Vortices in Bose-Einstein condensates. Ionut Danaila

Size: px
Start display at page:

Download "Vortices in Bose-Einstein condensates. Ionut Danaila"

Transcription

1 Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) danaila October 16, 2008

2 Outline 1 Introduction Experimental Bose-Einstein condensate Vortices in fluids and superfluids 2 Numerical method Gross-Pitaevskii energy Imaginary time evolution : 3D code 3 3D structure of vortices Vortices in non rotating condensates Rotating condensate: harmonic potential Rotating condensate: quartic potential Rotating condensate: optical lattice Conclusion and future work

3 Outline 1 Introduction Experimental Bose-Einstein condensate Vortices in fluids and superfluids 2 Numerical method Gross-Pitaevskii energy Imaginary time evolution : 3D code 3 3D structure of vortices Vortices in non rotating condensates Rotating condensate: harmonic potential Rotating condensate: quartic potential Rotating condensate: optical lattice Conclusion and future work

4 Experimental BEC Bose-Einstein condensate (1) New state of the matter: super-atom Properties: superfluid, super-conductor. Predicted in 1924 S. Bose A. Einstein

5 Experimental BEC Bose-Einstein condensate (1) New state of the matter: super-atom Properties: superfluid, super-conductor. Predicted in 1924 S. Bose A. Einstein Created in 1995 Nobel Prize 2001 C. E. Wieman (Univ. Colorado) E. A. Cornell (Univ. Colorado) W. Ketterle (MIT, Cambridge)

6 Experimental BEC Bose-Einstein condensate (2) Experiment of Wieman and Cornell (1995) 1000 atoms of Rubidium (Rb) magnetic trap cooling by lasers + radio-frequency T 20nK size 100µm, t 1s

7 Experimental BEC Bose-Einstein condensate (2) Experiment of Wieman and Cornell (1995) 1000 atoms of Rubidium (Rb) magnetic trap cooling by lasers + radio-frequency T 20nK size 100µm, t 1s explosion in experimental and theoretical activity(wikipedia) Experiments in Lab. Kastler Brossel, ENS Paris

8 Vortices in fluids and superfluids Vortices in classical fluids easy physical intuition (velocity - pressure) (controversial) mathematical description Example of a classical vortex: the vortex ring flow injection through an orifice in a quiescent surrounding (Gharib et al., 1998)

9 Vortices in fluids and superfluids Identification of the vortex Passive scalar (smoke) (

10 Vortices in fluids and superfluids Identification of the vortex Passive scalar (smoke)

11 Vortices in fluids and superfluids Identification of the vortex Passive scalar / vorticity / pressure

12 Vortices in fluids and superfluids Identification of the vortex Passive scalar / vorticity / pressure U velocity field, p pressure field

13 Vortices in fluids and superfluids Identification of the vortex Passive scalar / vorticity / pressure U velocity field, p pressure field ω = U, Γ = ω nda vortex = iso-surface of ω (max) or of p (min)

14 Vortices in fluids and superfluids Vortices in superfluids difficult physical intuition (flow without viscosity) simple mathematical description (wave function) Bose-Einstein condensate (LKB, ENS Paris) (JILA, University of Colorado)

15 Vortices in fluids and superfluids Identification of a vortex (1) Macroscopic description ψ wave function ψ = ρ(r)e iθ(r) vortex :: ρ = 0 + rotation velocity field v(r) = h m θ quantified circulation Γ = v(s)ds = n h m

16 Vortices in fluids and superfluids Identification of a vortex (2) optical lattice giant vortex

17 Vortices in fluids and superfluids Vortex in a Bose-Einstein condensate Wake of moving objects

18 Vortices in fluids and superfluids Vortex in a Bose-Einstein condensate Wake of moving objects Phase imprint

19 Vortices in fluids and superfluids Vortex in a Bose-Einstein condensate Rotation Wake of moving objects Phase imprint

20 Outline 1 Introduction Experimental Bose-Einstein condensate Vortices in fluids and superfluids 2 Numerical method Gross-Pitaevskii energy Imaginary time evolution : 3D code 3 3D structure of vortices Vortices in non rotating condensates Rotating condensate: harmonic potential Rotating condensate: quartic potential Rotating condensate: optical lattice Conclusion and future work

