have been used by our species for thousands of years. - for many of these years we had no clue how they worked:

MAGNETIC FIELDS. - magnets have been used by our species for thousands of years. - for many of these years we had no clue how they worked: MAGNETIC FIELDS A SHORT HISTORY OF MAGNETS: - magnets have been used by our species for thousands of years - for many of these years we had no clue how they worked: 200 BC an ancient civilization in Asia

More information

Joy of Science Discovering the matters and the laws of the universe

Joy of Science Discovering the matters and the laws of the universe Joy of Science Discovering the matters and the laws of the universe Key Words Universe, Energy, Quantum mechanics, Chemical reaction, Structure of matter Unless otherwise noted, copied pictures are taken

More information

Physics 10. Lecture 24A. "When you feel bad about yourself you reverse your magnet and repel people." --S A Grafio

Physics 10. Lecture 24A. When you feel bad about yourself you reverse your magnet and repel people. --S A Grafio Physics 10 Lecture 24A "When you feel bad about yourself you reverse your magnet and repel people." --S A Grafio History of Magnets Magnets were discovered by early man. Asia Minor has region known as

More information

Experiment 6: Magnetic Force on a Current Carrying Wire

Experiment 6: Magnetic Force on a Current Carrying Wire Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of

More information

Magnetic Force http://www-spof.gsfc.nasa.gov/education/imagnet.html The ancient Greeks, originally those near the city of Magnesia, and also the early Chinese knew about strange and rare stones (possibly

More information

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

More information

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 29 Lecture RANDALL D. KNIGHT Chapter 29 The Magnetic Field IN THIS CHAPTER, you will learn about magnetism and the magnetic field.

More information

Experiment 19: The Current Balance

Experiment 19: The Current Balance Experiment 19: The Current Balance Figure 19.1: Current Balance Arrangement for Varying Current or Length From Left to Right: Power Supply, Current Balance Assembly, Ammeter (20A DCA scale, 20A jack).

More information

2 The science of electricity and magnetism

2 The science of electricity and magnetism 1 Introduction Electromagnetism is one of the fundamental interactions in nature. Its physical origin lies in a property possessed by elementary particles of matter electrons and protons called electric

More information

Frames of Reference, Energy and Momentum, with

Frames of Reference, Energy and Momentum, with Frames of Reference, Energy and Momentum, with Interactie Physics Purpose: In this lab we will use the Interactie Physics program to simulate elastic collisions in one and two dimensions, and with a ballistic

More information

Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course

Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS electricity and magnetism. 5.1 Recognize that an electric charge tends to be static on insulators

More information

ELECTRICITY. This chain is similar to the fire fighter's bucket brigades in olden times. But

ELECTRICITY. This chain is similar to the fire fighter's bucket brigades in olden times. But ELECTRICITY Electricity figures everywhere in our lives. Electricity lights up our homes, cooks our food, powers our computers, television sets, and other electronic devices. Electricity from batteries

More information

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Section 11: Magnetic Fields and Induction (Faraday's Discovery) Section 11: Magnetic Fields and Induction (Faraday's Discovery) In this lesson you will describe Faraday's law of electromagnetic induction and tell how it complements Oersted's Principle express an understanding

More information

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Section 11: Magnetic Fields and Induction (Faraday's Discovery) Section 11: Magnetic Fields and Induction (Faraday's Discovery) In this lesson you will describe Faraday's law of electromagnetic induction and tell how it complements Oersted's Principle express an understanding

More information

LAB 5: MAGNETISM. Force on a magnet due to a current carrying wire

LAB 5: MAGNETISM. Force on a magnet due to a current carrying wire 1 LAB 5: MAGNETISM Force on a magnet due to a current carrying wire 2 In this lab you will investigate one possible method of measuring the forces that a magnet and a current carrying wire exert on each

More information

Static Electricity. (A Qualitative Study of Electrostatics using Sticky Tape)

Static Electricity. (A Qualitative Study of Electrostatics using Sticky Tape) Goals: (A Qualitative Study of Electrostatics using Sticky Tape) To become familiar with basic electrostatic phenomena To learn the charge model and learn to apply it to conductors and insulators To understand

More information

What are some properties of interactions involving electrified objects?

