Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates

Size: px
Start display at page:

Download "Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates"

Transcription

1 Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates Qinglin TANG Inria, University of Lorraine Joint work with: Prof. Weizhu BAO, Daniel MARAHRENS, Yanzhi ZHANG and Yong ZHANG

2 Outline 1 Brief introduction 2 Numerical method 3 Numerical examples 4 Summary

3 Brief introduction Outline 1 Brief introduction 2 Numerical method 3 Numerical examples 4 Summary Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 3 / 28

4 Brief introduction BEC Bose-Einstein condensate (BEC): many bosons occupy same quantum state if T < T c. Prediction: Einstein 1924 Experiments: JILA, BEC (1995), quantized vortex (1999) Interaction between particles: short-range s-wave contact interaction 1 Griesmaier, Werner, Hensler, Stuhler & Pfau, PRL 94 (2005) 2 Shuman, Barry & Demile, Nature 467 (2010) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 4 / 28

5 Brief introduction BEC Bose-Einstein condensate (BEC): many bosons occupy same quantum state if T < T c. Prediction: Einstein 1924 Experiments: JILA, BEC (1995), quantized vortex (1999) Interaction between particles: short-range s-wave contact interaction Realization of BECs of 52 Cr (Chromium-52) 1 and creation of ultracold molecules 2 : long-range dipole-dipole interaction (DDI) between particle besides the contact interaction leading to fascinating and sometimes completely unexpected effects. 1 Griesmaier, Werner, Hensler, Stuhler & Pfau, PRL 94 (2005) 2 Shuman, Barry & Demile, Nature 467 (2010) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 4 / 28

6 Brief introduction Collapse even if the contact interaction are repulsive, dipole orientation (0,0,1): Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 5 / 28

7 Brief introduction Tunability of the dipole: dipole orientation (cos(0.2t),0,sin(0.2t)) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 6 / 28

8 Brief introduction Gross-Pitaevskii equation (GPE): S. Yi and H. Pu, PRA 73 (2006); O Dell, et al., PRA 80 (2009) i tψ(x,t) = [ 12 ] 2 +V(x)+β ψ 2 +λφ(x,t) ΩL z ψ(x,t), x R d. (1) d = 2,3; V(x): trapping potential; L z = i(x y y x) = i θ. 3 O Dell et al., PRL 92 (2004); Bao et al., PRA 82 (2010) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 7 / 28

9 Brief introduction Gross-Pitaevskii equation (GPE): S. Yi and H. Pu, PRA 73 (2006); O Dell, et al., PRA 80 (2009) i tψ(x,t) = [ 12 ] 2 +V(x)+β ψ 2 +λφ(x,t) ΩL z ψ(x,t), x R d. (1) d = 2,3; V(x): trapping potential; L z = i(x y y x) = i θ. Φ(x,t): dipole-dipole interaction (DDI) potential, reads as 3 Φ(x,t) = U d dip ψ 2, (2) with Udip d (x,t) = 3 2 ( ) δ(x) 3 1 nn, d = 3, 4π x ( n n n ) ( 1 2π x ), d = 2, (3) where n = (n 1 (t),n 2 (t),n 3 (t)), is the time (in)-dependent dipole axis, n = (n 1 (t),n 2 (t)). 3 O Dell et al., PRL 92 (2004); Bao et al., PRA 82 (2010) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 7 / 28

10 Brief introduction Numerics: Ω = λ = 0, time-splitting spectral method(tssp) 4 Step1 : i tψ(x,t) = ψ(x,t), Step2 : i tψ(x,t) = ( V(x)+β ψ 2) ψ(x,t). (4) Step 1: discretised by spectral method and integrated in space exactly. Step 2: nonlinear ODE solved analytically Spectral in space, easy to implement. 4 Bao, Jaksch & Markowich, JCP 03; Bao, Jin, Markowich, SIAM J. Sci. Comput., 03; etc Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 8 / 28

11 Brief introduction Numerics: Ω = λ = 0, time-splitting spectral method(tssp) 4 Step1 : i tψ(x,t) = ψ(x,t), Step2 : i tψ(x,t) = ( V(x)+β ψ 2) ψ(x,t). (4) Step 1: discretised by spectral method and integrated in space exactly. Step 2: nonlinear ODE solved analytically Spectral in space, easy to implement. Cannot be simply extended to rotating system: Ω 0. Numerical difficulties: Ω 0, λ 0 (1). rotating term: L zψ. (2). nonlocal DDI term: Φ(x,t) =: U d dip ψ 2. 4 Bao, Jaksch & Markowich, JCP 03; Bao, Jin, Markowich, SIAM J. Sci. Comput., 03; etc Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 8 / 28

12 Numerical method Outline 1 Brief introduction 2 Numerical method 3 Numerical examples 4 Summary Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 9 / 28