21 Gross-Pitaevskii energy Gross-Pitaevskii theory (1) 3D Gross-Pitaevskii energy 2 E(ψ) = D 2m ψ 2 + Ω (iψ, ψ x) + V }{{}}{{} trap ψ 2 + Ng 3D ψ 4 }{{}}{{} kinetic rotation trap interactions scaling : [A. Aftalion, T. Rivière, Phys. Rev. A, 2001.] r = x/r, u(r) = R 3/2 ψ(x), R = d/ ε d = ( /mω ) 1/2, ε = (d/8πna s ) 2/5, Ω = Ω/(εω ). Dimensionless energy E(u) = H(u) ΩL z (u), L z (u) = i ū ( y x u x y u ) H(u) = 1 2 u ε 2 V trap(r) u ε 2 u 4

22 Gross-Pitaevskii energy Gross-Pitaevskii theory (1) 3D Gross-Pitaevskii energy 2 E(ψ) = D 2m ψ 2 + Ω (iψ, ψ x) + V }{{}}{{} trap ψ 2 + Ng 3D ψ 4 }{{}}{{} kinetic rotation trap interactions scaling : [A. Aftalion, T. Rivière, Phys. Rev. A, 2001.] r = x/r, u(r) = R 3/2 ψ(x), R = d/ ε d = ( /mω ) 1/2, ε = (d/8πna s ) 2/5, Ω = Ω/(εω ). Dimensionless energy E(u) = H(u) ΩL z (u), L z (u) = i ū ( y x u x y u ) H(u) = 1 2 u ε 2 V trap(r) u ε 2 u 4

23 Gross-Pitaevskii energy Gross-Pitaevskii theory (2) Lagrange equation equilibrium states :: critical points min E(u) u t u + i(ω r). u = u 2ε 2 (V trap u 2 ) + µ ε u constraint : D u2 = 1

24 Gross-Pitaevskii energy Gross-Pitaevskii theory (2) Lagrange equation equilibrium states :: critical points min E(u) u t u + i(ω r). u = u 2ε 2 (V trap u 2 ) + µ ε u constraint : D u2 = 1

25 Gross-Pitaevskii energy Gross-Pitaevskii theory (2) Lagrange equation equilibrium states :: critical points min E(u) u t u + i(ω r). u = u 2ε 2 (V trap u 2 ) + µ ε u constraint : D u2 = 1

26 Imaginary time evolution : 3D code Imaginary time evolution 3D numerical code solves :: u t = H(u) + 2 u, u C combined Runge Kutta + Crank-Nicolson scheme u l+1 u l δt ADI factorization = a l H l + b l H l 1 + c l 2 ( ul+1 + u l 2 (I c l δt 2 ) = (I c l δt 2 x )(I c l δt 2 y )(I c l δt 2 z ) projection after 3 steps of R-K u = u D u 2 )

27 Imaginary time evolution : 3D code Spatial discretization compact schemes (Padé) of order u i 1 + u i u i+1 = 14 u i+1 u i u i+2 u i 2, 9 2h 9 4h i+1 = 12 u i+1 2u i + u i 1 11 h u i 1 +u i u u i+2 2u i + u i 2 4h 2 boundary conditions : u = 0 computational domain D {ρ TF = ρ 0 V trap = 0}, D ρ TF = 1 grid

28 Imaginary time evolution : 3D code Imaginary time evolution parameters of the simulation V trap, Ω initial condition: ansatz for the vortex / field for Ω = 0 convergence: δe/e 10 6

