Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila

Size: px
Start display at page:

Download "Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila"

Transcription

1 Numerical methods for computing vortex states in rotating Bose-Einstein condensates Ionut Danaila Laboratoire de mathématiques Raphaël Salem Université de Rouen Conference Non-linear optical and atomic systems, Lille, January 22, 2013

2 Outline 1 Vortices in Bose-Einstein condensates 2 Mathematical description and numerical simulation The Gross-Pitaevskii equation 3 Imaginary-time propagation of the wave function Simulation of BEC experiments 4 Direct minimization of the energy functional Descent methods using Sobolev gradients FreeFem++ implementation 2D results 5 Conclusion

3 Outline 1 Vortices in Bose-Einstein condensates 2 Mathematical description and numerical simulation The Gross-Pitaevskii equation 3 Imaginary-time propagation of the wave function Simulation of BEC experiments 4 Direct minimization of the energy functional Descent methods using Sobolev gradients FreeFem++ implementation 2D results 5 Conclusion

4 Bose-Einstein condensate Experiment of Wieman and Cornell (1995) 1000 atoms of Rubidium (Rb) magnetic trap cooling by lasers + radio-frequency T 20nK size 100µm, t 1s

5 Bose-Einstein condensate Experiment of Wieman and Cornell (1995) 1000 atoms of Rubidium (Rb) magnetic trap cooling by lasers + radio-frequency T 20nK size 100µm, t 1s explosion in experimental and theoretical activity(wikipedia) Experiments in Lab. Kastler Brossel, ENS Paris

6 Vortices in fluids and superfluids classical fluids easy intuition (velocity - pressure) solid rotation

7 Vortices in fluids and superfluids classical fluids easy intuition (velocity - pressure) complicated math description solid rotation

8 Vortices in fluids and superfluids classical fluids easy intuition (velocity - pressure) complicated math description solid rotation superfluids difficult intuition (vanishing viscosity) simple math description (wave function) local rotation

9 Vortices in fluids and superfluids classical fluids easy intuition (velocity - pressure) complicated math description solid rotation superfluids difficult intuition (vanishing viscosity) simple math description (wave function) (JILA, Colorado)

10 Identification of a quantized vortex (1) Macroscopic description ψ wave function ψ = ρ(r)e iθ(r) vortex :: ρ = 0 + rotation velocity field v(r) = h m θ quantified circulation Γ = v(s)ds = n h m

11 Identification of a quantized vortex (2) phase portraits optical lattice giant vortex

12 Creating vortices in BEC Wake of moving objects Q. Du, Penn State

13 Creating vortices in BEC Wake of moving objects Q. Du, Penn State Phase imprint L.-C. Crasovan, V. M. Pérez-García, I. Danaila, D. Mihalache, L. Torner, PRA, 2004.

14 Creating vortices in BEC Rotation Wake of moving objects Q. Du, Penn State Phase imprint L.-C. Crasovan, V. M. Pérez-García, I. Danaila, D. Mihalache, L. Torner, PRA, 2004.

15 Rotating Bose-Einstein condensate Experiments in Lab Kastler Brossel, ENS Paris Cold Atoms Group of J. Dalibard Condensate of Rb made of atoms ; T = 90nK Thomas Fermi regime: Na s /a h 500 (a s =5 [nm]) << (ξ=0.3 [µm]) << (a h =1 [µm]) << (R=3 [µm]).

16 Outline 1 Vortices in Bose-Einstein condensates 2 Mathematical description and numerical simulation The Gross-Pitaevskii equation 3 Imaginary-time propagation of the wave function Simulation of BEC experiments 4 Direct minimization of the energy functional Descent methods using Sobolev gradients FreeFem++ implementation 2D results 5 Conclusion

17 The Gross-Pitaevskii equation The Gross-Pitaevskii theory (1) 3D Gross-Pitaevskii energy 2 E(ψ) = D 2m ψ 2 + N }{{} 2 g 3D ψ 4 + V trap ψ 2 + Ω (iψ, ψ x) }{{}}{{}}{{} kinetic interactions trap rotation scaling: [Aftalion Rivière (2001), Tsubota et al (2002), Fetter et al (2005)] r = x/r, u(r) = R 3/2 ψ(x), R = d/ ε d = ( /mω ) 1/2, ε = (d/8πna s ) 2/5, Ω = Ω/(εω ). Dimensionless energy E(u) = H(u) ΩL z (u), L z (u) = i u ( A t ) u, A = (y, x, 0) t H(u) = 1 2 u 2 + Ṽtrap(r) u 2 + g 2 u 4