What are some properties of interactions involving electrified objects? UNIT SE Developing Ideas ACTIVITY 1: Exploring Static Electric Effects Purpose In the previous unit you explored some magnetic effects and then went on to develop a model that explains these effects in

More information

1 Basic electromagnetism

1 Basic electromagnetism 1 Basic electromagnetism 1.1 Introduction Two thousand years ago, the Chinese invented the compass, a special metallic needle with one end always pointing to the North Pole. That was the first recorded

More information

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments Learning Outcomes from Last Time Class 3 Electrostatic Forces Physics 106 Winter 2018 Press CTRL-L to view as a slide show. You should be able to answer these questions: What is science? What is physics?

More information

Physics 202: Lecture 8, Pg 1

Physics 202: Lecture 8, Pg 1 Physics 132: Lecture e 18 Elements of Physics II Agenda for Today Magnets and the Magnetic Field Magnetic fields caused by charged particles B-field from a current-carrying carrying wire Magnetic fields

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES 83 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES OVERVIEW And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

Chapter 27 Magnetic Fields and Magnetic Forces

Chapter 27 Magnetic Fields and Magnetic Forces Chapter 27 Magnetic Fields and Magnetic Forces In this chapter we investigate forces exerted by magnetic fields. In the next chapter we will study the sources of magnetic fields. The force produced by

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism S8P5. Students will recognize the characteristics of gravity, electricity, and magnetism as major kinds of forces acting in nature. b. Demonstrate the advantages and disadvantages

More information

Lab 7: Magnetism Introduction Magnets need no introduction (i.e. introduction to be added in future revision).

Lab 7: Magnetism Introduction Magnets need no introduction (i.e. introduction to be added in future revision). CSUEB Physics 1780 Lab 7: Magnetism Page 1 Lab 7: Magnetism Introduction Magnets need no introduction (i.e. introduction to be added in future revision). Experiments The purpose of these experiments is

More information

Lesson 9: Products of Electricity

Lesson 9: Products of Electricity Magnetism and Electricity -> 9: Products of Electricity Getting Started? Big Ideas P What does electrical power produce? P How is electrical power produced? Lesson 9: Products of Electricity & Facts and

More information

Electricity (& Magnetism)

Electricity (& Magnetism) EA Notes (Scen 101), Tillery Chapter 6 Electricity (& Magnetism) Introduction First five chapters are "Newtonian Physics", mechanical explanations based on Newton's Laws applied to explain the motion of

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Electricity and Magnetism Module 6 Student Guide

Electricity and Magnetism Module 6 Student Guide Concepts of this Module Electricity and Magnetism Module 6 Student Guide Interactions of permanent magnets with other magnets, conductors, insulators, and electric charges. Magnetic fields of permanent

More information

Basic electromagnetism and electromagnetic induction

Basic electromagnetism and electromagnetic induction Basic electromagnetism and electromagnetic induction This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Current Electricity refers to

Current Electricity refers to Unit 3 Fields Graviational, Electrical, Magnetic Review of Grade 11 Electrostatics Review of Matter 1. All matter is composed of or Our ideas about the nature of atoms have progressed over the last two

More information

TOPIC 4.4: ELECTROMAGNETISM

TOPIC 4.4: ELECTROMAGNETISM TOPIC 4.4: ELECTROMAGNETISM The student will be able to: S3P-4-25: S3P-4-26: S3P-4-27: S3P-4-28: S3P-4-29: S3P-4-30: S3P-4-31: S3P-4-32: Describe and demonstrate the phenomenon of electromagnetism. Diagram

More information

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I Physics 12 Unit 8 Magnetic Field and Electromagnetism Part I 1. Basics about magnets Magnets have been known by ancient people since long time ago, referring to the iron-rich rocks, called magnetite or

More information

Chapter 4: The electromagnetic Interaction. Quizlet. Early observations. Lightning

Chapter 4: The electromagnetic Interaction. Quizlet. Early observations. Lightning Chapter 4: The electromagnetic Interaction Quizlet P2: When you run a hard rubber comb through your hair on a dry day, the hair stands up. It is also attracted to the comb. What interaction is at work?

