Limiting High Speed Dynamic Forces on the Track Structure; The Amtrak Acela Case. Allan M. Zarembski Ph.D., PE.; President, ZETA-TECH Associates, Inc.

Size: px
Start display at page:

Download "Limiting High Speed Dynamic Forces on the Track Structure; The Amtrak Acela Case. Allan M. Zarembski Ph.D., PE.; President, ZETA-TECH Associates, Inc."

Transcription

1 Limiting High Speed Dynamic Forces on the Track Structure; The Amtrak Acela Case Allan M. Zarembski Ph.D., PE.; President, ZETA-TECH Associates, Inc. Joseph W. Palese, MCE, PE; Director Analytical Engineering, ZETA-TECH Associates John G. Bell, BSCE, MBA Program Director, High Speed Trainsets, Amtrak Abstract As vehicle operating speeds increase, the dynamic wheel/rail impact forces applied to the track structure likewise increase. This results in the potential for increased track degradation, component failure, and corresponding increased track maintenance costs. In the case of Amtrak s new generation high speed trains, a specific requirement for the design of the new equipment was to avoid any increase in dynamic forces applied to the track in spite of the increase in operating speed from 125 to 150 mph. In order to achieve this, and maintain (or possibly decrease) the dynamic wheel/rail forces, key equipment design characteristics, to include vehicle unsprung mass and suspension characteristics, were evaluated from this point of view. This report describes the process of examining alternative high-speed equipment designs from the perspective of the track structure and the level of dynamic force applied to the track. This includes the process used to evaluate the dynamic wheel/rail forces generated by both the older 125-mph equipment and the new generation high-speed (150-mph) equipment and the comparison between load levels. This also includes the methodology used to evaluate the potential for track damage (e.g. cracking of the concrete ties on the Northeast Corridor) associated with both the older equipment and the new high speed equipment.

2 Introduction and Background As vehicle operating speeds increase, the dynamic wheel/rail impact forces applied to the track structure likewise increase. This is particularly true for high-speed operations, where research shows potential for significant increases in wheel/rail dynamic forces in the higher speed ranges. This results in the potential for increased track degradation, component failure, and corresponding increased track maintenance costs. The challenge facing Amtrak in its introduction of it s new generation high speed trains was to minimize any increase in track maintenance associated with this new equipment as well as minimize any potential increase in damage to the track on the Northeast Corridor. The concrete ties on the corridor were a particular source of concern in light of the tie cracking problems that had been experienced by Amtrak in the 1980s. Noting this potential impact of high speed operations, a specific requirement for the design of the new equipment was to avoid any increase in dynamic vertical wheel/rail forces applied to the track from its current levels, in spite of the proposed increase in operating speed from 125 to 150 mph on the electrified Northeast Corridor. For non-electric (fossil fuel) operations, the criterion was similar, to avoid any increase in dynamic vertical forces from its current levels at operating speeds of up to 90 mph. The baseline loadings, set for current equipment and operations include operation of the AEM7 electric locomotive at 125 mph, the then maximum speed on the Northeast Corridor. The non-electric baseline was set for the F40 diesel locomotive operating at 90 mph. Note, locomotives were used for the baseline analysis because they had the highest axle loads and generated the greatest wheel/rail forces. The proposed vehicles that were analyzed came from three potential vendor teams; the vendor identities are masked in the technical discussion;

3 Consortium consisting of ABB and General Electric Consortium consisting of Siemens, MK, and Fiat Consortium consisting of Bombardier and Alsthom The specific trainset configurations are summarized in Table 1 below showing team, power source [electric (EL) or fossil fuel (FF)] and proposed maximum speed. Table 1 Trainset Fuel Maximum Speed A-1 EL 150 A-2 FF 125 B-1 EL 150 B-2 FF 125 C 1 EL 150 C 2 FF 125 D-1 FF 125 D-2 FF 125 D-3 FF 125 Note, categories A, B and C contain one proposed electric configuration and one proposed fossil fuel configuration from each consortium. The additional proposed configurations were consolidated in category D. Electric powered trainsets (EL) are designed for operation on the Northeast Corridor at speeds of 150 mph. The Fossil Fuel (FF) powered trainsets were for use in non-electrified territory and are designed for speeds of 125 mph. The baseline for the Electric powered trainsets is the AEM7 operating at 125 mph while the baseline for the fossil fuel trainsets is the F40 operating at 90 mph.

4 Analysis Approach As has already been noted, this paper examines the dynamic evaluation of the different configurations of high-speed trainsets for Amtrak and the comparison of the dynamic load levels with the loads generated by existing equipment operating on Amtrak s Northeast Corridor. Specifically, this analysis examines the dynamic impact forces applied by the new high speed trainsets as compared to the existing equipment, and determines whether there is an increase in loading (and thus potential damage) to the track structure. The dynamic impact forces examined are the P 1 and P 2 forces, as illustrated in Figure 1. As can be seen in this Figure, the P 1 force is a high amplitude short duration (high frequency) dynamic impact force, which is usually rapidly attenuated by the track structure. However, in the case of Amtrak s Northeast Corridor track, the P 1 forces are important from the point of view of damage (cracking) of concrete ties, a situation which Amtrak encountered in the late 70s early 1980s and corrected at that time. The P 2 force, on the other hand is a lower amplitude, longer duration (lower frequency) load. Because of its dynamic characteristics, P 2 forces are those forces that contribute most to track degradation, particularly degradation of track geometry, which is the largest maintenance expense on the corridor. Thus, for this evaluation, both the P 1 and P 2 forces were analyzed.

5 Figure 1. P1 and P2 Forces Diagram analysis. The P 1 and P 2 formulas defined by Jenkins in 1974 [1] and Ahlbeck in 1980 [2] were used in this For the P 1 force, the following formula was utilized: P = P + αv Kh M' M' 1+ M u (1) where: P 0 = Static Wheel Load, (lbs) α = Rail Joint Dip Angle, (rad) V = Vehicle Speed, (in/sec) K h = Hertzian Contact Stiffness, (lb/in) M = Effective Mass of Rail and Tie, (lb-sec 2 /in) M u = Unsprung Vehicle Mass, (lb-sec 2 /in) Several of the input variables to the above equation were developed from individual component weights and characteristics using the set of equations listed below, originally developed by Jenkins [1].