18 The Gross-Pitaevskii equation The Gross-Pitaevskii theory (1) 3D Gross-Pitaevskii energy 2 E(ψ) = D 2m ψ 2 + N }{{} 2 g 3D ψ 4 + V trap ψ 2 + Ω (iψ, ψ x) }{{}}{{}}{{} kinetic interactions trap rotation scaling: [Aftalion Rivière (2001), Tsubota et al (2002), Fetter et al (2005)] r = x/r, u(r) = R 3/2 ψ(x), R = d/ ε d = ( /mω ) 1/2, ε = (d/8πna s ) 2/5, Ω = Ω/(εω ). Dimensionless energy E(u) = H(u) ΩL z (u), L z (u) = i u ( A t ) u, A = (y, x, 0) t H(u) = 1 2 u 2 + Ṽtrap(r) u 2 + g 2 u 4

19 The Gross-Pitaevskii equation Gross-Pitaevski theory (2) D R 3 et u = 0 on D 1 E(u) = 2 u 2 + V trap (r) u 2 + g 2 u 4 Ωi D under the unitary norm constraint u 2 = 1 (meta-)stable states :: local minima of the energy min E(u) Numerical methods D D u ( A t ) u Direct minimization of the energy Sobolev gradients. Imaginary time propagation.

20 The Gross-Pitaevskii equation Evolution of the numerical wave function parameters of the simulation V trap, Ω initial condition: ansatz for the vortex / field for Ω = 0 convergence: δe/e 10 6

21 Outline 1 Vortices in Bose-Einstein condensates 2 Mathematical description and numerical simulation The Gross-Pitaevskii equation 3 Imaginary-time propagation of the wave function Simulation of BEC experiments 4 Direct minimization of the energy functional Descent methods using Sobolev gradients FreeFem++ implementation 2D results 5 Conclusion

22 (3D) Imaginary time propagation E(u) = 1 2 u 2 + V trap (r) u 2 + g 2 u 4 Ωi u ( A t ) u Euler-Lagrange eq/ stationary Gross-Pitaevskii eq u t u + i(ω r). u = u 2ε 2 (V trap u 2 ) + µ ε u constraint : D u2 = 1 normalized gradient flow (Bao and Du, 2004) u t = 1 E(u) = 1 2 u 2 L 2E(u)

23 (3D) Imaginary time propagation E(u) = 1 2 u 2 + V trap (r) u 2 + g 2 u 4 Ωi u ( A t ) u Euler-Lagrange eq/ stationary Gross-Pitaevskii eq u t u + i(ω r). u = u 2ε 2 (V trap u 2 ) + µ ε u constraint : D u2 = 1 normalized gradient flow (Bao and Du, 2004) u t = 1 E(u) = 1 2 u 2 L 2E(u)

24 (3D) Imaginary time propagation E(u) = 1 2 u 2 + V trap (r) u 2 + g 2 u 4 Ωi u ( A t ) u Euler-Lagrange eq/ stationary Gross-Pitaevskii eq u t u + i(ω r). u = u 2ε 2 (V trap u 2 ) + µ ε u constraint : D u2 = 1 normalized gradient flow (Bao and Du, 2004) u t = 1 E(u) = 1 2 u 2 L 2E(u)

25 Finite difference 3D code 3D numerical code :: BETI solves :: u t = H(u) + 2 u, u C combined Runge Kutta + Crank-Nicolson scheme u l+1 u l δt ADI factorization = a l H l + b l H l 1 + c l 2 ( ul+1 + u l 2 (I c l δt 2 ) = (I c l δt 2 x )(I c l δt 2 y )(I c l δt 2 z ) projection after 3 steps of R-K u = u D u 2 )