More information

Science 265 Fun with Tape!

Science 265 Fun with Tape! Science 265 Fun with Tape! Challenge At the end of this lab you are to answer the question that follows. Please keep it in mind as you explore static electricity today. The question: Is a thin stream of

More information

Electromagnetism and Light

Electromagnetism and Light Electromagnetism and Light Monday Properties of waves (sound and light) interference, diffraction [Hewitt 12] Tuesday Light waves, diffraction, refraction, Snell's Law. [Hewitt 13, 14] Wednesday Lenses,

More information

E & M Magnetism History

E & M Magnetism History E & M magnetism E & M Magnetism History Thales studied lodestone ~590 B.C. Socrates played with lodestone ~750 B.C. ~ 1 A.D. Greek Shepherd Magnus found stones. Magnetite / Lodestone Fe 3 O 4 ~1000 A.C.

More information

Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lesson Plan: Electric Circuits (~130 minutes) Concepts Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of

More information

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity.

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. Electrostatics 1 History The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. 2 ELECTROSTATICS the study of electric charges, forces

More information

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism HIGH SCHOOL SCIENCE Physical Science 7: Electricity & Magnetism WILLMAR PUBLIC SCHOOL 2013-2014 EDITION CHAPTER 7 Electricity & Magnatism In this chapter you will: 1. Analyze factors that affect the strength

More information

Electricity MR. BANKS 8 TH GRADE SCIENCE

Electricity MR. BANKS 8 TH GRADE SCIENCE Electricity MR. BANKS 8 TH GRADE SCIENCE Electric charges Atoms and molecules can have electrical charges. These are caused by electrons and protons. Electrons are negatively charged. Protons are positively

More information

Fundamentals of Circuits I: Current Models, Batteries & Bulbs

Fundamentals of Circuits I: Current Models, Batteries & Bulbs Name: Lab Partners: Date: Pre-Lab Assignment: Fundamentals of Circuits I: Current Models, Batteries & Bulbs (Due at the beginning of lab) 1. Explain why in Activity 1.1 the plates will be charged in several

More information

Conceptual Physics. Chapter 24: MAGNETISM

Conceptual Physics. Chapter 24: MAGNETISM Conceptual Physics Chapter 24: MAGNETISM Magnetism The term magnetism comes from the name Magnesia, a coastal district of ancient Thessaly, Greece. Unusual stones, called lodestones, were found by the

More information

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b)

Static Equilibrium. Theory: The conditions for the mechanical equilibrium of a rigid body are (a) (b) LPC Physics A 00 Las Positas College, Physics Department Staff Purpose: To etermine that, for a boy in equilibrium, the following are true: The sum of the torques about any point is zero The sum of forces

More information

Science 265 Fun with Tape!

Science 265 Fun with Tape! Science 265 Fun with Tape! Challenge At the end of this lab you are to answer the question that follows. Please keep it in mind as you explore static electricity today. The question: Is a thin stream of

More information

Chapter 20 Lecture Notes

Chapter 20 Lecture Notes Chapter 20 Lecture Notes Physics 2424 - Strauss Formulas: B = µ 0 I/2πr B = Nµ 0 I/(2R) B = µ 0 ni Σ B l = µ 0 I F = Bqv sinθ r = mv/bq m = (er 2 /2V) B 2 F = ILB sinθ τ = NIAB sinϕ F/L = I 2 I 1 µ 0 /2πd

More information

Fun with Tape! Discuss with your group: what you know about electrical charges? Summarize the keys ideas below.