29 Outline 1 Introduction Experimental Bose-Einstein condensate Vortices in fluids and superfluids 2 Numerical method Gross-Pitaevskii energy Imaginary time evolution : 3D code 3 3D structure of vortices Vortices in non rotating condensates Rotating condensate: harmonic potential Rotating condensate: quartic potential Rotating condensate: optical lattice Conclusion and future work

30 Vortices in non rotating condensates Vortices in non rotating condensates L.-C. Crasovan, V. M. Pérez-García, I. Danaila, D. Mihalache and L. Torner, Phys Rev A, series of Hermite polynomials 3D simulation ψ = j c j e ie j t 3 k=1 H jk (λ 1/2 k x k )e λ k x 2 k /2 φ (x, y, z) = H 2 (x)h 0 (y)h 0 (z) + ih 0 (x)h 2 (y)h 0 (z)

31 Rotating condensate: harmonic potential Rotating Bose-Einstein condensate Experiments in Lab Kastler Brossel, ENS Paris Cold Atoms Group of J. Dalibard Condensate of Rb made of atoms ; T = 90nK Thomas Fermi regime: Na s /a h 500 (a s =5 [nm]) << (ξ=0.3 [µm]) << (a h =1 [µm]) << (R=3 [µm]).

32 Rotating condensate: harmonic potential Harmonic potential: V trap = x 2 + α 2 y 2 + β 2 z 2 P. Rosenbusch, V. Bretin, J. Dalibard, Phys. Rev. Lett A. Aftalion, I. Danaila, Phys. Rev. A, U vortex S vortex 3D U-vortex

33 Rotating condensate: harmonic potential The U vortex(ω 0.42, global minimum) Validation of theoretical results A. Aftalion, T. Rivière, Phys Rev A, E γ = γ ρ TF dl Ω ρ 2 TF ln ε dz γ 1 no vortex for small Ω 2 β > 1 min= straight vortex 3 β 1 min= vortex en U 4 γ (x, z) or γ (y, z) 5 Ω, β large ; min= straight vortex

34 Rotating condensate: harmonic potential The U vortex bifurcation diagram

35 Rotating condensate: harmonic potential The S vortex (Ω 0, local minimum) energy diagram

36 Rotating condensate: harmonic potential Multiple vortices

37 Rotating condensate: quartic potential Fast rotating condensate harmonic potential: singularity when Ω = (ω (0) ) V h (r, z) = 1 2 m(ω(0) )2 r mω2 zz 2 V eff (r) = V h (r) 1 2 mω2 r 2 harmonic + Gaussian potential: remove singularity V (r, z) = V (r, z) = V h (r, z) + U 0 e 2r 2 /w 2 [ 1 2 m(ω(0) )2 2U 0 w 2 ] r 2 + 2U 0 w 4 r mω2 zz 2

38 Rotating condensate: quartic potential Quartic potential: V trap = (1 α)r 2 + k 4 r 4 + β 2 z 2 A. Aftalion, I. Danaila, Phys. Rev. A, V eff (r) = V trap (r) ε 2 Ω 2 r 2 ε = 0.02, k/α = α < 1 weak attractive case 2 1 < α < 1 + β 1/4 k 5/8 / π weak repulsive case 3 α > 1 + β 1/4 k 5/8 / π strong repulsive case

39 Rotating condensate: quartic potential Quartic-harmonic potential (α = 1.1) (1) top view angular momentum 2D cut (z=0)

40 Rotating condensate: quartic potential Quartic-harmonic potential (α = 1.1) (2) top view angular momentum 2D cut (z=0)

41 Rotating condensate: quartic potential Quartic-harmonic potential (α = 1.1) (3) top view angular momentum 2D cut (z=0)

42 Rotating condensate: quartic potential Quartic-harmonic potential (α = 1.1) (4) top view angular momentum 2D cut (z=0)

43 Rotating condensate: quartic potential Quartic potential: V trap = (1 α)r 2 + k 4 r 4 + β 2 z 2 A. Aftalion, I. Danaila, Phys. Rev. A, V eff (r) = V trap (r) ε 2 Ω 2 r 2 ε = 0.02, k/α = α < 1 weak attractive case 2 1 < α < 1 + β 1/4 k 5/8 / π weak repulsive case 3 α > 1 + β 1/4 k 5/8 / π strong repulsive case