26 Spatial discretization compact schemes (Padé) of order u i 1 + u i u i+1 = 14 u i+1 u i u i+2 u i 2, 9 2h 9 4h i+1 = 12 u i+1 2u i + u i 1 11 h u i 1 +u i u u i+2 2u i + u i 2 4h 2 boundary conditions : u = 0 computational domain D {ρ TF = ρ 0 V trap = 0}, D ρ TF = 1 grid

27 Simulation of BEC experiments Simulation of experiments (harmonic potential) P. Rosenbusch, V. Bretin, J. Dalibard, Phys. Rev. Lett A. Aftalion, I. Danaila, Phys. Rev. A, U vortex S vortex 3D U-vortex

28 Simulation of BEC experiments The S vortex (Ω 0, local minimum) energy diagram

29 Simulation of BEC experiments Fast rotating condensate towards the giant vorex [Kasamatsu, Tsubota and Ueda, 2002] harmonic potential : singularity for Ω = (ω (0) ) V h (r, z) = 1 2 m(ω(0) )2 r mω2 zz 2 V eff (r) = V h (r) 1 2 mω2 r 2 harmonic potential + Gaussian potential V (r, z) = V (r, z) = V h (r, z) + U 0 e 2r 2 /w 2 [ 1 2 m(ω(0) )2 2U ] 0 w 2 r 2 + 2U 0 w 4 r mω2 zz 2

30 Simulation of BEC experiments Potential : V trap = (1 α)r 2 + k 4 r 4 + β 2 z 2 A. Aftalion, I. Danaila, Phys. Rev. A, V eff (r) = V trap (r) ε 2 Ω 2 r 2 ε = 0.02, k/α = α < 1 weak attractive case 2 1 < α < 1 + β 1/4 k 5/8 / π weak repulsive case 3 α > 1 + β 1/4 k 5/8 / π strong repulsive case

31 Simulation of BEC experiments Suggestion for new configurations Quartic-harmonic potential: A. Aftalion, I. Danaila, PRA, top view angular momentum 2D cut (z=0)

32 Simulation of BEC experiments Quartic-harmonic potential top view angular momentum 2D cut (z=0)

33 Simulation of BEC experiments Simulation of real experiments 3D simulation of the experimental configuration (10 7 grid points). V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett I. Danaila, Phys. Rev. A, 2005.

34 Simulation of BEC experiments Quartic+harmonic potential (1)

35 Simulation of BEC experiments Quartic+harmonic potential (2) I. Danaila, Phys. Rev. A, Good quantitative agreement D. E. Sheehy and L. Radzihovsky, Phys. Rev. A, 2004.

36 Simulation of BEC experiments Optical lattice potential: V trap = r 2 + U sin 2 (πz/d) Non rotating BEC in optical lattices Z. Handzibababic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Phys. Rev. Lett D simulation

37 Introduction GP eq and numerics Imaginary-time propagation Sobolev gradients Conclusion Simulation of BEC experiments Rotating condensate in an optical lattice Ω = 0.87 U = 0.1 U = 0.5 U = 0.7

38 Outline 1 Vortices in Bose-Einstein condensates 2 Mathematical description and numerical simulation The Gross-Pitaevskii equation 3 Imaginary-time propagation of the wave function Simulation of BEC experiments 4 Direct minimization of the energy functional Descent methods using Sobolev gradients FreeFem++ implementation 2D results 5 Conclusion

39 Sobolev Direct minimization of the GP energy search critical points E(u) Normalized gradient flow u t = E(u) 1 2 L 2E(u) = 2 u 2 V trapu g u 2 u + iωa t u Sobolev gradients: J. W. Neuberger, Springer, 1997/2010 L 2 (D, C) :: u, v L 2 = u, v H 1 (D, C) :: u, v H = D D u, v + u, v García-Ripoll and Pérez-García, SISC and PRA, 2001

40 Sobolev Sobolev gradient method/ preconditionners Classical descent method (L 2 gradient) u = t L 2φ(u) = u k+1 = u k α L 2φ(u k ) similar to Richardson steepest descent method! Sobolev gradient descent method u t = H φ(u), P H φ(u k ) = L 2φ(u k ) u k+1 = u k αp 1 L 2φ(u k ) similar to preconditionned Richardson method!