Fun with Tape! Discuss with your group: what you know about electrical charges? Summarize the keys ideas below. Fun with Tape! Name: Group: NOTE: All the activities involving Scotch tape requires properly charged tape. After you peel the tape off, handle it carefully. Try not to touch them with other objects, especially

More information

Magnetic Fields Permanent Magnets

Magnetic Fields Permanent Magnets 1 Magnetic Fields Permanent Magnets Magnetic fields are continuous loops leaving a North pole and entering a South pole they point in direction that an isolated North would move Highest strength near poles

More information

Lab 5. Current Balance

Lab 5. Current Balance Lab 5. Current Balance Goals To explore and verify the right-hand rule governing the force on a current-carrying wire immersed in a magnetic field. To determine how the force on a current-carrying wire

More information

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2. Magnetic flux Magnetic flux is a measure of the number of magnetic field lines passing through something, such as a loop. If we define the area of the loop as a vector, with its direction perpendicular

More information

Welcome to Physics 122

Welcome to Physics 122 Welcome to Physics 122 122A: Paul A. Wiggins 122B: Miguel Morales 122C: Arka Majumdar Content: Electricity & Magnetism Here Format: Active Learning (Learn from Participation)» PreLectures & Checkpoints

More information

Lecture 8 Magnetic Fields Chp. 29

Lecture 8 Magnetic Fields Chp. 29 Lecture 8 Magnetic Fields Chp. 29 Cartoon Magnesia, Bar Magnet with N/S Poles, Right Hand Rule Topics Magnetism is likable, Compass and diclinometer, Permanent magnets Magnetic field lines, Force on a

More information

MAGNETISM. B.Directions: Answer the following questions with a short answer. You may use the back of this sheet if you need more space.

MAGNETISM. B.Directions: Answer the following questions with a short answer. You may use the back of this sheet if you need more space. 1 Pre-Test A. Directions: Circle the word or phrase that completes the sentence. 1. If two bar magnets are brought near each other and they repel, then the poles of the magnets are the same. the poles

More information

UNIT 102-4: MAGNETIC FIELDS Approximate Time three 100-minute Sessions

UNIT 102-4: MAGNETIC FIELDS Approximate Time three 100-minute Sessions Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-4: MAGNETIC FIELDS Approximate Time three 100-minute Sessions To you alone... who seek knowledge, not from books only, but also from things themselves,

More information

Transmission line demo to illustrate why voltage along transmission lines is high

Transmission line demo to illustrate why voltage along transmission lines is high Transmission line demo to illustrate why voltage along transmission lines is high Connect to step down transformer 120V to 12V to lightbulb 12 V 6.5 A Lights up brightly Connect it to long fat wires Lights

More information

Transfer of Forces Classwork

Transfer of Forces Classwork Transfer of Forces Classwork 1. Describe what a force is. 2. List at least four forces that are observed in nature. 3. How are forces transferred between two objects if they are not in contact? 4. Describe

More information

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated.

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated. Rotational Motion 1 Purpose The main purpose of this laboratory is to familiarize you with the use of the Torsional Harmonic Oscillator (THO) that will be the subject of the final lab of the course on

More information

Outline Chapter 6 Electricity and Magnetism Positive and Negative Charge Positive and Negative Charge

Outline Chapter 6 Electricity and Magnetism Positive and Negative Charge Positive and Negative Charge Outline Chapter 6 Electricity and Magnetism 6-1. Positive and Negative Charge 6-2. What is Charge? 6-3. Coulomb s Law 6-4. Force on an Uncharged Object 6-5. Matter in Bulk 6-6. Conductors and Insulators

More information

Review of Static Electricity

Review of Static Electricity Name: Block: Date: IP 614 Review of Static Electricity Central Concept: Stationary and moving charged particles result in the phenomena known as electricity and magnetism. 5.1 Recognize that an electric

More information

Electrostatics II. Introduction

Electrostatics II. Introduction Electrostatics II Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their separation

More information

Pre-Lab Questions. Physics 1BL MAGNETISM Spring 2010

Pre-Lab Questions. Physics 1BL MAGNETISM Spring 2010 In this lab, you will focus on the concepts of magnetism and magnetic fields and the interaction between flowing charges (electric current) and magnetic fields. You will find this material in Chapter 19

More information

Introduction to Electromagnetism

Introduction to Electromagnetism Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.