13 Consider only the rotational term first: i.e., λ = 0, Ω 0 L z ψ(x,t) = i(y x x y )ψ(x,t), x R d,t 0

14 Numerical method Existing numerical methods: Ω 0, λ = 0, L z = i(y x x y ) = i θ Time splitting + ADI: Bao and Wang, JCP, Time splitting + polar/cylindrical coordinates: Bao, Du and Zhang, SIAM J. Appl. Math., Time splitting + Laguerre-Fourier-Hermite: Bao, Li and Shen, SIAM J. Sci. Comupt., 2009.: Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 11 / 28

15 Numerical method Existing numerical methods: Ω 0, λ = 0, L z = i(y x x y ) = i θ Time splitting + ADI: Bao and Wang, JCP, extra error for the splitting, not trivial to extend to higher order (in time) scheme. Step1 : i tψ(x,t) = [ 12 xx 14 ] zz iω y x ψ(x,t). (5) Step2 : i tψ(x,t) = [ 12 yy 14 ] zz +iω x y ψ(x,t). (6) Step3 : i tψ(x,t) = [ V(x)+β ψ 2] ψ(x,t). (7) Time splitting + polar/cylindrical coordinates: Bao, Du and Zhang, SIAM J. Appl. Math., Time splitting + Laguerre-Fourier-Hermite: Bao, Li and Shen, SIAM J. Sci. Comupt., 2009.: Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 11 / 28

16 Numerical method Existing numerical methods: Ω 0, λ = 0, L z = i(y x x y ) = i θ Time splitting + ADI: Bao and Wang, JCP, Time splitting + polar/cylindrical coordinates: Bao, Du and Zhang, SIAM J. Appl. Math., only 2nd or 4th order accuracy in radial direction. Step1 : i tψ(x,t) = [ 12 ] 2 ΩL z ψ(x,t). (8) Step2 : i tψ(x,t) = [ V(x)+β ψ 2] ψ(x,t). (9) Time splitting + Laguerre-Fourier-Hermite: Bao, Li and Shen, SIAM J. Sci. Comupt., 2009.: Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 11 / 28

17 Numerical method Existing numerical methods: Ω 0, λ = 0, L z = i(y x x y ) = i θ Time splitting + ADI: Bao and Wang, JCP, Time splitting + polar/cylindrical coordinates: Bao, Du and Zhang, SIAM J. Appl. Math., Time splitting + Laguerre-Fourier-Hermite: Bao, Li and Shen, SIAM J. Sci. Comupt., 2009.: implementation of the code is quite involved. Step1 : i tψ(x,t) = [ 12 ] 2 ΩL z + x 2 ψ(x,t). (10) 2 Step2 : i tψ(x,t) = [ U(x)+β ψ 2] ψ(x,t). (11) Q. Tang (Inria, UdL) 2 Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 11 / 28

18 Numerical method A rotating Lagrangian coordinate transformation Our method 5 : rotating Lagrangian coordinates transformation = relax ΩL z = TSSP. 5 Bao, Marahrens, Tang & Zhang, SIAM J. Sci. Comput., 13; Ming, Tang, & Zhang, J. Comput. Phys., 13 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 12 / 28

19 Numerical method A rotating Lagrangian coordinate transformation Our method 5 : rotating Lagrangian coordinates transformation = relax ΩL z = TSSP. Rotating Lagrangian coordinates x: x = A 1 (t)x = A T (t)x x = A(t) x, x R d. (12) where A(t): orthogonal rotational matrix defined in 3-d,respectively, 2-d cos(ωt) sin(ωt) 0 ( A(t) = cos(ωt) sin(ωt) sin(ωt) cos(ωt) 0, A(t) = sin(ωt) cos(ωt) Geometrical relation: Cartesian vs rotating Lagrangian coordinates. ). (13) 5 Bao, Marahrens, Tang & Zhang, SIAM J. Sci. Comput., 13; Ming, Tang, & Zhang, J. Comput. Phys., 13 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 12 / 28

20 Numerical method New formation of GPE, simple and efficient numerical method (Recall) GPE in Cartesian coordinate: i tψ(x,t) = [ 12 ] 2 +V(x)+β ψ 2 ψ(x,t) ΩL zψ(x,t). (14) Take rotating Lagrangian transformation, set φ( x,t) := ψ(x,t) = ψ(a(t) x,t), GPE with rotational term in rotating Lagrangian coordinate i tφ( x,t) = [ 12 ] 2 +V(A(t) x)+β φ 2 φ( x,t). (15) TSSP methods: Step1 : i tφ( x,t) = φ( x,t). (16) Step2 : i tφ( x,t) = ( V(A(t) x)+β φ 2) φ( x,t). (17) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 13 / 28

21 Numerical method Taking back the nonlocal dipolar term Reformulate GPE and truncated into bounded domain problem, D R d bounded: i tφ( x,t) = [ 12 ] 2 + V(A(t) x) + β φ 2 + λũddip φ( x,t) 2 φ( x, t), x D (18) with Ũd dip ( x,t) = 3 2 ( ) δ( x) 3 1 mm 4π x, m(t) = A(t)n(t), d = 3, ( m m m 2 ) ( π x ), m (t) = A(t)n (t), d = 2, (19) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 14 / 28