41 Sobolev New descent method (1) (I. Danaila and P. Kazemi, SIAM J. Sci Computing, 2010) E(u) = D 1 2 u + iωat u 2 + (V trap Ω2 r 2 2 ) u 2 + g 2 u 4 New gradient u, v HA = D u, v + A u, A v, A = + iωa t H A (D, C) = H 1 (D, C) L 2 (D, C) < HA E, v > HA =< L 2E, v > L 2, v H 1 (D, C)

42 Sobolev New descent method (2) (I. Danaila and P. Kazemi, SIAM J. Sci Computing, 2010) New projection method for the constraint projection on {β (u) = 0}, with β(u) = D u 2 } G = X E(u), X = {L 2, H 1, H A P u,x G = G B v X from < X E, v > X =< L 2E, v > L 2 R v X, v X = β (u)v = R u, v L 2 from R u, P u,x G L 2 = 0 [ ] R u, G L 2 B = R u, v X L 2

43 FreeFem++ implementation Implementation of the new method FreeFem++ ( Free Generic PDE solver using finite elements (2D and 3D) powerful mesh generator, easy to implement weak formulations, use combined P1, P2 and P4 elements, complex matrices available, mesh interpolation and adaptivity. You are welcome to participate in the: Workshop on FreeFem++ and Applications Paris, December, 2013.

44 FreeFem++ implementation FreeFem++ implementation compute the gradient for X = H 1 [ ] G h + Gh = RHS = u h + 2h V trap u + g u 2 u iωa t u D D compute the gradient X = H A [ ] 1 + Ω 2 (y 2 + x 2 ) Gh + G h 2iΩ(A t G)h = RHS D projection time advancement [ ] R u, G L 2 P u,x G = G B v X, B = R u, v X L 2 u n+1 = u n δt P u,x G(u n ).

45 FreeFem++ implementation FreeFem++ syntax create a mesh and a finite element space border circle(t=0,2*pi) {label=1;x=rmax*cos(t);y=rmax*sin(t);}; mesh Th=buildmesh(circle(nbseg)); fespace Vh(Th,P1); fespace Vh4(Th,P4); compute the gradient for X = H 1 Vh<complex> ug,v ; problem AGRAD(ug,v) = int2d(th)(ug*v + dx(ug)*dx(v)+dy(ug)*dy(v)) - int2d(th)(ctrap*un*v) - int2d(th)(cn*real(un*conj(un))*un*v) on(1,ug=0); AGRAD;

46 2D results Academic test cases (manufactured solutions) New Sobolev method H A more efficient than H 1 for Ω ; CPU gain : 40% to 300 % New projection method for the unitary norm faster convergence that with normalization methods.

47 2D results Mesh adaptivity with FreeFem++ (1) (I. Danaila, F. Hecht, J. Computational Physics, 2010.) Mesh refinement by metrics control χ = u or χ = [u r, u i ] ; P1 finite elements+ adaptivity high order (6th order FD) V trap = 1 2 r r 4, Ω = 2 g = adapt U M=200 adapt [Ur, Ui] M=200 no-adapt M=200 no-adapt M=400 6th order FD 12.4 E(u) iterations

48 2D results Mesh adaptivity with FreeFem++ (2) (I. Danaila, F. Hecht, J. Computational Physics, 2010.) Good refinement strategy χ = [u r, u i ] ; V trap = 1 2 r r 4, Ω = 2 Ω = 2.5. a) 4 3 ε =10-3 b) 4 3 ε = y 2 1 y 2 1 E(u) c) x 4 ε =10-3 d) x 4 ε = y 3 2 y iterations x x

49 2D results Mesh isotropy

50 2D results Computing physical cases: Abrikosov lattice Harmonic trapping potential: V trap = 1 2 r 2, Ω = 0.95.

51 2D results Computing physical cases: giant vortex Quartic trapping potential: V trap = 1 2 r r 4, g = 1000.