More information

Electromagnetic Theory PHYS 401/402

Electromagnetic Theory PHYS 401/402 Electromagnetic Theory PHYS 401/402 Fall 2017 Lalith Perera, lpperera@olemiss.edu Office: Kennon 1 Office hours: M,Tu Th 3:00-4:00 PM Web page: http://www.phy.olemiss.edu/~perera/em 1 Electromagnetic Theory

More information

SCIENCE 1206 STATIC ELECTRICITY

SCIENCE 1206 STATIC ELECTRICITY SCIENCE 1206 STATIC ELECTRICITY CONTENTS I. ELECTRIC CHARGES.................... 2 THE NATURE OF CHARGES......................... 2 THE TRANSFER OF CHARGES....................... 8 II. ELECTRIC FIELDS......................

More information

Lesson 1: Forces. Fascinating Education Script Fascinating Intro to Chemistry Lessons. Slide 1: Introduction. Slide 2: Forces

Lesson 1: Forces. Fascinating Education Script Fascinating Intro to Chemistry Lessons. Slide 1: Introduction. Slide 2: Forces Fascinating Education Script Fascinating Intro to Chemistry Lessons Lesson 1: Forces Slide 1: Introduction Slide 2: Forces Hi. My name is Sheldon Margulies, and we re about to learn what things are made

More information

Lab 4, part one: Electric and magnetic fields

Lab 4, part one: Electric and magnetic fields Astronomy 102 Name: Lab 4, part one: Electric and magnetic fields Learning outcome: Ultimately, to understand how a changing electric field induces a magnetic field, and how a changing magnetic field induces

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

LAB: FORCE AND MOTION

LAB: FORCE AND MOTION LAB: FORCE AND MOTION Introduction In this lab we will apply a force to a cart and look at the motion that results. Therefore, we are asking the question: "How does the motion depend on the force?" More

More information

LAB 3: VELOCITY AND ACCELERATION

LAB 3: VELOCITY AND ACCELERATION Lab 3 - Velocity & Acceleration 25 Name Date Partners LAB 3: VELOCITY AND ACCELERATION A cheetah can accelerate from to 5 miles per hour in 6.4 seconds. A Jaguar can accelerate from to 5 miles per hour

More information

4.7 Magnetism and electromagnetism

4.7 Magnetism and electromagnetism 4.7 Magnetism and electromagnetism Electromagnetic effects are used in a wide variety of devices. Engineers make use of the fact that a magnet moving in a coil can produce electric current and also that

More information

A little history. Electricity and Magnetism are related!

A little history. Electricity and Magnetism are related! Intro to Magnetism A little history Until the early 19 th century, scientists thought electricity and magnetism were unrelated In 1820, Danish science professor Hans Christian Oersted was demonstrating

More information

General Physics (PHYS )

General Physics (PHYS ) General Physics (PHYS ) Chapter 22 Magnetism Magnetic Force Exerted on a current Magnetic Torque Electric Currents, magnetic Fields, and Ampere s Law Current Loops and Solenoids Magnetism in Matter Magnetism

More information

Introduction to the Concepts: Historical Perspective

Introduction to the Concepts: Historical Perspective Static Electricity An awareness of static or electrostatic charge dates back to the Greek scientist Thales of Miletus, 600 b.c. W e are all familiar with the effects of walking across a carpet and touching

More information

Magnetic Attraction and Electromagnetism. Spring 2011

Magnetic Attraction and Electromagnetism. Spring 2011 Magnetic Attraction and Electromagnetism Spring 2011 The Nature of Magnetism Magnets are found everywhere doorbells, TV s, computers Magnets were discovered in a region in Greece called.you guessed it

More information

Electrostatics: Coulomb's Law

Electrostatics: Coulomb's Law Electrostatics: Coulomb's Law Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their

More information

Electromagnetism Question 1 What influences the strength of an electromagnet? What property does a needle inside a compass possess?