22 Numerical method Taking back the nonlocal dipolar term Reformulate GPE and truncated into bounded domain problem, D R d bounded: i tφ( x,t) = [ 12 ] 2 + V(A(t) x) + β φ 2 + λũddip φ( x,t) 2 φ( x, t), x D (18) with Ũd dip ( x,t) = 3 2 ( ) δ( x) 3 1 mm 4π x, m(t) = A(t)n(t), d = 3, ( m m m 2 ) ( π x ), m (t) = A(t)n (t), d = 2, (19) TSSP methods: for t n < t < t n+1 Step1 : i tφ( x,t) = φ( x,t) (20) [ Step2 : i tφ( x,t) = V(A(t) x) + β φ( x,t) 2 + λũd dip φ( x,t) 2] φ( x,t) (21) Step 2: density ρ(x,t) =: φ( x,t) 2 = φ( x,t n) 2 =: ρ n ( x) integrate analytically { [ t ( ) ]} φ( x,t) = exp i βρ n ( x)(t t n) + V (A(τ) x) + Ũd dip ( x,τ) ρn ( x) dτ tn (22) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 14 / 28

23 Numerical method Taking back the nonlocal dipolar term Reformulate GPE and truncated into bounded domain problem, D R d bounded: i tφ( x,t) = [ 12 ] 2 + V(A(t) x) + β φ 2 + λũddip φ( x,t) 2 φ( x, t), x D (18) with Ũd dip ( x,t) = 3 2 ( ) δ( x) 3 1 mm 4π x, m(t) = A(t)n(t), d = 3, ( m m m 2 ) ( π x ), m (t) = A(t)n (t), d = 2, (19) TSSP methods: for t n < t < t n+1 Step1 : i tφ( x,t) = φ( x,t) (20) [ Step2 : i tφ( x,t) = V(A(t) x) + β φ( x,t) 2 + λũd dip φ( x,t) 2] φ( x,t) (21) Step 2: density ρ(x,t) =: φ( x,t) 2 = φ( x,t n) 2 =: ρ n ( x) integrate analytically { [ t ( ) ]} φ( x,t) = exp i βρ n ( x)(t t n) + V (A(τ) x) + Ũd dip ( x,τ) ρn ( x) dτ tn Question: How to evaluate the nonlocal DDI term: Φ = Ũd dip ρn ( x)? (22) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 14 / 28

24 Evaluation of nonlocal potential: Φ = Ũd dip ρn ( x)

25 Numerical method Numerical methods to evaluate the nonlocal term Nonlocal DDI potential Φ = Ũd dip ρn ( x) (23) with ( ) Ũ d dip = δ( x) 3 1 mm 4π x, 3 ( 2 m m n ) ( 1 2π x ), Ũ d 1 + 3(m k)2 dip = k 2, d = 3, 3 [(m k) 2 m 2 3 k 2], d = 2, 2 k where Ũ d } dip {Ũd (k,t) =: F dip ( x,t) denotes the Fourier transform of Ũd dip (24) Naturally, convolution theorem + standard fast Fourier transform (FFT) 6 { Φ( x,t) = F 1 ρ n Ũ d } dip (25) standard FFT: uniform grid points in Cartesian coordinates, require value of 0-mode in Fourier space singularity of Ũ d dip (k,t) at k = 0 = locking phenomena 6 Lahaye, Metz, Fröhlich, Koch, Meister, Griesmaier, Pfau, Saito, Kawaguchi & Ueda, Phys. Rev. Lett., 08 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 16 / 28

26 Numerical method Numerical methods to evaluate the nonlocal term: Φ = Ũ d dip ρn ( x) Avoid the use of 0-mode: reformulate problem to equivalent poisson/fractional-poisson 7 : Ũd dip = with ( ) 1 δ( x) 3 mm, 4π x 3 ( 2 m m m d = 3 : d = 2 : ) ( 1 2π x ), { ρ n Φ( x,t) ( x) + 3 mmϕ, = ( 3 2 m m m 2 (26) 3 ) 2 ϕ, }ϕ( x,t) = ρ n ( x) with lim ϕ( x,t) = 0. (27) x homogeneous Dirichlet BC + discrete sine spectral (DST) Polynomial decay of ϕ( x, t) large computational domain to reduce the boundary truncation error: 7 Bao, Cai, & Wang, J. Comput. Phys., 10; Bao, Marahrens, Tang & Zhang, SIAM J. Sci. Comput., 13; Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 17 / 28

27 Numerical method Numerical methods to evaluate the nonlocal term: Φ = Ũ d dip ρn ( x) For example, we take d = 3, and ρ n ( x) = e x 2 /c 2 = Φ = ρ n ( x) 3 m T D m (28) here, the Hessian matrix D is given as follows: ( c 2 x 2 D ij = δ ij 2 x 2e c 2 c3 ( ) π x ) 4 x Erf 3 c ( +x ix j 3 c2 x 2 2 x 4e c 2 1 x 2 x 2e c c3 π ( x )) 4 x Erf. 5 c where δ ij is the dirac function and Erf(r) is the error function defined as Erf(r) = 2 π r 0 e t2 dt. Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 18 / 28