6 It should be noted that the Hertzian Contact Stiffness (K h ) was taken as the linearized portion of the deflection equation for two elastic bodies in contact according to Hertzian contact stress theory. Further noting that the value for the dynamic force (P 1 ) is included in the equation for the Hertzian Contact Stiffness (K h ), this results in an iterative approach being necessary for finding the value of P 1. Since the equation converges rapidly, this was found to be a reasonable technique for determining P 1. For the P 2 force, the following formula was utilized: P M 2 t = P + 1 πξ [ 2α V] M + M 2 0 u t K M t u M u M + M u t 1 2 (2) where: P 0 = Static Wheel Load, (lbs) ξ = Track Effective Damping Ratio M t = Effective Track Mass, (lb-sec 2 /in) M u = Unsprung Vehicle Mass, (lb-sec 2 /in) α = Rail Joint Dip Angle, (rad) V = Vehicle Speed, (in/sec) K t = Effective Track Stiffness, (lb/in) As with the P 1 equation, several of the input variables to the above equation were developed from individual component weights and characteristics. The above theoretical formulas were used as the basis for calculating the dynamic impact forces. However, In order to relate these equations to specific Amtrak experience on the Northeast Corridor, actual dynamic wheel impact data from Amtrak s Impact Detector was used to calibrate these equations. Calibration of Dynamic Impact Force Equations: In order to calibrate the dynamic impact force equations, actual wheel load impact data for Amtrak operations on the Northeast Corridor was used. This wheel impact data, which was gathered by Amtrak s Impact Detector, was determined to be representative of the P 1 forces. Therefore the

7 calibration was performed for the P 1 equation. This equation uses vehicle and track specific data as input. The only variable that lends itself to calibration is the Hertzian Contact Stiffness (K h ), which has been the subject of some dispute by various authors. This is illustrated in Table 2 below. Table 2 Method K h (lb/in) Jenkins, Coned Wheel x 10 6 Jenkins, Worn Wheel x 10 6 Roark 8.27 x 10 6 Hertzian Theory 8.76 x 10 6 Ahlbeck x 10 6 Ahlbeck 2, (Joint) 8.93 x 10 6 Ahlbeck 3, (Wheel Flat) 9.69 x 10 6 It can be seen that there is as much as a 70% variation in the values that can be used for the Hertzian Contact Stiffness (K h ). Therefore, the actual Amtrak impact data was used to calculate a reasonable value for this parameter. The first step in the calibration process was to collect locomotive wheel impact data from the impact detector. Data for a total of 101 trains was collected over a period of two days to include both static and dynamic load values for each wheel on each locomotive of each train This data was then analyzed with questionable outliers eliminated. The remaining data was determined to be representative of existing Northeast Corridor operations for AEM7 and F40 locomotives traveling at speeds greater than 80 mph. These two sets of locomotives were separated and a statistical mean and standard deviation were calculated for each locomotive as well as by axle position of each locomotive. The mean, standard deviation, and maximum statistical dynamic impact force are summarized below along with the average static force and average speed. The maximum statistical dynamic impact force is calculated as follows: P1 = P1 + 4 σ max P1 (3)

8 Where P 1max = maximum dynamic impact force P 1 σ P1 = Average dynamic impact force = Standard deviation of dynamic impact force In the above equation the mean is added to 4 times the standard deviation, thus defining the level of loading for % of all dynamic wheel loads (which are less than or equal to the P 1max value). Table 3 Locomotive Avg. Avg. Speed Static P 1 σ P1 P 1max (mph) (kips) (kips) (kips) (kips) AEM F The values presented in Table 3 above, were utilized in the P 1 dynamic impact force equation together with the relevant inputs as defined in Table 4. Table 4 Variable Value for Concrete Ties m r 136 RE Rail ( lb-sec 2 /in 2 ) m s 1.04 lb-sec 2 /in L 20 in EI 2.85 x 10 9 lb-in 2 α radians (nominal track) V 90/125 mph Note that the rail joint dip angle (α) used during the calibration process was defined as radians which represents track in nominal FRA Class 6 condition as expected in the location of the impact detector. Note; the joint dip angles used in the impact force equations are representative of any surface discontinuity or defect in the track such as at a joint of battered weld. The value of was taken to be representative of normal Amtrak track, while a value of was taken to be a worst case track condition. In fact, current FRA high-speed track classes (Classes 6 through 9) allow a maximum railhead mismatch of 1/8, which over a 36 length corresponds to a dip angle of 0.003,

9 consistent with the calibration results. Note; this work was performed prior to the change in FRA Track Classes in November Therefore, Class 6, as referred to here, represents 110 mph track, which was being operated at speeds of up to 125 mph on an FRA waiver to Amtrak. During the calculation of worse case forces, a value of is used. This corresponds to a rail head mismatch of the order of 7/32 (over a 36 inch length) which is between Class 3 (3/16 ) and Class 2 (¼ ) and thus corresponds directly to a worst case track condition. The calibration constant was introduced into the Hertzian Contact Stiffness equation using the equation: K = P P A 1 0 h 2 3 G P1 P (4) Where A is a calibration constant and the rest of the terms are as defined previously. An iterative approach was used to determine the calibration constants for the AEM7 and F40 based on the input data collected and the appropriate equations. The resulting calibration constants were calculated to be: A AEM7 = A F40 = These calibration constants were used in the remainder of the analyses. Analysis of Dynamic Impact Forces Calculation of Baseline Forces (P 1 and P 2 ): The baseline dynamic impact forces are those forces generated by existing Amtrak locomotives, specifically the AEM7 and F40. These forces were determined for wood and concrete crosstie track using the vehicle and track characteristics (Table 5) as follows:

10 Table 5 Variable Value for Wood Ties Value for Concrete Ties M r 136 RE Rail ( lb-sec 2 /in 2 ) 136 RE Rail ( lb-sec 2 /in 2 ) M s 0.26 lb-sec 2 /in 1.04 lb-sec 2 /in L 20 in 20 in EI 2.85 x 10 9 lb-in x 10 9 lb-in 2 α 0.003/0.006 radians 0.003/0.006 radians (normal/poor) V-two cases (normal/poor) 90/125 mph for Fossil Fuel (Base/Proposed) 125/150 mph for Electric (Base/Proposed) Again, note that a rail joint dip angle (α) of was used to represent normal track conditions and a value of was used here to represent worse case track condition. The baseline dynamic impact forces (Table 6a and 6b) (existing equipment and operations) were determined as follows. The reference to new and worn is to the wheels. A new wheel has a greater mass and a larger radius than a worn wheel. Table 6a α =0.003: Wood Ties Concrete Ties P 1 P 2 P 1 P 2 No. Manu. New Worn New Worn 1 AEM7 47,045 48,498 44,001 60,238 62,688 52,293 2 F40 48,731 49,840 47,395 58,569 60,426 54,182 Based on Amtrak s successful application of the F-40 at up to 90 mph and the AEM-7 at 125 mph on the NEC the values at α =.003 are the acceptance values.

11 Table 6b α =0.006: Wood Ties Concrete Ties P 1 P 2 P 1 P 2 No. Manu. New Worn New Worn 1 AEM7 70,138 73,177 62,814 97, ,132 79,399 2 F40 65,600 67,892 62,290 86,085 89,965 75,865 These baseline dynamic impact forces for the existing Amtrak locomotives can then be compared to the P 1 and P 2 forces calculated for the proposed trainset configurations. Calculation of New Trainset Forces: The trainset configurations proposed by the three vehicle consortiums were used as input to the dynamic impact force equation using the method (Table 7a and 7b) described previously. The resulting dynamic impact forces for the different proposed trainsets are summarized below: Table 7a α =0.003: Wood Ties Concrete Ties P 1 P 2 P 1 P 2 No. Manu. New Worn New Worn 1 A1 48,011 49,834 42,465 63,125 66,201 50,856 2 A2 45,546 47,093 40,789 58,478 61,083 48,020 3 B1 50,021 51,809 43,405 65,242 68,254 51,384 4 B2 55,580 57,125 49,036 68,780 71,367 55,685 5 C1 47,488 49,268 39,253 62,112 65,104 46,063 6 C2 48,520 50,043 41,090 61,139 63,690 46,887 7 D1 48,467 49,990 40,562 60,942 63,490 46,057 8 D2 55,235 56,787 48,051 68,212 70,808 54,250 9 D3 51,170 52,700 44,984 64,236 66,803 51,544