44 Rotating condensate: quartic potential Quartic-harmonic potential (α = 1.2) new transition: giant vortex (giant + array of vortices)

45 Rotating condensate: quartic potential Quartic potential: V trap = (1 α)r 2 + k 4 r 4 + β 2 z 2 A. Aftalion, I. Danaila, Phys. Rev. A, V eff (r) = V trap (r) ε 2 Ω 2 r 2 ε = 0.02, k/α = α < 1 weak attractive case 2 1 < α < 1 + β 1/4 k 5/8 / π weak repulsive case 3 α > 1 + β 1/4 k 5/8 / π strong repulsive case

46 Rotating condensate: quartic potential Quartic+harmonic potential (1) 3D simulation of the experimental configuration (10 7 grid points). V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett I. Danaila, Phys. Rev. A, 2005.

47 Rotating condensate: quartic potential Quartic+harmonic potential (2)

48 Rotating condensate: quartic potential Quartic+harmonic potential (3) μ [nk] 10 0 Quantitative information condensate characteristics R, µ lattice characteristics, r v, b v R [μm] Ω/2π Ω/2π ρ z TF(r) ρ z v(r) = Ae 1 2 (r r 0) 2 /r v 2 ξ(r) = [8πa s ρ z TF(r)] 1/2

49 Rotating condensate: quartic potential Quartic+harmonic potential (4) I. Danaila, Phys. Rev. A, Good quantitative agreement D. E. Sheehy and L. Radzihovsky, Phys. Rev. A, 2004.

50 Rotating condensate: optical lattice Optical lattice potential: V trap = r 2 + U sin 2 (πz/d) Non rotating BEC in optical lattices Z. Handzibababic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Phys. Rev. Lett D simulation

51 Introduction Numerical method 3D structure of vortices Rotating condensate: optical lattice Rotating condensate in an optical lattice Ω = 0.87 U = 0.1 U = 0.5 U = 0.7

52 Conclusion Conclusion Conclusion and future work Papers rich variety of vortex configurations remarkably good (qualitative/quantitative) agreement with experiments physical exploration of the results for the rotating condensate in optical lattices Phys. Rev A, 72, (2005) (with L.C. Crasovan, V.M. Perez-Garcia, D. Mihalache, L. Torner) Phys. Rev A, 70, (2004) (with A. Aftalion) Phys. Rev A, 69, (2004) Phys. Rev A, 68, (2003)

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila Numerical methods for computing vortex states in rotating Bose-Einstein condensates Ionut Danaila Laboratoire de mathématiques Raphaël Salem Université de Rouen www.univ-rouen.fr/lmrs/persopage/danaila

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA Third Critical Speed for Rotating Bose-Einstein Condensates Mathematical Foundations of Physics Daniele Dimonte, SISSA 1 st November 2016 this presentation available on daniele.dimonte.it based on a joint

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/ Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/0606058 in collaboration with preprint

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas:

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas: Lecture 1 2D quantum gases: the static case Low dimension quantum physics Quantum wells and MOS structures Jean Dalibard, Laboratoire Kastler Brossel*, ENS Paris * Research unit of CNRS, ENS, and UPMC

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations 1/38 Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations Xavier ANTOINE Institut Elie Cartan de Lorraine (IECL) & Inria-SPHINX Team Université de Lorraine, France Funded

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence.

Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Dilute Bose-Einstein condensates and their role in the study of quantum fluids: rotations, vortices, and coherence. Kirk Madison Vincent Bretin Frédéric Chevy Peter Rosenbuch Wendel Wohlleben Jean Dalibard

More information

What are we going to talk about: BEC and Nonlinear Atom Optics

What are we going to talk about: BEC and Nonlinear Atom Optics What are we going to talk about: BEC and Nonlinear Atom Optics Nobel Prize Winners E. A. Cornell 1961JILA and NIST Boulder, Co, USA W. Ketterle C. E. Wieman 19571951MIT, JILA and UC, Cambridge.M Boulder,

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas 0.5 setgray0 0.5 setgray1 Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas IV EBED João Pessoa - 2011 Rolci Cipolatti Instituto de Matemática - UFRJ

More information

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Tien-Tsan Shieh joint work with I-Liang Chern and Chiu-Fen Chou National Center of Theoretical Science December 19, 2015

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D Author: Navarro Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain. Advisor: Bruno Juliá Díaz Abstract: We study different solutions and their stability for a two component

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions

Lecture 4. Bose Einstein condensate (BEC) Optical lattices. Conclusions Lecture 4 Bose Einstein condensate (BEC) Optical lattices Nano in Dubna and Russia Conclusions Bose Einstein condensate (BEC) - definition -history - main characteristics - laser cooling - role of interaction

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

FOUR-BODY EFIMOV EFFECT

FOUR-BODY EFIMOV EFFECT FOUR-BODY EFIMOV EFFECT Yvan Castin, Christophe Mora LKB and LPA, Ecole normale supérieure (Paris, France) Ludovic Pricoupenko LPTMC, Université Paris 6 OUTLINE OF THE TALK Cold atoms in short Introduction

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results. Michele Correggi

Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results. Michele Correggi Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results Michele Correggi CIRM FBK, Trento 15/09/2009 Mathematical Models of Quantum Fluids Università di Verona M. Correggi

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Introduction to Ultracold Atoms

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Introduction to Ultracold Atoms Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Introduction to Ultracold Atoms An overview of experimental techniques Advanced School on Quantum Science and Quantum Technologies, ICTP Trieste

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

arxiv: v1 [cond-mat.quant-gas] 16 Nov 2018

arxiv: v1 [cond-mat.quant-gas] 16 Nov 2018 Phase-separated vortex-lattice in a rotating binary Bose-Einstein condensate S. K. Adhikari a a Instituto de Física Teórica, UNESP - Universidade Estadual Paulista, 01.140-070 São Paulo, São Paulo, Brazil

More information

Max Lewandowski. Axel Pelster. March 12, 2012

Max Lewandowski. Axel Pelster. March 12, 2012 Primordial Models for Dissipative Bose-Einstein Condensates Max Lewandowski Institut für Physik und Astronomie, Universität Potsdam Axel Pelster Hanse-Wissenschaftskolleg, Delmenhorst March 12, 2012 Experiment

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Bose-Einstein Condensates with Strong Disorder: Replica Method

Bose-Einstein Condensates with Strong Disorder: Replica Method Bose-Einstein Condensates with Strong Disorder: Replica Method January 6, 2014 New Year Seminar Outline Introduction 1 Introduction 2 Model Replica Trick 3 Self-Consistency equations Cardan Method 4 Model

More information

Lecture 2: Weak Interactions and BEC

Lecture 2: Weak Interactions and BEC Lecture 2: Weak Interactions and BEC Previous lecture: Ideal gas model gives a fair intuition for occurrence of BEC but is unphysical (infinite compressibility, shape of condensate...) Order parameter

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Topologically trapped vortex molecules in Bose-Einstein condensates

Topologically trapped vortex molecules in Bose-Einstein condensates Topologically trapped vortex molecules in Bose-Einstein condensates R. Geurts, 1 M. V. Milošević, 1, and F. M. Peeters 1, * 1 Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-00 Antwerpen,

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Rapporto di ricerca Research report

Rapporto di ricerca Research report Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2009 76/2009 Spectral methods for dissipative nonlinear Schrödinger equations Laura M. Morato

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 12 Jan 2007

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 12 Jan 2007 Stability and dynamics of vortex clusters in nonrotated Bose-Einstein condensates arxiv:cond-mat/0701285v1 [cond-mat.stat-mech] 12 Jan 2007 V. Pietilä, 1 M. Möttönen, 1,2 T. Isoshima, 3 J. A. M. Huhtamäki,