28 Numerical method Numerical methods to evaluate the nonlocal term: Φ = Ũ d dip ρn ( x) For example, we take d = 3, and ρ n ( x) = e x 2 /c 2 = Φ = ρ n ( x) 3 m T D m (28) here, the Hessian matrix D is given as follows: ( c 2 x 2 D ij = δ ij 2 x 2e c 2 c3 ( ) π x ) 4 x Erf 3 c ( +x ix j 3 c2 x 2 2 x 4e c 2 1 x 2 x 2e c c3 π ( x )) 4 x Erf. 5 c where δ ij is the dirac function and Erf(r) is the error function defined as Erf(r) = 2 π r 0 e t2 dt. Let m = (0,0,1) T, c = 1.4, solve Φ on computational domain D = [ L,L] 3 with h the mesh size via DST and compare with the exact solution (28). Table: l 2 -errors of Φ by DST on D[ L,L] 2. h = 1 h = 1/2 h = 1/4 h = 1/8 L = E E E E-02 L = E E E E-02 L = E E E E-02 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 18 / 28

29 Numerical method Numerical methods to evaluate the nonlocal term: Φ = Ũ d dip ρn ( x) Convolution theorem +coordinate transform +non-uniform fast Fourier transform (NUFFT) 8 { Φ( x,t) = F 1 ρ n Ũ d } dip, with Ûdip d = 3[(m k) 2 m 2 3 k 2 ] 2 k, d = (m k)2 k 2, d = 3 (29) Singularity at k = 0 removable: adopt spherical/polar coordinate transform in 3-d/2-d Φ( x, t) = = eik x Ûd dip (k,t) ρn (k) R d (2π) d 1 4π 2 R 0 1 8π 3 R 0 e ik xûd dip dk (k,t) ρ n (k) k <R (2π) d dk 2π 0 e ik x k Û d dip ρ n drdφ, d = 2 π 0 2π 0 e ik x k 2Ûd dip ρ n sinθdrdθdφ, d = 3 (30) Further discretized by high-order Gauss quadrature: Azimuthal φ-direction: trapezoidal rule radial r-direction (and inclination θ-direction in 3d): (shifted and scaled) Gauss-Legendre quadrature 8 Bao, Greengard & Jiang, SIAM J. Sci. Comput., 2014, Bao, Tang & Zhang, preprint, 2014 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 19 / 28

30 Numerical method NUFFT to evaluate the nonlocal term: Φ = Ũ d dip ρn ( x) Same example as the DST one, now we solve Φ by NUFFT. Table: l 2 -errors of Φ by NUFFT on D[ L,L] 2. h = 1 h = 1/2 h = 1/4 h = 1/8 L = E E E-14 <1E-14 L = E E E-15 <1E-15 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 20 / 28

31 Extension to rotating two-component dipolar BEC

32 Numerical method Extension to rotating two-component dipolar BEC 9 Rotating two-component GPE: j = 1, 2 [ ] i tψ j (x,t) = V j (x) ΩL z + (β jl ψ l 2 +λ jl Φ l ) ψ j (x,t) κψ 3 j,(31) l=1 Φ l (x,t) = Udip d ψ l(x,t) 2, l = 1, 2, x R d, t 0 (32) κ: Rabi frequency represents the internal atomic Josephson Junction effect (JJE). 9 Saito, Kawaguchi and Ueda, PRL 102 (2009), Ming, Tang & Zhang, JCP 258 (2013), Bao, Mauser, Tang & Yong, preprint, 2014 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 22 / 28

33 Numerical method Extension to rotating two-component dipolar BEC 9 Rotating two-component GPE: j = 1, 2 [ ] i tψ j (x,t) = V j (x) ΩL z + (β jl ψ l 2 +λ jl Φ l ) ψ j (x,t) κψ 3 j,(31) l=1 Φ l (x,t) = Udip d ψ l(x,t) 2, l = 1, 2, x R d, t 0 (32) κ: Rabi frequency represents the internal atomic Josephson Junction effect (JJE). Take rotating Lagrangian transformation: φ j ( x,t) := ψ(a(t)x) i φ j( x,t) t = [ V j (A(t) x,t)+ 2 ( βjl φ l 2 ) ] +λ jl Φ j φ j κφ 3 j ( x,t),(33) l=1 Φ l (x,t) = Ũd dip φ l( x,t) 2, l = 1, 2, x R d, t 0 (34) 9 Saito, Kawaguchi and Ueda, PRL 102 (2009), Ming, Tang & Zhang, JCP 258 (2013), Bao, Mauser, Tang & Yong, preprint, 2014 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 22 / 28