Electromagnetism Question 1 What influences the strength of an electromagnet? What property does a needle inside a compass possess? Electromagnetism Question 1 What influences the strength of an electromagnet? What property does a needle inside a compass possess? Magnet Since a magnet repels and attracts it. What affect does increased

More information

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law AP Physics C Unit 11: Electromagnetic Induction Part 1 - Faraday s Law and Lenz s Law What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in

More information

Electromagnetism. Electricity Electromagnetism Magnetism Optics. In this course we are going to discuss the fundamental concepts of electromagnetism:

Electromagnetism. Electricity Electromagnetism Magnetism Optics. In this course we are going to discuss the fundamental concepts of electromagnetism: Electromagnetism Electromagnetism is one of the fundamental forces in nature, and the the dominant force in a vast range of natural and technological phenomena The electromagnetic force is solely responsible

More information

Topic 6.3 Magnetic Force and Field. 2 hours

Topic 6.3 Magnetic Force and Field. 2 hours Topic 6.3 Magnetic Force and Field 2 hours 1 Magnetic Fields A magnetic field is said to exist at a point if a compass needle placed there experiences a force. The appearance of a magnetic field can be

More information

Cabrillo College Physics 10L. LAB 8 Magnetism. Read Hewitt Chapter 24

Cabrillo College Physics 10L. LAB 8 Magnetism. Read Hewitt Chapter 24 Cabrillo College Physics 10L Name LAB 8 Magnetism Read Hewitt Chapter 24 What to learn and explore Magnetic forces are very closely related to electric forces--for example, they share the property that

More information

Electricity in Progress

Electricity in Progress Electricity in Progress GRADE LEVELS: Grades 4th - 8th CONCEPT: Explore the history of electricity through two 15 minutes shows, a 30 minute hands on exploration and a 30 experience in the Progress exhibition

More information

Unit Two Worksheet Matter and Energy WS PS U2

Unit Two Worksheet Matter and Energy WS PS U2 Unit Two Worksheet Matter and Energy WS PS U2 Name Period Section 4.1 Matching. Match the definition with the term that best correlates to it. 1. Chemical potential energy 2. Elastic potential energy 3.

More information

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy

Electric Charge & Force Problems - 1 v Goodman & Zavorotniy Electric Charge Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there? What are

More information

EXPERIMENTAL COMPETITION

EXPERIMENTAL COMPETITION Thursday, April 28 th, 2005 Before attempting to assemble your equipment, read the problem text completely! Please read this first: 1. The time available is 5 hours. 2. Use only the pen and equipments

More information

SCIENCE STUDENT BOOK. 12th Grade Unit 6

SCIENCE STUDENT BOOK. 12th Grade Unit 6 SCIENCE STUDENT BOOK 12th Grade Unit 6 Unit 6 STATIC ELECTRICITY SCIENCE 1206 STATIC ELECTRICITY INTRODUCTION 3 1. ELECTRIC CHARGES 5 THE NATURE OF CHARGES 5 THE TRANSFER OF CHARGES 13 SELF TEST 1 15 2.

More information

The ELECTROMAGNETIC FIELD

The ELECTROMAGNETIC FIELD The ELECTROMAGNETIC FIELD In the year 2003, it is still the case that the most important single scientific development for our world has been the understanding of the EM field. Although many played a role

More information

Unit 3. Electrostatics

Unit 3. Electrostatics Unit 3. Electrostatics Electricity throughout history Even though electricity is present in nature in many ways lightning is probably the most spectacular one, it has not been easy to interpret and understand

More information

MITOCW ocw-18_02-f07-lec02_220k

MITOCW ocw-18_02-f07-lec02_220k MITOCW ocw-18_02-f07-lec02_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions, designed to see whether you understand the main concepts of the chapter. 1. A charged particle is moving with a constant velocity

More information

Physics 115. Magnetism Magnetic fields. General Physics II. Session 26

Physics 115. Magnetism Magnetic fields. General Physics II. Session 26 Physics 115 General Physics II Session 26 Magnetism Magnetic fields R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 1 Lecture Schedule Clicker results page

More information

Electromagnetic Fields

Electromagnetic Fields Electromagnetic Fields Electromagnetic fields are created by items that are charged either positively or negatively. When we say charged, we don t mean that something is only positively charged or only

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle

More information

PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5)

PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5) 1 PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5) Everyone has played with magnets and knows that they stick to some materials and not to others. This lecture explores the physical principles behind

More information

Lightning is an electrostatic discharge that travels between two charged regions.

Lightning is an electrostatic discharge that travels between two charged regions. Electromagnetism From Wikipedia, the free encyclopedia Electromagnetism is a branch of physics which involves the study of the electromagnetic force, a type of physical interaction that occurs between

More information