More information

Optical Flux Lattices for Cold Atom Gases

Optical Flux Lattices for Cold Atom Gases for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto The discovery of Bose-Einstein condensation ( BEC ) in 1995 in dilute, ultracold trapped atomic gases is one of the most exciting developments

More information

Exceptional Points for Nonlinear Schrödinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases

Exceptional Points for Nonlinear Schrödinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases Exceptional Points for Nonlinear Schrödinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases G. Wunner, H. Cartarius, P. Köberle, J. Main, S. Rau Abstract The coalescence of two

More information

arxiv:cond-mat/ v1 28 Feb 1996

arxiv:cond-mat/ v1 28 Feb 1996 Bose-Einstein Condensation of Atoms in a Trap T.T. Chou, Chen Ning Yang 2 and L.H. Yu 3 arxiv:cond-mat/960253v 28 Feb 996 Department of Physics, University of Georgia, Athens, Georgia 30602 2 Institute

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Thermodynamical properties of a rotating ideal Bose gas

Thermodynamical properties of a rotating ideal Bose gas PHYSICAL REVIEW A 76, 2369 27 Thermodynamical properties of a rotating ideal Bose gas Sebastian Kling* Institut für Angewandte Physik, Universität Bonn, Wegelerstrasse 8, 535 Bonn, Germany Axel Pelster

More information

Will be published: Phys. Rev. Lett. 96, (2006)

Will be published: Phys. Rev. Lett. 96, (2006) Will be published: Phys. Rev. Lett. 96, 230402 (2006) Vortex-lattice melting in a one-dimensional optical lattice Michiel Snoek and H. T. C. Stoof Institute for Theoretical Physics, Utrecht University,

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Pinning of Vortex Lattices in Single and Multicomponent Bose-Einstein Condensates by an Optical Potential

Pinning of Vortex Lattices in Single and Multicomponent Bose-Einstein Condensates by an Optical Potential Pinning of Vortex Lattices in Single and Multicomponent Bose-Einstein Condensates by an Optical Potential Martijn Mink September 11, 008 Institute for Theoretical Physics, Utrecht University Supervisors:

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Superfluid vortex with Mott insulating core

Superfluid vortex with Mott insulating core Superfluid vortex with Mott insulating core Congjun Wu, Han-dong Chen, Jiang-ping Hu, and Shou-cheng Zhang (cond-mat/0211457) Department of Physics, Stanford University Department of Applied Physics, Stanford

More information

Quantum vortex reconnections

Quantum vortex reconnections Quantum vortex reconnections A.W. Baggaley 1,2, S. Zuccher 4, Carlo F Barenghi 2, 3, A.J. Youd 2 1 University of Glasgow 2 Joint Quantum Centre Durham-Newcastle 3 Newcastle University 4 University of Verona

More information

Pattern Formation in the Fractional Quantum Hall Effect

Pattern Formation in the Fractional Quantum Hall Effect Journal of the Physical Society of Japan 72, Supplement C (2003) 18-23 Pattern Formation in the Fractional Quantum Hall Effect Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems, Université

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA 1959-11 Workshop on Supersolid 2008 18-22 August 2008 Brief introduction to the field M. Chan Pennsylvania State University, USA Superfluid and supersolid An introduction at the ICTP Supersolid 2008 workshop

More information

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region J. K. Nilsen 1), J. Mur-Petit 2), M. Guilleumas 2), M. Hjorth-Jensen 1), and A.Polls 2) 1 ) Department of Physics, University

More information

Superfluidity & Bogoliubov Theory: Rigorous Results

Superfluidity & Bogoliubov Theory: Rigorous Results Superfluidity & Bogoliubov Theory: Rigorous Results Mathieu LEWIN mathieu.lewin@math.cnrs.fr (CNRS & Université Paris-Dauphine) collaborations with P.T. Nam (Vienna), N. Rougerie (Grenoble), B. Schlein