34 Numerical method Extension to rotating two-component BEC TSSP methods: ( ) 2 Step1 : i tφ j ( x,t) = V j (A(t) x,t)+ (β jl φ l 2 +λ jl Φj ) φ j (35) l=1 Step2 : i tφ j ( x,t) = φ j ( x,t) κψ 3 j (36) Step 2: set ϕ 1 ( x,t) = φ 1 +φ 2 and ϕ 2 ( x,t) = φ 1 φ 2 φ 1 = ϕ 1+ϕ 2 and φ 2 2 = ϕ 1 ϕ 2 2 i tϕ 1 ( x,t) = ϕ 1 ( x,t) κϕ 1, (37) i tϕ 2 ( x,t) = ϕ 2 ( x,t)+κϕ 2 (38) Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 23 / 28

35 Numerical examples Outline 1 Brief introduction 2 Numerical method 3 Numerical examples 4 Summary Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 24 / 28

36 Numerical examples Test of accuracy: one-component BEC Let d = 3, dipole axis n = m = (0,0,1) T, computational domain D = [ 8,8] 3, let initial data be ψ 0 (x) = 1 π 3/4e (x2 +y 2 +z 2 )/2, (39) and take γ x = γ y = γ z = 1, Ω = 0. We compute the exact solution at time t = 0.28 with very small mesh size h = 1 16 and τ = , and λ = β 2. Table: l 2 -error at t = 0.28 in spatial direction (upper parts) and temporal direction (lower parts h = 1/2 1/4 1/8 1/16 β = E E E E-12 β = E E E E-12 β = E E E E-11 τ = τ/2 τ/4 τ/8 β = E E E E-8 β = E E E E-7 β = E E E E-6 Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 25 / 28

37 Numerical examples Application to two-component dipolar BEC Initial data: ground state under parameters n = (0,0,1),γ x = γ y = γ z = 1,Ω = 0,κ = 0, (40) β 12 = β 21 = λ 12 = λ 21 = 0,β 11 = β 22 = ,λ 11 = λ 22 = (41) Dynamics: change parameters: β 12 = β 21 = 100 and λ 22 = 0. Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 26 / 28

38 Summary Outline 1 Brief introduction 2 Numerical method 3 Numerical examples 4 Summary Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 27 / 28

39 Summary Numerical methods on dynamic simulation of rotating dipolar BEC was presented: Rotating Lagrangian Coordinate transformation to eliminate the constrain of rotation term NUFFT to evaluate non-local DDI potential Easy to apply to other system: rotating multi-component BECs, rotating spin-orbit coupling BEC, etc... Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 28 / 28

40 Summary Numerical methods on dynamic simulation of rotating dipolar BEC was presented: Rotating Lagrangian Coordinate transformation to eliminate the constrain of rotation term NUFFT to evaluate non-local DDI potential Easy to apply to other system: rotating multi-component BECs, rotating spin-orbit coupling BEC, etc... Thank You For Attention! Q. Tang (Inria, UdL) Dynamics simulation of rotating dipolar BEC 10/12/2014, Paris 28 / 28

Qinglin TANG. INRIA & IECL, University of Lorraine, France

Qinglin TANG. INRIA & IECL, University of Lorraine, France Numerical methods on simulating dynamics of the nonlinear Schrödinger equation with rotation and/or nonlocal interactions Qinglin TANG INRIA & IECL, University of Lorraine, France Collaborators: Xavier

More information

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations. Weizhu Bao.

Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations. Weizhu Bao. Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

High-order time-splitting methods for Schrödinger equations

High-order time-splitting methods for Schrödinger equations High-order time-splitting methods for Schrödinger equations and M. Thalhammer Department of Mathematics, University of Innsbruck Conference on Scientific Computing 2009 Geneva, Switzerland Nonlinear Schrödinger

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT

Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT Commun. Comput. Phys. doi: 10.4208/cicp.scpde14.37s Vol. 19, No. 5, pp. 1141-1166 May 2016 Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates

More information

Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT

Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT Weizhu Bao a, Shidong Jiang b, Qinglin Tang c,d, Yong Zhang e,f, a Department

More information

arxiv: v1 [physics.comp-ph] 28 Sep 2016

arxiv: v1 [physics.comp-ph] 28 Sep 2016 A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates Qinglin Tang a,b, Yong Zhang c,, Norbert J. Mauser d arxiv:69.939v [physics.comp-ph]

More information

A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates

A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates Qinglin Tang a,b, Yong Zhang c,, Norbert J. Mauser d a Institut Elie Cartan

More information

A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries

A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries Ming-Chih Lai Chung-Yin Huang Te-Sheng Lin Department of Applied Mathematics,

More information

Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT

Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT Weizhu Bao, Shidong Jiang, Qinglin Tang, Yong Zhang To cite this version:

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Computer Physics Communications (13) 1 3 Computer Physics Communications Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Xavier Antoine a,b, Weizhu Bao 1c,d,

More information

Rapporto di ricerca Research report

Rapporto di ricerca Research report Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2009 76/2009 Spectral methods for dissipative nonlinear Schrödinger equations Laura M. Morato