12 Table 7b: α =0.006: Wood Ties Concrete Ties P 1 P 2 P 1 P 2 No. Manu. New Worn New Worn 1 A-1 75,213 79,044 62, , ,826 79,213 2 A-2 68,622 71,860 57,828 95, ,451 72,291 3 B-1 77,568 81,322 62, , ,237 78,629 4 B-2 79,291 82,504 65, , ,444 78,389 5 C1 74,698 78,442 56, , ,155 70,127 6 C2 71,768 74,951 55,679 98, ,787 67,274 7 D-1 71,661 74,843 54,624 97, ,375 65,624 8 D-2 78,811 82,040 63, , ,527 75,732 9 D-3 74,686 77,878 60, , ,607 74,247 Comparing these calculated dynamic impact forces to the baseline forces for the existing Amtrak equipment gives the results shown in Tables 8a and 8b. Note the results are presented as the percentage of baseline loads. Percentages greater than 100% indicate that the impact forces generated by the proposed equipment/speed combinations are greater than those generated by current operations. Table 8a. Comparison of High Speed Trainsets with Existing Equipment α =0.003: Wood Ties Concrete Ties P 1 P 2 P 1 P 2 No. Manu. New Worn New Worn 1 A % % 96.51% % % 97.25% 2 A % 94.49% 86.06% 99.84% % 88.63% 3 B % % 98.65% % % 98.26% 4 B % % % % % % 5 C % % 89.21% % % 88.09% 6 C % % 86.70% % % 86.54% 7 D % % 85.58% % % 85.00% 8 D % % % % % % 9 D % % 94.72% % % 95.13%

13 Table 8b. Comparison of High Speed Trainsets with Existing Equipment α =0.006: Wood Ties Concrete Ties P 1 P 2 P 1 P 2 No. Manu. New Worn New Worn 1 A % % 99.39% % % 99.77% 2 A % % 92.84% % % 95.29% 3 B % % 99.77% % % 99.03% 4 B % % % % % % 5 C % % 89.96% % % 88.32% 6 C % % 89.39% % % 88.68% 7 D % % 87.69% % % 86.49% 8 D % % % % % 99.83% 9 D % % 97.85% % % 97.87% As can be seen from the above tables, for nominal track (α = 0.003), 8 of the 9 trainsets generated higher P 1 forces on wood ties (between 1 and 15% higher) and all 9 trainsets generated higher P 1 forces on concrete ties (between 1 and 18%) than the existing equipment. However, only two of the 9 proposed trainsets generated higher P 2 forces. (This is due to the different sensitivities of the P 1 and P 2 forces to speed and vehicle unsprung mass.) In the case of track with larger dip angle (α = 0.006), all trainsets generated higher P 1 forces for both wood and concrete with increases ranging from 5% to 25%. However, only 2 of the trainsets generated higher P 2 forces. Calculation of Equivalent Damage Speed: As noted above, virtually all of the trainsets generate P 1 forces greater than those generated by the existing Amtrak equipment. This increased P 1 force can alternately be presented in terms of a reduction in operating speed. This equivalent damage speed is the operating speed at which the P 1 forces generated by the proposed high-speed trainsets will be equal to those generated by the existing Amtrak equipment.

14 These equivalent damage speeds (EDS) are calculated by setting the P 1 force levels to those generated by the existing Amtrak equipment (AEM7 or F40) and calculating the speed that would generate that level of dynamic impact force (P 1 ). These Equivalent Damage Speeds (Table 9a and 9b) are thus: Table 9a. Equivalent Damage Speeds α =0.003: Wood Ties EDS Concrete Ties EDS No. Manu. New Worn New Worn 1 A A B B C C D D D Table 9b. Equivalent Damage Speeds α =0.006: Wood Ties EDS Concrete Ties EDS No. Manu. New Worn New Worn 1 A A B B C C D D D

15 Noting that the calibration to Northeast Corridor force data was performed at the normal (α = 0.003) level, then the appropriate limiting condition, for evaluation of the new generation equipment would correspond to worn wheel conditions on concrete ties with a joint dip angle of α = These results are summarized in Tables 10 and 11 for the P 1 and P 2 forces respectively. No. Trainse t Fuel Table 10. P 1 Allowable Speed % P 1 Increase * Equivalent Damage Speed 1 A-1 EL % A-2 FF % B-1 EL % B-2 FF % 90 5 C1 EL % C2 FF % D-1 FF % D-2 FF % 92 9 D-3 FF % 105 Based on maximum operating speed Table 11. P 2 No. Trainset Fuel Allowable Speed % P 2 Increase * Equivalent Damage Speed 1 A-1 EL % A-2 FF % B-1 EL % B-2 FF % C1 EL % C2 FF % D-1 FF % D-2 FF % D-3 FF % 125 Based on maximum operating speed

16 Looking first at the P 2 forces, only two trainsets generated higher forces, B-2 and D-2. The remaining equipment all generated force levels that were less than the existing equipment operations. This is of particular importance, since as was noted previously, the P 2 forces are the forces that most contributed to track degradation, particularly degradation of track geometry, which is the largest maintenance expense on Amtrak s Northeast Corridor. Based on Table II, only trainsets, B-2 and D-2 exceeded the base case to the level of requiring some amount of train slow-down. In the case of the P 1 forces presented in Table 10, all of the trainsets present some level of increased P 1 forces, thus requiring some level of slow-down to exactly match existing equipment. Note, however, that 6 out of the 9 trainsets generated increases of less than 10% and four out of the 9 generated increases less than 5%. However, as was noted previously, P 1 forces are of potential importance primarily from the point of view of damage (cracking) of concrete ties, a situation which Amtrak encountered in the late 70s early 1980s and corrected at that time. For other damage, particularly the expensive track geometry maintenance associated with the Northeast Corridor, the P 1 forces are not as significant as the P 2 forces discussed above. Thus the effect of the P 1 forces on potential concrete tie degradation/damage must be examined further to determine if there is a potential for damage in this area from the new higher speed equipment. This was addressed through an additional analysis of potential concrete tie cracking. Analysis of Concrete Tie Cracking The analysis of concrete tie cracking used here was based on the analytical studies and field tests performed by Battelle Columbus Laboratories on the Northeast Corridor in the early to mid 1980s [3,4,5]. At that time, there was a series of concrete tie cracking problems that had developed under 125 mph operations and a corresponding detailed investigation undertaken to define the loading levels required to crack these concrete ties (and their relationship to train operations and impact forces).