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013 January 21-25, 2013 An introduction to numerical methods for Schrödinger equations. Xavier ANTOINE (Institut Elie Cartan Nancy (IECN), Université de Lorraine) The aim of this course is to give an introduction

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

At low temperature Quantum Physics can manifest itself at the

At low temperature Quantum Physics can manifest itself at the Rotating Bose-Einstein condensates F. Chevy and J. Dalibard, Laboratoire Kastler Brossel, Département de Physique de l École Normale Supérieure, 24 rue Lhomond 75005 Paris France At low temperature Quantum

More information

arxiv: v1 [cond-mat.quant-gas] 7 Aug 2016

arxiv: v1 [cond-mat.quant-gas] 7 Aug 2016 APS preprint Temperature and interaction dependence of the moment of inertia of a rotating condensate boson gas arxiv:608.059v [cond-mat.quant-gas] 7 Aug 06 Ahmed S. Hassan, Azza M. El-Badry, and Shemi

More information

Quantized vortex stability and interaction in the nonlinear wave equation

Quantized vortex stability and interaction in the nonlinear wave equation Physica D 237 (2008) 2391 2410 www.elsevier.com/locate/physd Quantized vortex stability and interaction in the nonlinear wave equation Weizhu Bao a,b,, Rong Zeng c, Yanzhi Zhang a,1 a Department of Mathematics,

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 7 Mar 2005

arxiv:cond-mat/ v2 [cond-mat.soft] 7 Mar 2005 Center of mass rotation and vortices in an attractive Bose gas A. Collin 1, E. Lundh,1, K.-A. Suominen 3 1 Helsinki Institute of Physics, PL 64, arxiv:cond-mat/040336v [cond-mat.soft] 7 Mar 005 FIN-00014

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Publication IV American Physical Society. Reprinted with permission.

Publication IV American Physical Society. Reprinted with permission. IV Publication IV V. Pietilä, M. Möttönen, T. Isoshima, J. A. M. Huhtamäki, and S. M. M. Virtanen, Stability and dynamics of vortex clusters in nonrotated Bose-Einstein condensates, Phys. Rev. A 74, 023603

More information

Stationary States of Bose Einstein Condensates in Single- and Multi-Well Trapping Potentials

Stationary States of Bose Einstein Condensates in Single- and Multi-Well Trapping Potentials Laser Physics, Vol., No.,, pp. 37 4. Original Tet Copyright by Astro, Ltd. Copyright by MAIK Nauka /Interperiodica (Russia). ORIGINAL PAPERS Stationary States of Bose Einstein Condensates in Single- and

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada Dynamics of interacting vortices on trapped Bose-Einstein condensates Pedro J. Torres University of Granada Joint work with: P.G. Kevrekidis (University of Massachusetts, USA) Ricardo Carretero-González

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Faculty of Science, Osaka City University Michikazu Kobayashi May 25, 2006, Kansai Seminar House Contents 1. 2. 3. 4. 5. Introduction - history

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris Les Puces à Atomes Jakob Reichel Laboratoire Kastler Brossel de l E.N.S., Paris Atom chips: Cold atoms meet the nanoworld ~ 100 nm BEC (~ 10 5 atoms, ~ 100 nk) microstructured surface bulk material ( ~

More information

On Some Variational Optimization Problems in Classical Fluids and Superfluids

On Some Variational Optimization Problems in Classical Fluids and Superfluids On Some Variational Optimization Problems in Classical Fluids and Superfluids Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada URL: http://www.math.mcmaster.ca/bprotas

More information

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced Quantum Transport in Ultracold Atoms Chih-Chun Chien ( 簡志鈞 ) University of California, Merced Outline Introduction to cold atoms Atomtronics simulating and complementing electronic devices using cold atoms

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems Weizhu Bao and Ming-Huang Chai Abstract In this paper we propose a uniformly convergent numerical method for

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Antun Balaž 1 and Alexandru Nicolin 2 1 Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,

More information