More information

MATHEMATICAL THEORY AND NUMERICAL METHODS FOR GROSS-PITAEVSKII EQUATIONS AND APPLICATIONS CAI YONGYONG

MATHEMATICAL THEORY AND NUMERICAL METHODS FOR GROSS-PITAEVSKII EQUATIONS AND APPLICATIONS CAI YONGYONG MATHEMATICAL THEORY AND NUMERICAL METHODS FOR GROSS-PITAEVSKII EQUATIONS AND APPLICATIONS CAI YONGYONG (M.Sc., Peking University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF

More information

arxiv: v1 [cond-mat.quant-gas] 29 Dec 2010

arxiv: v1 [cond-mat.quant-gas] 29 Dec 2010 Emergent structure in a dipolar Bose gas in a one-dimensional lattice Ryan M. Wilson and John L. Bohn JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA (Dated: December

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

Stability and excitations of a dipolar Bose-Einstein condensate with a vortex

Stability and excitations of a dipolar Bose-Einstein condensate with a vortex PHYSICAL REVIEW A 79, 1361 9 Stability and excitations of a dipolar Bose-Einstein condensate with a vortex Ryan M. Wilson, Shai Ronen, and John L. Bohn JILA and epartment of Physics, University of Colorado,

More information

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations 1/38 Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations Xavier ANTOINE Institut Elie Cartan de Lorraine (IECL) & Inria-SPHINX Team Université de Lorraine, France Funded

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Exceptional Points for Nonlinear Schrödinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases

Exceptional Points for Nonlinear Schrödinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases Exceptional Points for Nonlinear Schrödinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases G. Wunner, H. Cartarius, P. Köberle, J. Main, S. Rau Abstract The coalescence of two

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Numerical aspects of the nonlinear Schro dinger equation. Christophe Besse

Numerical aspects of the nonlinear Schro dinger equation. Christophe Besse Numerical aspects of the nonlinear Schro dinger equation by Christophe Besse Laboratoire Paul Painleve, Universite Lille 1, CNRS, Inria Simpaf Team Lille Outline of the talk 1 Motivation 2 Numerical methods

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. APPL. MATH. Vol. 66, No. 3, pp. 758 786 c 6 Society for Industrial and Applied Mathematics DYNAMICS OF ROTATING BOSE EINSTEIN CONDENSATES AND ITS EFFICIENT AND ACCURATE NUMERICAL COMPUTATION WEIZHU

More information

arxiv: v3 [cond-mat.quant-gas] 1 Dec 2017

arxiv: v3 [cond-mat.quant-gas] 1 Dec 2017 arxiv:79.384v3 [cond-mat.quant-gas] Dec 7 Mathematical models and numerical methods for spinor Bose-Einstein condensates Weizhu Bao, Yongyong Cai, Department of Mathematics, National University of Singapore,

More information

Rational Chebyshev pseudospectral method for long-short wave equations

Rational Chebyshev pseudospectral method for long-short wave equations Journal of Physics: Conference Series PAPER OPE ACCESS Rational Chebyshev pseudospectral method for long-short wave equations To cite this article: Zeting Liu and Shujuan Lv 07 J. Phys.: Conf. Ser. 84

More information

DIMENSION REDUCTION FOR DIPOLAR BOSE-EINSTEIN CONDENSATES IN THE STRONG INTERACTION REGIME. Weizhu Bao. Loïc Le Treust and Florian Méhats

DIMENSION REDUCTION FOR DIPOLAR BOSE-EINSTEIN CONDENSATES IN THE STRONG INTERACTION REGIME. Weizhu Bao. Loïc Le Treust and Florian Méhats Kinetic and Related Models doi:1.3934/krm.21722 c American Institute of Mathematical Sciences Volume 1, Number 3, September 217 pp. 553 571 DIMENSION REDUCTION FOR DIPOLAR BOSE-EINSTEIN CONDENSATES IN

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

Quantum droplets of a dysprosium BEC

Quantum droplets of a dysprosium BEC Quantum droplets of a dysprosium BEC Igor Ferrier-Barbut Holger Kadau, Matthias Schmitt, Matthias Wenzel, Tilman Pfau 5. Physikalisches Institut,Stuttgart University SFB/TRR 21 1 Can one form a liquid

More information

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila Numerical methods for computing vortex states in rotating Bose-Einstein condensates Ionut Danaila Laboratoire de mathématiques Raphaël Salem Université de Rouen www.univ-rouen.fr/lmrs/persopage/danaila

More information

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems Weizhu Bao and Ming-Huang Chai Abstract In this paper we propose a uniformly convergent numerical method for

More information

Magnetism of spinor BEC in an optical lattice

Magnetism of spinor BEC in an optical lattice Magnetism of spinor BEC in an optical lattice Eugene Demler Physics Department, Harvard University Collaborators: Ehud Altman, Ryan Barnett, Luming Duan, Walter Hofstetter, Adilet Imambekov, Mikhail Lukin,