17 The levels of loading determined by these investigations [3,4,5] which can initiate concrete tie cracking are defined here-in in terms of a set of upper and lower limits as follows: Lower Cracking Level: 57,252 lbs (corresponding to a bending moment of 375,000 in-lbs) - Level below which cracking will never occur. Upper Cracking Level: 91,603 lbs (corresponding to a bending moment of 600,000 in-lbs) - Level at which cracking will always occur. Thus, if the dynamic load level is maintained below the Lower Cracking Level, concrete tie cracking will not occur. For dynamic loads above the Upper Cracking Level, concrete tie cracking will always occur. Between these two levels is an area of uncertainly, due to such factors as variations in strength of individual concrete ties, dynamic attenuation characteristics of the tie/fastener system, support conditions of the ties (which effects its dynamic response characteristics) etc. Also included is the dynamic loading characteristics of the rolling stock. Calculation of the dynamic P 1 forces for all of the equipment, including the baseline AEM7 shows that for the worn wheel condition (worst case) on concrete ties only (wood tie cracking is not a problem and as such is not considered herein), the calculated P 1 forces are slightly above the Lower Cracking Level but well below the Upper Cracking Level. Noting that the concrete ties are currently not cracking under the AEM7 equipment being operated at 125 mph on the Northeast Corridor, the calculated P 1 forces were normalized to and compared with the AEM7 force levels. Assuming that the AEM7 is below the lower cracking force threshold by at least a 5% margin, a conservative assumption, the actual track condition on the Northeast Corridor can be calculated to correspond to corresponding P 1 force level. This resulted in a track condition value α = Based on this parameter the percentage cracking levels and corresponding maximum operating speeds can be calculated for the different equipment in light of the concrete cracking

18 issue. The results are presented in Table 12 which shows the percentage of P 1 cracking level, defined here to be the percentage of calculated P 1 compared to level of load needed for concrete tie cracking. Also presented are the operating speeds of the different equipment types required to avoid the risk of tie cracking. Note, if the percentage is less than 100% or the speed is shown to be 150 mph, the P 1 force level is within acceptable cracking levels. Table 12. Concrete Tie Cracking Potential No. Trainset Fuel Allowable Speed Percentage P 1 Crack Cracking Avoidance Speed * 1 A-1 EL % A-2 FF % B-1 EL % B-2 FF % C1 EL % C2 FF % D-1 FF % D-2 FF % D-3 FF % 120 * Based on lower cracking threshold As can be seen from Table 12, four of the nine trainsets, require some degree of speed reduction to insure that no tie cracking damage can occur. Note: the units that generated the highest P 1 forces require a speed reduction based on the calculated P 2 force. The other five trainsets generated force levels, both P 1 and P 2, within acceptable levels. Application of Results to the Final Selection of Equipment As can be seen from the previous section, the results of the dynamic analyses show that some of the designs would require some level of speed reduction to meet the limits set for track damage. Most designs met the requirements of track loading and as such did not require any speed reduction below the specified limits of 150 (electric) and 125 (non-electric). Using these results, and the process of calculating the P 1 and P 2, criteria, Amtrak developed a go/no-go criteria for evaluation of the High Speed Trainset proposals. This process was the method used

19 to get only compliant proposals that would not accelerate the rate of change to the track structure on the Northeast Corridor. References: 1. Jenkins, H. H., Stephenson, J. E., Clayton, G. A., Morland, G. W. and Lyon, D., The Effect of Track and Vehicle Parameters on Wheel/Rail Vertical Dynamic Forces, Railway Engineering Journal, January Ahlbeck, D. R., An Investigation of Impact Loads Due to Wheel Flats and Rail Joints, American Society of Mechanical Engineers, 80-WA/RT-1, Dean, F. E., Harrison, H. D., Prause, R. H. and Tuten, J. M., Investigation of the Effects of Tie Pad Stiffness on the Impact Loading of Concrete Ties on the Northeast Corridor, Federal Railroad Administration Report FRA/ORD-83/05, April, Ahlbeck, D. R., Tuten, J. M., Hadden, J. A., and Harrison, H. D., Development of Safety Criteria for Evaluating Concrete Tie Track in the Northeast Corridor; Volume 1. Remedial Projects Assessment, Federal Railroad Administration Report FRA/ORD-86/08.1, June Ahlbeck, D. R., Tuten, J. M., Hadden, J. A., and Harrison, H. D., Development of Safety Criteria for Evaluating Concrete Tie Track in the Northeast Corridor; Volume 2. Track Safety Evaluation, Federal Railroad Administration Report FRA/ORD-86/08.2, June 1986.

Dynamic behaviour of a steel plate girder railroad bridge with rail joints

Dynamic behaviour of a steel plate girder railroad bridge with rail joints Structures Under Shock and Impact XI 313 Dynamic behaviour of a steel plate girder railroad bridge with rail joints H. M. Kim 1, S. I. Kim 2 & W. S. Hwang 2 1 Department of Railroad Structure Research,

More information

Clamping Force & Concrete Crosstie Bending Behavior Analysis FRA Tie and Fastener BAA - Industry Partners Meeting Incline Village, NV 7 October 2013

Clamping Force & Concrete Crosstie Bending Behavior Analysis FRA Tie and Fastener BAA - Industry Partners Meeting Incline Village, NV 7 October 2013 Clamping Force & Concrete Crosstie Bending Behavior Analysis FRA Tie and Fastener BAA - Industry Partners Meeting Incline Village, NV 7 October 2013 Sihang Wei, Daniel Kuchma Slide 2 Outline Project Objectives

More information

How Track Geometry Defects Affect the Development of Rail Defects

How Track Geometry Defects Affect the Development of Rail Defects How Track Geometry Defects Affect the Development of Rail Defects Dr. Allan M Zarembski PE, FASME, Hon. Mbr. AREMA Professor and Director of the Railroad Engineering and Safety Program Department of Civil

More information

How Track Geometry Defects Affect the Development of Rail Defects. Authors

How Track Geometry Defects Affect the Development of Rail Defects. Authors How Track Geometry Defects Affect the Development of Rail Defects Authors Dr. Allan M Zarembski PE, FASME Hon. Mbr. AREMA Professor and Director of the Railroad Engineering and Safety Program Department

More information

MEASUREMENT OF VERTICAL TRACK MODULUS FROM A MOVING RAILCAR

MEASUREMENT OF VERTICAL TRACK MODULUS FROM A MOVING RAILCAR MEASUREMENT OF VERTICAL TRACK MODULUS FROM A MOVING RAILCAR Richard Arnold*, Sheng Lu*, Cory Hogan*, Shane Farritor* Mahmood Fateh, Magdy El-Sibaie * - Department of Mechanical Engineering University of

More information

DYNAMIC CHARACTERISTICS STUDY AND VIBRATION CONTROL OF MODERN TRAM TRACK SYSTEM

DYNAMIC CHARACTERISTICS STUDY AND VIBRATION CONTROL OF MODERN TRAM TRACK SYSTEM DYNAMIC CHARACTERISTICS STUDY AND VIBRATION CONTROL OF MODERN TRAM TRACK SYSTEM Zheyu Zhang, Anbin Wang, Jian Bai, Zhiqiang Wang Luoyang Ship Material Research Institute Format of Presentation 31 3 4 35

More information

Railroad Concrete Tie Failure Analysis

Railroad Concrete Tie Failure Analysis Railroad Concrete Tie Failure Analysis Hailing Yu, David Jeong, Brian Marquis, and Michael Coltman 2014 International Crosstie & Fastening System Symposium June 3-5, 2014 The National Transportation Systems