52 Outline 1 Vortices in Bose-Einstein condensates 2 Mathematical description and numerical simulation The Gross-Pitaevskii equation 3 Imaginary-time propagation of the wave function Simulation of BEC experiments 4 Direct minimization of the energy functional Descent methods using Sobolev gradients FreeFem++ implementation 2D results 5 Conclusion

53 Conclusion and future work Advanced numerics are needed for BEC! Numerical Analysis new efficient methods, prove their capabilities on real (experimental) cases, bring complementary (qualitative/quantitative) information to experiments, and suggest new configurations. Future work: ANR project BECASIM ( ) 3D methods for real and imaginary time GP, implementation using (HPC) parallel computing, huge simulations of physical configurations (turbulence in BEC) iteract with physics community and make available free and performant codes!

Vortices in Bose-Einstein condensates. Ionut Danaila

Vortices in Bose-Einstein condensates. Ionut Danaila Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/ danaila October 16, 2008

More information

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations 1/38 Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations Xavier ANTOINE Institut Elie Cartan de Lorraine (IECL) & Inria-SPHINX Team Université de Lorraine, France Funded

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA Third Critical Speed for Rotating Bose-Einstein Condensates Mathematical Foundations of Physics Daniele Dimonte, SISSA 1 st November 2016 this presentation available on daniele.dimonte.it based on a joint

More information

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/ Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/0606058 in collaboration with preprint

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results. Michele Correggi

Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results. Michele Correggi Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results Michele Correggi CIRM FBK, Trento 15/09/2009 Mathematical Models of Quantum Fluids Università di Verona M. Correggi

More information

Rapporto di ricerca Research report

Rapporto di ricerca Research report Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2009 76/2009 Spectral methods for dissipative nonlinear Schrödinger equations Laura M. Morato

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

On Some Variational Optimization Problems in Classical Fluids and Superfluids

On Some Variational Optimization Problems in Classical Fluids and Superfluids On Some Variational Optimization Problems in Classical Fluids and Superfluids Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada URL: http://www.math.mcmaster.ca/bprotas

More information

Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++

Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++ . p.1/13 10 ec. 2014, LJLL, Paris FreeFem++ workshop : BECASIM session Numerical simulation of the Gross-Pitaevskii equation by pseudo-spectral and finite element methods comparison of GPS code and FreeFem++

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Max Lewandowski. Axel Pelster. March 12, 2012

Max Lewandowski. Axel Pelster. March 12, 2012 Primordial Models for Dissipative Bose-Einstein Condensates Max Lewandowski Institut für Physik und Astronomie, Universität Potsdam Axel Pelster Hanse-Wissenschaftskolleg, Delmenhorst March 12, 2012 Experiment

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013 January 21-25, 2013 An introduction to numerical methods for Schrödinger equations. Xavier ANTOINE (Institut Elie Cartan Nancy (IECN), Université de Lorraine) The aim of this course is to give an introduction

More information

A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation (Computer Physics Communications, 2016)

A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation (Computer Physics Communications, 2016) A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation Computer Physics Communications, 016) Guillaume Vergez a,b, Ionut anaila,a, Sylvain Auliac b, Frédéric Hecht b a Université

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

arxiv: v1 [cond-mat.quant-gas] 16 Nov 2018

arxiv: v1 [cond-mat.quant-gas] 16 Nov 2018 Phase-separated vortex-lattice in a rotating binary Bose-Einstein condensate S. K. Adhikari a a Instituto de Física Teórica, UNESP - Universidade Estadual Paulista, 01.140-070 São Paulo, São Paulo, Brazil

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence.

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Kirk Madison Vincent Bretin Frédéric Chevy Peter Rosenbuch Wendel Wohlleben Jean Dalibard

More information

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas:

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas: Lecture 1 2D quantum gases: the static case Low dimension quantum physics Quantum wells and MOS structures Jean Dalibard, Laboratoire Kastler Brossel*, ENS Paris * Research unit of CNRS, ENS, and UPMC

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Tien-Tsan Shieh joint work with I-Liang Chern and Chiu-Fen Chou National Center of Theoretical Science December 19, 2015

More information

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas 0.5 setgray0 0.5 setgray1 Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas IV EBED João Pessoa - 2011 Rolci Cipolatti Instituto de Matemática - UFRJ

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

Topologically trapped vortex molecules in Bose-Einstein condensates

Topologically trapped vortex molecules in Bose-Einstein condensates Topologically trapped vortex molecules in Bose-Einstein condensates R. Geurts, 1 M. V. Milošević, 1, and F. M. Peeters 1, * 1 Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-00 Antwerpen,