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Vortices in Bose-Einstein condensates. Ionut Danaila

Vortices in Bose-Einstein condensates. Ionut Danaila Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/ danaila October 16, 2008

More information

Quantized vortex stability and interaction in the nonlinear wave equation

Quantized vortex stability and interaction in the nonlinear wave equation Physica D 237 (2008) 2391 2410 www.elsevier.com/locate/physd Quantized vortex stability and interaction in the nonlinear wave equation Weizhu Bao a,b,, Rong Zeng c, Yanzhi Zhang a,1 a Department of Mathematics,

More information

Z. Zhou On the classical limit of a time-dependent self-consistent field system: analysis. computation

Z. Zhou On the classical limit of a time-dependent self-consistent field system: analysis. computation On the classical limit of a time-dependent self-consistent field system: analysis and computation Zhennan Zhou 1 joint work with Prof. Shi Jin and Prof. Christof Sparber. 1 Department of Mathematics Duke

More information

Emergence of chaotic scattering in ultracold lanthanides.

Emergence of chaotic scattering in ultracold lanthanides. Emergence of chaotic scattering in ultracold lanthanides. Phys. Rev. X 5, 041029 arxiv preprint 1506.05221 A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with : Dy

More information

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol 4, No, pp 35-6 Commun Comput Phys July 8 A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems Weizhu Bao, and Ming-Huang

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

Dipolar Bose-Einstein condensates at finite temperature

Dipolar Bose-Einstein condensates at finite temperature PHYSICAL REVIEW A 76, 4367 7 Dipolar Bose-Einstein condensates at finite temperature Shai Ronen JILA and Department of Physics, University of Colorado, Boulder, Colorado 839-44, USA John L. Bohn* JILA,

More information

arxiv:cond-mat/ v1 13 Mar 2003

arxiv:cond-mat/ v1 13 Mar 2003 COMPUTING THE GROUND STATE SOLUTION OF BOSE-EINSTEIN CONDENSATES BY A NORMALIZED GRADIENT FLOW WEIZHU BAO AND QIANG DU arxiv:cond-mat/03034v 3 Mar 003 Abstract. In this paper, we prove the energy diminishing

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Weizhu Bao. Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity

Weizhu Bao. Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics & Center for Computational Science and Engineering National University

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Three approaches for the design of adaptive time-splitting methods

Three approaches for the design of adaptive time-splitting methods Three approaches for the design of adaptive time-splitting methods Mechthild Thalhammer Leopold Franzens Universität Innsbruck, Austria Workshop on Geometric Integration and Computational Mechanics Organisers:

More information

A long wave electrodynamic model of an array of small Josephson junctions

A long wave electrodynamic model of an array of small Josephson junctions A long wave electrodynamic model of an array of small Josephson junctions Frontiers in nonlinear waves, Tucson, March 26-29 21 Jean guy Caputo Laboratoire de Mathématiques INSA de Rouen, France Lionel

More information

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87 Non-Abelian Vortices and Their Non-equilibrium Michikazu Kobayashi a University of Tokyo November 18th, 2011 at Keio University 2 nd Workshop on Quarks and Hadrons under Extreme Conditions - Lattice QCD,

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Applied Numerical Mathematics

Applied Numerical Mathematics Applied Numerical Mathematics 131 (2018) 1 15 Contents lists available at ScienceDirect Applied Numerical Mathematics www.elsevier.com/locate/apnum The spectral-galerkin approximation of nonlinear eigenvalue

More information

Numerical solution of the Schrödinger equation on unbounded domains

Numerical solution of the Schrödinger equation on unbounded domains Numerical solution of the Schrödinger equation on unbounded domains Maike Schulte Institute for Numerical and Applied Mathematics Westfälische Wilhelms-Universität Münster Cetraro, September 6 OUTLINE

More information

A guide to numerical experiments

A guide to numerical experiments BECs and and quantum quantum chaos: chaos: A guide to numerical experiments Martin Holthaus Institut für Physik Carl von Ossietzky Universität Oldenburg http://www.condmat.uni-oldenburg.de/ Quo vadis BEC?

More information

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Antun Balaž 1 and Alexandru Nicolin 2 1 Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,

More information

Lecture I: numerical computation of the dynamics of Schrödinger equations. Extension to the GPE for BECs

Lecture I: numerical computation of the dynamics of Schrödinger equations. Extension to the GPE for BECs /67 Lecture I: numerical computation of the dynamics of Schrödinger equations. Extension to the GPE for BECs Xavier Antoine Institut Elie Cartan de Lorraine (IECL) Université de Lorraine INRIA-CORIDA Team

More information

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada Dynamics of interacting vortices on trapped Bose-Einstein condensates Pedro J. Torres University of Granada Joint work with: P.G. Kevrekidis (University of Massachusetts, USA) Ricardo Carretero-González

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Tien-Tsan Shieh joint work with I-Liang Chern and Chiu-Fen Chou National Center of Theoretical Science December 19, 2015