More information

Fatigue Life Analysis Of Joint Bar Of Insulated Rail Joint

Fatigue Life Analysis Of Joint Bar Of Insulated Rail Joint Fatigue Life Analysis Of Joint Bar Of Insulated Rail Joint Washimraja Sheikh, Piyush M. Sirsat, Nakul K. Mahalle RTM Nagpur University, Priyadarshini College of Engineering, Assistant Professor, Department

More information

Correlation between track geometry quality and vehicle reactions in the virtual rolling stock homologation process

Correlation between track geometry quality and vehicle reactions in the virtual rolling stock homologation process Correlation between track geometry quality and vehicle reactions in the virtual rolling stock homologation process K.U. Wolter Deutsche Bahn AG Railway Technology and Services Integrated Systems Rail Voelckerstrasse

More information

Parametric Study of Thermal Stability on Continuous Welded Rail

Parametric Study of Thermal Stability on Continuous Welded Rail IJR International Journal of Railway Vol. 3, No. 4 / December 2010, pp. 126-133 The Korean Society for Railway arametric Study of Thermal Stability on Continuous Welded Rail Dong-Ho Choi* and Ho-Sung Na

More information

A NEW SAFETY PHILOSOPHY FOR CWR

A NEW SAFETY PHILOSOPHY FOR CWR Coenraad Esveld Page 1 of 6 A NEW SAFETY PHILOSOPHY FOR CWR Coenraad Esveld Professor of Railway Engineering TU Delft From 1992 to 1997 the ERRI Committee D 202 carried out an extensive study on the behaviour

More information

Measuring Concrete Crosstie Rail Seat Pressure Distribution with Matrix Based Tactile Surface Sensors (MBTSS)

Measuring Concrete Crosstie Rail Seat Pressure Distribution with Matrix Based Tactile Surface Sensors (MBTSS) Measuring Concrete Crosstie Rail Seat Pressure Distribution with Matrix Based Tactile Surface Sensors (MBTSS) Christopher T. Rapp, Marcus S. Dersch, J. Riley Edwards, and Christopher P.L. Barkan University

More information

Railway induced ground vibration

Railway induced ground vibration RIVAS Training Workshop 23/5/213, Die Schmiede, Berlin, Germany "Reducing railway induced ground vibration by interventions on the transmission path" Railway induced ground vibration Geert Lombaert, Stijn

More information

2002 Pavement Design

2002 Pavement Design 2002 Pavement Design Federal Highway Administration June 2001 Thomas P. Harman Asphalt Team Leader Predicting Pavement Performance Pavements are designed to fail But how do they perform? Defining Performance

More information

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track...

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track... Contents 1 Introduction... 1 1.1 The Basic Function of the Wheel/rail System.... 1 1.2 Significance of Dynamics on the Operation of Rail Vehicles... 2 1.3 On the History of Research in the Field of Railway

More information

A STUDY ON THE WHEEL-RAIL INTERACTION AT SWITCH POINTS TO REDUCE DERAILMENTS IN TURNOUTS. Samet Ozturk

A STUDY ON THE WHEEL-RAIL INTERACTION AT SWITCH POINTS TO REDUCE DERAILMENTS IN TURNOUTS. Samet Ozturk A STUDY ON THE WHEEL-RAIL INTERACTION AT SWITCH POINTS TO REDUCE DERAILMENTS IN TURNOUTS by Samet Ozturk A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements

More information

Optimization of the detection of train wheel defects. SNCF Innovation and Research Department Paris, FRANCE 1

Optimization of the detection of train wheel defects. SNCF Innovation and Research Department Paris, FRANCE 1 Optimization of the detection of train wheel defects 1 R. Ziani SNCF Innovation and Research Department Paris, FRANCE 1 Abstract This paper describes how statistical models and learning algorithms could

More information

DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1

DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 1, PP. 125 148 (2002) DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 Nándor LIEGNER Department of Highway and Railway Engineering

More information

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie Journal of Applied Mathematics and Physics, 2015, 3, 577-583 Published Online May 2015 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2015.35071 Fatigue Crack Analysis on the

More information

TRACK MODULUS MEASUREMENT FROM A MOVING RAILCAR

TRACK MODULUS MEASUREMENT FROM A MOVING RAILCAR TRACK MODULUS MEASUREMENT FROM A MOVING RAILCAR ABSTRACT Brian McVey *, Shane Farritor *, Chris Norman *, Nathan Wood *, Richard Arnold *, Mahmood Fateh, Magdy El-Sibaie * - College of Engineering and

More information

Prob. 1 SDOF Structure subjected to Ground Shaking

Prob. 1 SDOF Structure subjected to Ground Shaking Prob. 1 SDOF Structure subjected to Ground Shaking What is the maximum relative displacement and the amplitude of the total displacement of a SDOF structure subjected to ground shaking? magnitude of ground

More information

1 Introduction. Abstract

1 Introduction. Abstract Abstract This paper reports results from a numerical model to calculate subgrade settlement in railway tracks due to repeated dynamic loading. The trains are modelled as rigid body 2-axle carriages on

More information

The Pennsylvania State University. The Graduate School. Department of Civil and Environmental Engineering

The Pennsylvania State University. The Graduate School. Department of Civil and Environmental Engineering The Pennsylvania State University The Graduate School Department of Civil and Environmental Engineering FIELD AND ANALYTICAL INVESTIGATION OF A 3D DYNAMIC TRAIN-TRACK INTERACTION MODEL AT CRITICAL SPEEDS

More information

A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION

A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION Associate Professor PhD. eng. Traian MAZILU Department of Railway Vehicles, University Politehnica of Bucharest 33 Splaiul Independentei, sector

More information

Investigation on dynamic behavior of railway track in transition zone

Investigation on dynamic behavior of railway track in transition zone Journal of Mechanical Science and Technology 25 (2) (2) 287~292 wwwspringerlinkcom/content/738494x DOI 7/s22622x Investigation on dynamic behavior of railway track in transition zone JabbarAli Zakeri *

More information

Implementation of Rail Temperature Predictions on Amtrak. Authors

Implementation of Rail Temperature Predictions on Amtrak. Authors Implementation of Rail Temperature Predictions on Amtrak Authors Radim Bruzek ENSCO, Inc. 5400 Port Royal Road, Springfield, VA 22151 Phone: (703) 321 4773 E-Mail: bruzek.radim@ensco.com Michael Trosino

More information

Numerical prediction of track

Numerical prediction of track Numerical prediction of track settlement in railway turnouts Department of Applied Mechanics / CHARMEC Chalmers University of Technology Gothenburg, Sweden 15 Contents Objectives of CHARMEC TS15 Introduction

More information

ACET 406 Mid-Term Exam B

ACET 406 Mid-Term Exam B ACET 406 Mid-Term Exam B SUBJECT: ACET 406, INSTRUCTOR: Dr Antonis Michael, DATE: 24/11/09 INSTRUCTIONS You are required to answer all of the following questions within the specified time (90 minutes).you

More information

INFLUENCE OF WHEEL/RAIL CONTACT GEOMETRY ON THE BEHAVIOUR OF A RAILWAY VEHICLE AT STABILITY LIMIT

INFLUENCE OF WHEEL/RAIL CONTACT GEOMETRY ON THE BEHAVIOUR OF A RAILWAY VEHICLE AT STABILITY LIMIT ENOC-5, Eindhoven, Netherlands, 7-1 August 5 ID of contribution -36 INFLUENCE OF WHEEL/RAIL CONTACT GEOMETRY ON THE BEHAVIOUR OF A RAILWAY VEHICLE AT STABILITY LIMIT Oldrich Polach Bombardier Transportation