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 12 Jan 2007

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 12 Jan 2007 Stability and dynamics of vortex clusters in nonrotated Bose-Einstein condensates arxiv:cond-mat/0701285v1 [cond-mat.stat-mech] 12 Jan 2007 V. Pietilä, 1 M. Möttönen, 1,2 T. Isoshima, 3 J. A. M. Huhtamäki,

More information

Contents. Xavier ANTOINE Romain DUBOSCQ. 1 Introduction 2

Contents. Xavier ANTOINE Romain DUBOSCQ. 1 Introduction 2 Robust and efficient preconditioned Krylov spectral solvers for computing the ground states and dynamics of fast rotating and strongly interacting Bose-Einstein condensates Xavier ANTOINE Romain DUBOSCQ

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

Bose-Einstein Condensates with Strong Disorder: Replica Method

Bose-Einstein Condensates with Strong Disorder: Replica Method Bose-Einstein Condensates with Strong Disorder: Replica Method January 6, 2014 New Year Seminar Outline Introduction 1 Introduction 2 Model Replica Trick 3 Self-Consistency equations Cardan Method 4 Model

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

A Sobolev trust-region method for numerical solution of the Ginz

A Sobolev trust-region method for numerical solution of the Ginz A Sobolev trust-region method for numerical solution of the Ginzburg-Landau equations Robert J. Renka Parimah Kazemi Department of Computer Science & Engineering University of North Texas June 6, 2012

More information

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D Author: Navarro Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain. Advisor: Bruno Juliá Díaz Abstract: We study different solutions and their stability for a two component

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Stationary States of Bose Einstein Condensates in Single- and Multi-Well Trapping Potentials

Stationary States of Bose Einstein Condensates in Single- and Multi-Well Trapping Potentials Laser Physics, Vol., No.,, pp. 37 4. Original Tet Copyright by Astro, Ltd. Copyright by MAIK Nauka /Interperiodica (Russia). ORIGINAL PAPERS Stationary States of Bose Einstein Condensates in Single- and

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Thermodynamical properties of a rotating ideal Bose gas

Thermodynamical properties of a rotating ideal Bose gas PHYSICAL REVIEW A 76, 2369 27 Thermodynamical properties of a rotating ideal Bose gas Sebastian Kling* Institut für Angewandte Physik, Universität Bonn, Wegelerstrasse 8, 535 Bonn, Germany Axel Pelster

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Publication IV American Physical Society. Reprinted with permission.

Publication IV American Physical Society. Reprinted with permission. IV Publication IV V. Pietilä, M. Möttönen, T. Isoshima, J. A. M. Huhtamäki, and S. M. M. Virtanen, Stability and dynamics of vortex clusters in nonrotated Bose-Einstein condensates, Phys. Rev. A 74, 023603

More information

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems Weizhu Bao and Ming-Huang Chai Abstract In this paper we propose a uniformly convergent numerical method for

More information

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Faculty of Science, Osaka City University Michikazu Kobayashi May 25, 2006, Kansai Seminar House Contents 1. 2. 3. 4. 5. Introduction - history

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

Superfluidity & Bogoliubov Theory: Rigorous Results

Superfluidity & Bogoliubov Theory: Rigorous Results Superfluidity & Bogoliubov Theory: Rigorous Results Mathieu LEWIN mathieu.lewin@math.cnrs.fr (CNRS & Université Paris-Dauphine) collaborations with P.T. Nam (Vienna), N. Rougerie (Grenoble), B. Schlein

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region J. K. Nilsen 1), J. Mur-Petit 2), M. Guilleumas 2), M. Hjorth-Jensen 1), and A.Polls 2) 1 ) Department of Physics, University

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Optical Flux Lattices for Cold Atom Gases

Optical Flux Lattices for Cold Atom Gases for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Matter and rogue waves of some generalized Gross-Pitaevskii equations with varying potentials and nonlinearities

Matter and rogue waves of some generalized Gross-Pitaevskii equations with varying potentials and nonlinearities Matter and rogue waves of some generalized Gross-Pitaevskii equations with varying potentials and nonlinearities Zhenya Yan Key Lab of Mathematics Mechanization, AMSS, Chinese Academy of Sciences (joint