More information

Downloaded 07/30/14 to Redistribution subject to SIAM license or copyright; see

Downloaded 07/30/14 to Redistribution subject to SIAM license or copyright; see SIAM J. APPL. MATH. Vol. 73, No. 6, pp. 00 3 c 03 Society for Industrial and Applied Mathematics DIMENSION REDUCTION OF THE SCHRÖDINGER EQUATION WITH COULOMB AND ANISOTROPIC CONFINING POTENTIALS WEIZHU

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

Superfluidity & Bogoliubov Theory: Rigorous Results

Superfluidity & Bogoliubov Theory: Rigorous Results Superfluidity & Bogoliubov Theory: Rigorous Results Mathieu LEWIN mathieu.lewin@math.cnrs.fr (CNRS & Université Paris-Dauphine) collaborations with P.T. Nam (Vienna), N. Rougerie (Grenoble), B. Schlein

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Artificial boundary conditions for dispersive equations. Christophe Besse

Artificial boundary conditions for dispersive equations. Christophe Besse Artificial boundary conditions for dispersive equations by Christophe Besse Institut Mathématique de Toulouse, Université Toulouse 3, CNRS Groupe de travail MathOcéan Bordeaux INSTITUT de MATHEMATIQUES

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS

ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS Mathematical Models and Methods in Applied Sciences c World Scientific Publishing Company ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/ Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/0606058 in collaboration with preprint

More information

Dynamics of rotating two-component Bose Einstein condensates and its efficient computation

Dynamics of rotating two-component Bose Einstein condensates and its efficient computation Physica D 34 7 49 69 www.elsevier.com/locate/physd Dynamics of rotating two-component Bose Einstein condensates and its efficient computation Yanzhi Zhang a, Weizhu Bao a,b,, Hailiang Li c a Department

More information

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D Author: Navarro Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain. Advisor: Bruno Juliá Díaz Abstract: We study different solutions and their stability for a two component

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Dmitry Pelinovsky 1 and Panos Kevrekidis 2 1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap Institute of Fundamental Sciences Massey University New Zealand 29 August 2017 A. A. Kapaev Memorial Workshop Michigan

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation,

So far we have derived two electrostatic equations E = 0 (6.2) B = 0 (6.3) which are to be modified due to Faraday s observation, Chapter 6 Maxwell Equations 6.1 Maxwell equations So far we have derived two electrostatic equations and two magnetostatics equations E = ρ ɛ 0 (6.1) E = 0 (6.2) B = 0 (6.3) B = µ 0 J (6.4) which are to

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

On the Dirty Boson Problem

On the Dirty Boson Problem On the Dirty Boson Problem Axel Pelster 1. Experimental Realizations of Dirty Bosons 2. Theoretical Description of Dirty Bosons 3. Huang-Meng Theory (T=0) 4. Shift of Condensation Temperature 5. Hartree-Fock

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity

Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity Physics Physics Research Publications Purdue University Year 21 Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity D. S. Wang X. H. Hu J. P. Hu W. M. Liu This

More information

Bifurcations of Multi-Vortex Configurations in Rotating Bose Einstein Condensates

Bifurcations of Multi-Vortex Configurations in Rotating Bose Einstein Condensates Milan J. Math. Vol. 85 (2017) 331 367 DOI 10.1007/s00032-017-0275-8 Published online November 17, 2017 2017 Springer International Publishing AG, part of Springer Nature Milan Journal of Mathematics Bifurcations

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012

Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012 Questioning Quantum Mechanics? Kurt Barry SASS Talk January 25 th, 2012 2 Model of the Universe Fundamental Theory Low-Energy Limit Effective Field Theory Quantum Mechanics Quantum Mechanics is presently

More information

Lecture 2: Weak Interactions and BEC

Lecture 2: Weak Interactions and BEC Lecture 2: Weak Interactions and BEC Previous lecture: Ideal gas model gives a fair intuition for occurrence of BEC but is unphysical (infinite compressibility, shape of condensate...) Order parameter

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

A UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED NON-LINEAR EIGENVALUE PROBLEM UNDER CONSTRAINTS CHAI MING HUANG

A UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED NON-LINEAR EIGENVALUE PROBLEM UNDER CONSTRAINTS CHAI MING HUANG A UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED NON-LINEAR EIGENVALUE PROBLEM UNDER CONSTRAINTS CHAI MING HUANG (B.Sc.(Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE

More information

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA Third Critical Speed for Rotating Bose-Einstein Condensates Mathematical Foundations of Physics Daniele Dimonte, SISSA 1 st November 2016 this presentation available on daniele.dimonte.it based on a joint

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Effective Dynamics of Solitons I M Sigal

Effective Dynamics of Solitons I M Sigal Effective Dynamics of Solitons I M Sigal Porquerolles October, 008 Joint work with Jürg Fröhlich, Stephen Gustafson, Lars Jonsson, Gang Zhou and Walid Abou Salem Bose-Einstein Condensation Consider a system

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information