More information

Experimental validation of a numerical model for the ground vibration from trains in tunnels

Experimental validation of a numerical model for the ground vibration from trains in tunnels Experimental validation of a numerical model for the ground vibration from trains in tunnels Qiyun Jin; David Thompson; Daniel Lurcock; Martin Toward; Evangelos Ntotsios; Samuel Koroma Institute of Sound

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Pislaru, Crinela Modelling and Simulation of the Dynamic Behaviour of Wheel-Rail Interface Original Citation Pislaru, Crinela (2012) Modelling and Simulation of the

More information

Advancing Disc Bearing Specifications AASHTO T-2 Columbus, OH June 24, 2014

Advancing Disc Bearing Specifications AASHTO T-2 Columbus, OH June 24, 2014 Advancing Disc Bearing Specifications AASHTO T-2 Columbus, OH June 24, 2014 Paul Bradford, PE, PhD PB Engineering Consultant PBENG How does it work? - Compression Urethane tries to expand laterally

More information

STUDY OF EFFECTS OF VIBRATIONS CAUSED BY RAILWAY TRAFFIC TO BUILDINGS

STUDY OF EFFECTS OF VIBRATIONS CAUSED BY RAILWAY TRAFFIC TO BUILDINGS Bulletin of the Transilvania University of Braşov CIBv 2014 Vol. 7 (56) Special Issue No. 1-2014 STUDY OF EFFECTS OF VIBRATIONS CAUSED BY RAILWAY TRAFFIC TO BUILDINGS R. NERIŞANU 1 D. DRĂGAN 1 M. SUCIU

More information

Attenuation of rail vibration: Analysis of experimental data

Attenuation of rail vibration: Analysis of experimental data Attenuation of rail vibration: Analysis of experimental data A. Bracciali, F. Piccioli Dipartimento di Meccanica e Tecnologie Industriali Università di Firenze v. Santa Marta, 3 50139 Firenze e-mail: bracciali@ing.unifi.it

More information

PREDICTING ROLLING CONTACT FATIGUE OF RAILWAY WHEELS

PREDICTING ROLLING CONTACT FATIGUE OF RAILWAY WHEELS Presented at the 13th International Wheelset Congress in Rome, September 17 21, 21 Revised version Ekberg, Kabo & Andersson 1 PREDICTING ROLLING CONTACT FATIGUE OF RAILWAY WHEELS Anders Ekberg*, Elena

More information

A model for predicting lateral buckling in rails

A model for predicting lateral buckling in rails A model for predicting lateral buckling in rails D. H. Allen Texas A&M University, College Station, TX, U.S.A. G. T. Fry TTCI, Pueblo, CO, U.S.A. ABSTRACT: This paper presents a computational model for

More information

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry Oldrich POLACH and Adrian VETTER Bombardier Transportation Winterthur, Switzerland Contents Motivation Methods

More information

Research on the Detecting System of High-speed Railway Wheel Defect based on Laser Method

Research on the Detecting System of High-speed Railway Wheel Defect based on Laser Method 8th World Conference on Nondestructive Testing, 6- April, Durban, South Africa esearch on the Detecting System of High-speed ailway Wheel Defect based on Laser Method Yangkai, Pengchaoyong,Wangli,GaoxiaorongWangzeyong,Zhangyu,Pengjianping

More information

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee

Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Transportation Engineering - II Dr.Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Lecture - 16 Speeds on Track Dear students, today we are starting with another

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

Physics Fall 2006 Laboratory 5: Rotational Dynamics

Physics Fall 2006 Laboratory 5: Rotational Dynamics 1 of 7 Physics 2010 -- Fall 2006 Laboratory 5: Rotational Dynamics NAME Section Day (circle): M Tu W Th F Section Time: 8a 10a 12p 2p 4p TA Name: This lab will cover the concepts of moment of inertia and

More information

Indian railway track analysis for displacement and vibration pattern estimation

Indian railway track analysis for displacement and vibration pattern estimation Indian railway track analysis for displacement and vibration pattern estimation M. Mohanta 1, Gyan Setu 2, V. Ranjan 3, J. P. Srivastava 4, P. K. Sarkar 5 1, 3 Department of Mechanical and Aerospace Engineering,

More information

CASE STUDIES IN RAILWAY CONSTRUCTION

CASE STUDIES IN RAILWAY CONSTRUCTION MSC COURSE 2016/2017 AUTUMN SEMESTER CASE STUDIES IN RAILWAY CONSTRUCTION RAILWAY SUPERSTRUCTURE CALCULATION ZIMMERMANN-EISENMANN METHOD SZÉCHENYI ISTVÁN UNIVERSITY Zoltán MAJOR junior lecturer Conventional

More information

Application of nonlinear stability analysis in railway vehicle industry

Application of nonlinear stability analysis in railway vehicle industry Application of nonlinear stability analysis in railway vehicle industry O. Polach Bombardier Transportation, Winterthur, Switzerland Abstract This paper deals with the use of nonlinear calculations and

More information

Impact. m k. Natural Period of Vibration τ. Static load Gray area Impact load t > 3 τ. Absorbing energy. Carrying loads

Impact. m k. Natural Period of Vibration τ. Static load Gray area Impact load t > 3 τ. Absorbing energy. Carrying loads Impact also called shock, sudden or impulsive loading driving a nail with a hammer, automobile collisions. dashpot a) Rapidly moving vehicles crossing a bridge To distinguish: b) Suddenly applied c) Direct

More information

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200 Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

More information

The Impact of RCF and Wear on Service Failures and Broken Rail Derailments

The Impact of RCF and Wear on Service Failures and Broken Rail Derailments The Impact of RCF and Wear on Service Failures and Broken Rail Derailments David Sheperd 1, Eric Magel 2 and Bob Harris 3 1. BNSF Railroad, Fort Worth, Texas 2. National Research Council, Canada 3. Loram

More information

Equivalent Dynamics Model of Ballasted Track Bed

Equivalent Dynamics Model of Ballasted Track Bed Master's Degree Thesis ISRN: BTH-AMT-EX--212/D-23--SE Equivalent Dynamics Model of Ballasted Track Bed Said Daoud Xie Guowei Liu Xiaoming Department of Mechanical Engineering Blekinge Institute of Technology

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

REGULATION OF THE DYNAMIC LIVE LOAD FAC- TOR FOR CALCULATION OF BRIDGE STRUCTURES ON HIGH-SPEED RAILWAY MAINLINES

REGULATION OF THE DYNAMIC LIVE LOAD FAC- TOR FOR CALCULATION OF BRIDGE STRUCTURES ON HIGH-SPEED RAILWAY MAINLINES Vol. 13, Issue 1/2017, 12-19, DOI: 10.1515/cee-2017-0002 REGULATION OF THE DYNAMIC LIVE LOAD FAC- TOR FOR CALCULATION OF BRIDGE STRUCTURES ON HIGH-SPEED RAILWAY MAINLINES Leonid K. DYACHENKO 1,*, Andrey