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Symmetry breaking and restoration in the Ginzburg-Landau model of nematic liquid crystals

Symmetry breaking and restoration in the Ginzburg-Landau model of nematic liquid crystals Symmetry breaking and restoration in the Ginzburg-Landau model of nematic liquid crystals Micha l Kowalczyk joint project with M. Clerc and P. Smyrnelis (LAFER/DIF and LSPS/CMM). March 1, 2018 Experimental

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 7 Mar 2005

arxiv:cond-mat/ v2 [cond-mat.soft] 7 Mar 2005 Center of mass rotation and vortices in an attractive Bose gas A. Collin 1, E. Lundh,1, K.-A. Suominen 3 1 Helsinki Institute of Physics, PL 64, arxiv:cond-mat/040336v [cond-mat.soft] 7 Mar 005 FIN-00014

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Will be published: Phys. Rev. Lett. 96, (2006)

Will be published: Phys. Rev. Lett. 96, (2006) Will be published: Phys. Rev. Lett. 96, 230402 (2006) Vortex-lattice melting in a one-dimensional optical lattice Michiel Snoek and H. T. C. Stoof Institute for Theoretical Physics, Utrecht University,

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries

A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries Ming-Chih Lai Chung-Yin Huang Te-Sheng Lin Department of Applied Mathematics,

More information

The nonlinear Schrödinger equation (NLSE) on metric graphs. Sven Gnutzmann (Nottingham) & Uzy Smilansky (Weizmann)

The nonlinear Schrödinger equation (NLSE) on metric graphs. Sven Gnutzmann (Nottingham) & Uzy Smilansky (Weizmann) The nonlinear Schrödinger equation (NLSE) on metric graphs Sven Gnutzmann (Nottingham) & Uzy Smilansky (Weizmann) Workshop on Random-Matrix Theory, Brunel, 19 December 2009 Physical applications of the

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Qinglin TANG. INRIA & IECL, University of Lorraine, France

Qinglin TANG. INRIA & IECL, University of Lorraine, France Numerical methods on simulating dynamics of the nonlinear Schrödinger equation with rotation and/or nonlocal interactions Qinglin TANG INRIA & IECL, University of Lorraine, France Collaborators: Xavier

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Pinning of Vortex Lattices in Single and Multicomponent Bose-Einstein Condensates by an Optical Potential

Pinning of Vortex Lattices in Single and Multicomponent Bose-Einstein Condensates by an Optical Potential Pinning of Vortex Lattices in Single and Multicomponent Bose-Einstein Condensates by an Optical Potential Martijn Mink September 11, 008 Institute for Theoretical Physics, Utrecht University Supervisors:

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87 Non-Abelian Vortices and Their Non-equilibrium Michikazu Kobayashi a University of Tokyo November 18th, 2011 at Keio University 2 nd Workshop on Quarks and Hadrons under Extreme Conditions - Lattice QCD,

More information

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto The discovery of Bose-Einstein condensation ( BEC ) in 1995 in dilute, ultracold trapped atomic gases is one of the most exciting developments

More information

What are we going to talk about: BEC and Nonlinear Atom Optics

What are we going to talk about: BEC and Nonlinear Atom Optics What are we going to talk about: BEC and Nonlinear Atom Optics Nobel Prize Winners E. A. Cornell 1961JILA and NIST Boulder, Co, USA W. Ketterle C. E. Wieman 19571951MIT, JILA and UC, Cambridge.M Boulder,

More information

BEC in one dimension

BEC in one dimension BEC in one dimension Tilmann John 11. Juni 2013 Outline 1 one-dimensional BEC 2 theoretical description Tonks-Girardeau gas Interaction exact solution (Lieb and Liniger) 3 experimental realization 4 conclusion

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions Lecture 4 Bose Einstein condensate (BEC) Optical lattices Nano in Dubna and Russia Conclusions Bose Einstein condensate (BEC) - definition -history - main characteristics - laser cooling - role of interaction

More information

FOUR-BODY EFIMOV EFFECT

FOUR-BODY EFIMOV EFFECT FOUR-BODY EFIMOV EFFECT Yvan Castin, Christophe Mora LKB and LPA, Ecole normale supérieure (Paris, France) Ludovic Pricoupenko LPTMC, Université Paris 6 OUTLINE OF THE TALK Cold atoms in short Introduction

More information

le LPTMS en Bretagne... photo extraite du site

le LPTMS en Bretagne... photo extraite du site le LPTMS en Bretagne... 1 photo extraite du site http://www.chateau-du-val.com le LPTMS en Bretagne... 1 2 Quantum signature of analog Hawking radiation in momentum space Nicolas Pavloff LPTMS, CNRS, Univ.

More information

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Antun Balaž 1 and Alexandru Nicolin 2 1 Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,

More information

Quantum Lattice Gas Algorithm for Quantum Turbulence and Vortex Reconnection in the Gross-Pitaevskii Equation

Quantum Lattice Gas Algorithm for Quantum Turbulence and Vortex Reconnection in the Gross-Pitaevskii Equation Quantum Lattice Gas Algorithm for Quantum Turbulence and Vortex Reconnection in the Gross-Pitaevskii Equation George Vahala 1, Jeffrey Yepez 1,2 and Linda Vahala 3 1 Dept. of Physics, William & Mary, Williamsburg,

More information

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Computer Physics Communications (13) 1 3 Computer Physics Communications Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Xavier Antoine a,b, Weizhu Bao 1c,d,

More information

Durham E-Theses. Semi-Analytic Ground State Solutions of Two-Component Bose-Einstein Condensate in Two Dimensions SRIDHAR, SWATI

Durham E-Theses. Semi-Analytic Ground State Solutions of Two-Component Bose-Einstein Condensate in Two Dimensions SRIDHAR, SWATI Durham E-Theses Semi-Analytic Ground State Solutions of Two-Component Bose-Einstein Condensate in Two Dimensions SRIDHAR, SWATI How to cite: SRIDHAR, SWATI (2014) Semi-Analytic Ground State Solutions of

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Introduction to Ultracold Atoms

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Introduction to Ultracold Atoms Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Introduction to Ultracold Atoms An overview of experimental techniques Advanced School on Quantum Science and Quantum Technologies, ICTP Trieste

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

arxiv:cond-mat/ v1 30 Jul 2003

arxiv:cond-mat/ v1 30 Jul 2003 Dirac monopoles and dipoles in ferromagnetic spinor Bose-Einstein condensates C. M. Savage 1 and J. Ruostekoski 2 1 Australian Centre for Quantum Atom Optics, Australian National University, ACT 0200,

More information

Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates

Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates Qinglin TANG Inria, University of Lorraine Joint work with: Prof. Weizhu BAO, Daniel MARAHRENS, Yanzhi ZHANG and Yong

More information

Dynamics of rotating two-component Bose Einstein condensates and its efficient computation

Dynamics of rotating two-component Bose Einstein condensates and its efficient computation Physica D 34 7 49 69 www.elsevier.com/locate/physd Dynamics of rotating two-component Bose Einstein condensates and its efficient computation Yanzhi Zhang a, Weizhu Bao a,b,, Hailiang Li c a Department

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Mean Field Limits for Ginzburg-Landau Vortices

Mean Field Limits for Ginzburg-Landau Vortices Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions & Institut Universitaire de France Jean-Michel Coron s 60th birthday, June

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

arxiv: v1 [cond-mat.quant-gas] 7 Aug 2016

arxiv: v1 [cond-mat.quant-gas] 7 Aug 2016 APS preprint Temperature and interaction dependence of the moment of inertia of a rotating condensate boson gas arxiv:608.059v [cond-mat.quant-gas] 7 Aug 06 Ahmed S. Hassan, Azza M. El-Badry, and Shemi

More information

Formation of quantized vortices in a gaseous Bose-Einstein condensate

Formation of quantized vortices in a gaseous Bose-Einstein condensate arxiv:cond-mat/0104218v2 [cond-mat.stat-mech] 30 Apr 2001 Formation of quantized vortices in a gaseous Bose-Einstein condensate F. Chevy, K. W. Madison, V. Bretin, and J. Dalibard Laboratoire Kastler Brossel,

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information