More information

Procedures for the Installation, Adjustment, Maintenance and. Inspection of CWR as Required by 49 CFR

Procedures for the Installation, Adjustment, Maintenance and. Inspection of CWR as Required by 49 CFR Procedures for the Installation, Adjustment, Maintenance and Inspection of CWR as Required by 49 CFR 213.119 Effective October 09, 2009 Procedures for the Installation, Adjustment, Maintenance and Inspection

More information

MANAGEMENT OF CYCLIC TOP

MANAGEMENT OF CYCLIC TOP MANAGEMENT OF CYCLIC TOP Produced by Civil Engineering Conference For use by all Railway Civil Engineering Staff CEC/DG/002 Issue 2 September 2002 Note These guidelines have been produced for the benefit

More information

Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element Method

Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element Method Send Orders for Reprints to reprints@benthamscience.ae 91 The Open Mechanical Engineering Journal, 214, 8, 91-915 Open Access Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element

More information

FULL SCALE TESTS AND STRUCTURAL EVALUATION OF SOIL-STEEL FLEXIBLE CULVERTS FOR HIGH-SPEED RAILWAYS

FULL SCALE TESTS AND STRUCTURAL EVALUATION OF SOIL-STEEL FLEXIBLE CULVERTS FOR HIGH-SPEED RAILWAYS II European Conference BURIED FLEXIBLE STEEL STRUCTURES Rydzyna 3-4.4.1 FULL SCALE TESTS AND STRUCTURAL EVALUATION OF SOIL-STEEL FLEXIBLE CULVERTS FOR HIGH-SPEED RAILWAYS Andreas ANDERSSON*, Håkan SUNDQUIST**,

More information

Suggestion of Impact Factor for Fatigue Safety Assessment of Railway Steel Plate Girder Bridges

Suggestion of Impact Factor for Fatigue Safety Assessment of Railway Steel Plate Girder Bridges Suggestion of Impact Factor for Fatigue Safety Assessment of Railway Steel Plate Girder Bridges 1 S.U. Lee, 2 J.C. Jeon, 3 K.S. Kyung Korea Railroad, Daejeon, Korea 1 ; CTC Co., Ltd., Gunpo, Kyunggi, Korea

More information

Rubber-Modified Asphalt Concrete for High- Speed Railway Roadbeds

Rubber-Modified Asphalt Concrete for High- Speed Railway Roadbeds High-Speed Rail IDEA Program Rubber-Modified Asphalt Concrete for High- Speed Railway Roadbeds Final Report for High-Speed Rail IDEA Project 40 Prepared by: Xiangwu (David) Zeng, Ph.D. Dept. of Civil Engineering,

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer EVALUATING THE DYNAMIC BEHAVIOUR OF CONCRETE SLAB TRACK FOR HIGH SPEED RAIL USING NUMERICAL ANALYSIS Citation for published version: Forde, M, Zimele, L, De Bold, R & Ho, C

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

RAILWAY INVESTIGATION REPORT R03T0064 DERAILMENT

RAILWAY INVESTIGATION REPORT R03T0064 DERAILMENT RAILWAY INVESTIGATION REPORT R03T0064 DERAILMENT CANADIAN PACIFIC RAILWAY FREIGHT TRAIN NO. 938 12 MILE 39.5, PARRY SOUND SUBDIVISION NOBEL, ONTARIO 13 FEBRUARY 2003 The Transportation Safety Board of

More information

interaction and ground borne vibration Excitation mechanisms of train/track Structural Mechanics, Department of Civil Engineering, KU Leuven

interaction and ground borne vibration Excitation mechanisms of train/track Structural Mechanics, Department of Civil Engineering, KU Leuven RIVAS Training Workshop 9//23, Hotel Bloom, Brussels, Belgium "Reducing railway induced ground vibration by controlling the source" Excitation mechanisms of train/track interaction and ground borne vibration

More information

THE CALIBRATED LENGTH OF RAIL METHOD FOR MEASURING RAIL TEMPERATURE STRESS

THE CALIBRATED LENGTH OF RAIL METHOD FOR MEASURING RAIL TEMPERATURE STRESS THE CALIBRATED LENGTH OF RAIL METHOD FOR MEASURING RAIL TEMPERATURE STRESS Xing-han Liu Xian Institute of Railway Science and Technology, China ABSTRACT Continuous Welded Rail (CWR) has been widely used

More information

Derailment Safety Evaluation by Analytic Equations. Summary

Derailment Safety Evaluation by Analytic Equations. Summary World Congress on Railway Research 001, Köln, 5-9 November 001 Derailment Safety Evaluation by Analytic Equations Masao UCHIDA*, Hideyuki TAKAI*, Hironari MURAMATSU*, Hiroaki ISHIDA** * Track Technology

More information

Modelling vibration from surface and underground railways as an evolutionary random process

Modelling vibration from surface and underground railways as an evolutionary random process icccbe 010 Nottingham University Press Proceedings of the International Conference on Computing in Civil and Building Engineering W Tizani (Editor) Modelling vibration from surface and underground railways

More information

BUTT SPLICE HINGING. KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated

BUTT SPLICE HINGING. KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated BUTT SPLICE HINGING BY KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated Introduction Splicing is a process used to join the tail of an expiring roll to the start

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.3 A MEASUREMENT PROTOCOL

More information

Testing a new rail roughness measurement standard

Testing a new rail roughness measurement standard Testing a new rail roughness measurement standard C. J C Jones a, F. Létourneaux b and P. Fodiman c a Institute of Sound and Vibration Research, Univeristy of Southampton, Highfield, SO17 1BJ Southampton,

More information

Experimental Lab. Principles of Superposition

Experimental Lab. Principles of Superposition Experimental Lab Principles of Superposition Objective: The objective of this lab is to demonstrate and validate the principle of superposition using both an experimental lab and theory. For this lab you

More information

PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK

PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK Submitted by Bob W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer Ronald K. Faller, Ph.D., P.E. Research Assistant Professor

More information

Choosing a Safe Vehicle Challenge: Analysis: Measuring Speed Challenge: Analysis: Reflection:

Choosing a Safe Vehicle Challenge: Analysis: Measuring Speed Challenge: Analysis: Reflection: Activity 73: Choosing a Safe Vehicle Challenge: Which vehicle do you think is safer? 1. Compare the features you listed in the data evidence section to the features listed on the worksheet. a. How are

More information

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University Method of Virtual Work Frame Deflection xample Steven Vukazich San Jose State University Frame Deflection xample 9 k k D 4 ft θ " # The statically determinate frame from our previous internal force diagram

More information

Dynamic behaviour of transition zones in railways

Dynamic behaviour of transition zones in railways Dynamic behaviour of transition zones in railways B. E. Z. Coelho 1 Delft University of Technology, Delft, the Netherlands P. Hölscher Deltares, Delft, the Netherlands F. B. J. Barends Delft University

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein 2

Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein 2 5 th Australasian Congress on Applied Mechanics, ACAM 2007 10-12 December 2007, Brisbane, Australia Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein

More information

Use of Track Quality Standard Deviations in Track Design and Construction

Use of Track Quality Standard Deviations in Track Design and Construction Use of Track Quality Standard Deviations in Track Design and Construction David Marriott Consultant / Developer Freelance Constantin Ciobanu CEng FPWI MCIHT Principal PWay Engineer Mea culpa slide Track

More information

Principles of Finite Element for Design Engineers and Analysts. Ayman Shama, Ph.D., P.E., F.ASCE

Principles of Finite Element for Design Engineers and Analysts. Ayman Shama, Ph.D., P.E., F.ASCE Principles of Finite Element for Design Engineers and Analysts Ayman Shama, Ph.D., P.E., F.ASCE Outline Principles of Engineering Analysis The development of the finite element method Types of elements

More information

Software Verification

Software Verification EXAMPLE 1-026 FRAME MOMENT AND SHEAR HINGES EXAMPLE DESCRIPTION This example uses a horizontal cantilever beam to test the moment and shear hinges in a static nonlinear analysis. The cantilever beam has

More information

CHAPTER 8 FATIGUE LIFE ESTIMATION OF ELECTRONIC PACKAGES SUBJECTED TO DYNAMIC LOADS

CHAPTER 8 FATIGUE LIFE ESTIMATION OF ELECTRONIC PACKAGES SUBJECTED TO DYNAMIC LOADS 80 CHAPTER 8 FATIGUE LIFE ESTIMATIO OF ELECTROIC PACKAGES SUBJECTED TO DYAMIC LOADS 8. ITRODUCTIO Vibration environments can often involve millions of stress cycles because natural frequencies in electronics

More information

Designing Mechanical Systems for Suddenly Applied Loads

Designing Mechanical Systems for Suddenly Applied Loads Designing Mechanical Systems for Suddenly Applied Loads Abstract Integrated Systems Research May, 3 The design of structural systems primarily involves a decision process dealing with three parameters:

More information

Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project

Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project ASME BPVC Code Week Atlanta, GA February 2007 Chris Hinnant Paulin Research Group Houston, TX Table of Contents 1.0 Introduction

More information

DEFLECTION CALCULATIONS (from Nilson and Nawy)

DEFLECTION CALCULATIONS (from Nilson and Nawy) DEFLECTION CALCULATIONS (from Nilson and Nawy) The deflection of a uniformly loaded flat plate, flat slab, or two-way slab supported by beams on column lines can be calculated by an equivalent method that

More information

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software Fundamentals of Durability Page 1 Your single provider of solutions System simulation solutions 3D simulation solutions Test-based engineering solutions Engineering services - Deployment services Troubleshooting

More information

1.105 Solid Mechanics Laboratory Fall 2003

1.105 Solid Mechanics Laboratory Fall 2003 1.105 Solid Mechanics Laboratory Fall 2003 Eperiment 6 The linear, elastic behavior of a Beam The objectives of this eperiment are To eperimentally study the linear elastic behavior of beams under four

More information

THE BEHAVIOUR OF FLEXIBLE PAVEMENT BY NONLINEAR FINITE ELEMENT METHOD

THE BEHAVIOUR OF FLEXIBLE PAVEMENT BY NONLINEAR FINITE ELEMENT METHOD International Journal of Latest Research in Science and Technology Volume 3, Issue 1: Page No.537,January-February 214 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278299 THE BEHAVIOUR OF FLEXIBLE

More information

Experimental validation of a numerical model for subway induced vibrations

Experimental validation of a numerical model for subway induced vibrations Experimental validation of a numerical model for subway induced vibrations S. Gupta, G. Degrande, G. Lombaert Department of Civil Engineering, K.U.Leuven, Kasteelpark Arenberg, B-3001, Leuven, Belgium

More information

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG METAL BAR GRATING NAAMM

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG METAL BAR GRATING NAAMM METAL BAR NAAMM GRATNG MANUAL MBG 534-12 5 G R A TNG NAAMM MBG 534-12 November 4, 2012 METAL BAR GRATNG ENGNEERNG DEGN MANUAL NAAMM MBG 534-12 November 4, 2012 5 G R A TNG MBG Metal Bar Grating A Division

More information

ON THE RELATIONSHIP BETWEEN LOAD AND DEFLECTION IN RAILROAD TRACK STRUCTURE

ON THE RELATIONSHIP BETWEEN LOAD AND DEFLECTION IN RAILROAD TRACK STRUCTURE ON THE RELATIONSHIP BETWEEN LOAD AND DEFLECTION IN RAILROAD TRACK STRUCTURE Sheng Lu, Richard Arnold, Shane Farritor* *Corresponding Author Department of Mechanical Engineering University of Nebraska Lincoln

More information

Model-Based Engineering and Cyber-Physical Systems

Model-Based Engineering and Cyber-Physical Systems Model-Based Engineering and Cyber-Physical Systems Jason Hatakeyama Chief Architect Boeing Defense, Space & Security Approved for public release 8/2/17. Ref no. 17-00606-BDS. GPDIS_2017.ppt 1 PRODUCT CONCEPT

More information

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load A. Ravi Kiran, M. K. Agrawal, G. R. Reddy, R. K. Singh, K. K. Vaze, A. K. Ghosh and H. S. Kushwaha Reactor Safety Division, Bhabha

More information

Derailment of High Speed Trains Moving over Bridges under Earthquakes

Derailment of High Speed Trains Moving over Bridges under Earthquakes Derailment of High Speed Trains Moving over Bridges under Earthquakes 1 Y. B. Yang and 2 Y. S. Wu 1 President, YunTech / Distinguished Prof., NTU 2 Sinotech Engineering Consultants, Inc. 4 th Kuang Hwa

More information

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS ANALYSIS OF HIGHRISE BUILDING SRUCURE WIH SEBACK SUBJEC O EARHQUAKE GROUND MOIONS 157 Xiaojun ZHANG 1 And John L MEEK SUMMARY he earthquake response behaviour of unframed highrise buildings with setbacks

More information

Solution: The moment of inertia for the cross-section is: ANS: ANS: Problem 15.6 The material of the beam in Problem

Solution: The moment of inertia for the cross-section is: ANS: ANS: Problem 15.6 The material of the beam in Problem Problem 15.4 The beam consists of material with modulus of elasticity E 14x10 6 psi and is subjected to couples M 150, 000 in lb at its ends. (a) What is the resulting radius of curvature of the neutral

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1 TMHL61 2014-01-16 (Del I, teori; 1 p.) 1. Fig. 1.1 shows three cases of sharp cracks in a sheet of metal. In all three cases, the sheet is assumed to be very large in comparison with the crack. Note the

More information

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES NTNU Faculty of Engineering Science and Technology Department of Marine Technology EXERCISE 4 TMR 495 DESIGN OF OFFSHORE STRUCTURES Distr. Date: 9 th Feb 4 Sign: Q. Chen Mandatory Exercise This exercise

More information

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

Table 6, replace the Key with: Table 6, change SBX 151 for dimension G, from: 5.59 mm to 5.56 mm mm to mm

Table 6, replace the Key with: Table 6, change SBX 151 for dimension G, from: 5.59 mm to 5.56 mm mm to mm Date of Issue: Ocber 2015 Affected Publication: ANSI/API Specification 17D/ISO 13628-4, Design and Operation of Subsea Production Systems Subsea Wellhead and Tree Equipment, Second Edition, May 2011 ERRATA

More information