Effect of Magnetic Field Direction on Forced Convective Heat Transfer of Magnetic Fluid

Size: px
Start display at page:

Download "Effect of Magnetic Field Direction on Forced Convective Heat Transfer of Magnetic Fluid"

Transcription

1 APSAEM14 Jorunal of the Japan Society of Applied Electromagnetics and Mechanics Vol.23, No.3 (2015) Regular Paper Effect of Magnetic Field Direction on Forced Convective Heat Transfer of Magnetic Fluid Masaaki MOTOZAWA *1, Kyohei KINO *1, Tatsuo SAWADA *2, Yasuo KAWAGUCHI *3 and Mitsuhiro FUKUTA *1 Effect of magnetic field direction on forced convective heat transfer of magnetic fluid flow in a rectangular duct was investigated experimentally. Magnetic fields were applied to magnetic fluid flow in three directions, which were an axial direction, a parallel direction and a vertical direction against the heat transfer direction. Reynolds numbers based on hydraulic diameter and bulk mean velocity were set at about 980 for laminar flow and about 6700 for turbulent flow. In the case of laminar flow, heat transfer was enhanced in the vertical direction and slightly enhanced in the axial direction, but hardly changed in the parallel direction. In contrast, in the case of turbulent flow, heat transfer was suppressed in all directions. The suppression level in vertical and parallel direction is similar, but the suppression in axial direction is much weaker than those in other directions. Moreover, in order to discuss the heat transfer characteristics, the velocity distribution was also measured by an ultrasonic technique. Keywords: Magnetic fluid, Convective heat transfer, Magnetic field direction, Rectangular duct, UVP. (Received: 12 August 2014) 1. Introduction An innovative cooling technology for CPU, fuel cell, power generator, space station etc. is strongly required in recent years. A nanofluid is one of media which has great potential for heat transfer applications, and several studies on heat transfer characteristics of nanofluid have been carried out [1]. A magnetic fluid [2] is a kind of the nanofluid and a stable colloidal dispersion of surfactant-coated nano-order-size magnetic particles in base liquid such as water. Because the magnetic fluid has unique characteristics under magnetic field, many studies on physical properties or flow phenomena of magnetic fluid have been conducted [3,4], and also many applications are proposed [5,6] since magnetic fluid had been developed. In the thermal engineering field, heat transfer characteristics of magnetic fluid also have attracted attention same as the nanofluid. Therefore, several studies of heat transfer characteristics of magnetic fluid have been done by both magnetic fluid researchers [7] and nanofluid researchers [8]. For instance, Sawada et al. [9] experimentally investigated natural convection of a magnetic fluid in concentric annuli. They reported that reverse natural convection occurs by applying magnetic field in the opposite direction of the gravity. Iwamoto et al. [10] proposed the self-driven flow of binary temperaturesensitive magnetic fluid for the application of heat transport device, and investigated influence of the magnetic field on the flow driving force. They con- Correspondence: M. MOTOZAWA, Department of Mechanical Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu, Japan motozawa.masaaki@ipc.shizuoka.ac.jp *1 Shizuoka University *2 Keio University *3 Tokyo University of Science firmed the enhancement of the driving force by using the binary temperature-sensitive magnetic fluid. Regarding forced convective heat transfer, some researches [11,12] including our previous study [13] reported the heat transfer enhancement by applying external magnetic field in laminar flow regime. However, there is not enough knowledge about the reason for this enhancement. In our previous study [14], we investigated forced convective heat transfer of magnetic fluid in both laminar and turbulent flow regime by applying uniform magnetic field in perpendicular direction of the heat transfer direction. However, some researchers reported that the thermal conductivity of magnetic fluid has characteristic anisotropy in the relation to magnetic field direction [15,16] because inner magnetic particles form chain-like structure in the direction of magnetic field. Therefore, it is important to discuss the effect of magnetic field direction on forced convective heat transfer of magnetic fluid. In this study, we investigated the forced convective heat transfer with applying uniform magnetic fields in an axial, a vertical, and a parallel direction against the heat transfer direction. In addition, in order to discuss the heat transfer phenomena in more details, we measured the velocity distribution by UVP (Ultrasonic Velocity Profiler) and flow resistance. 2. Experimental 2.1 Experimental apparatus Figure 1 shows a schematic diagram of the experimental apparatus. The flow system consists of a storage tank, a pump, and a rectangular duct as a test section. Flow rate can be adjusted by rotational speed of the pump and a bypass. Heater and cooling system are equipped in the storage tank and temperature of the test fluid can be controlled. The inlet (T in ) and outlet (T out ) temperature of the test fluid are measured by two 612

2 Fig. 1. Experimental apparatus. (a) Axial direction, (A) (b) Parallel direction, (P) (c) Vertical direction, (V) Fig. 2. Magnetic field directions; (a) Axial direction, (b) Parallel direction and (c) Vertical direction. thermocouples set at inlet and outlet of the duct. The rectangular duct has dimensions of 950 mm in length and 18 mm 18 mm in cross section, and is made of acrylic resin. The heater plate is made of a copper plate with an embedded heater, and is attached on the oneside of the duct. Ten thermocouples are installed in this heater plate Therefore, local wall temperatures at each position (T x ) can be measured. The positions of these thermocouples are also shown in Fig.1, and the position of T 5 is the center of the test section. Experiment was performed under uniform heat flux. A differential pressure gage is also set on the duct with the interval of 700 mm for measurement of the pressure difference across the magnetic field area. In this study, the Cartesian coordinates are defined as follows; x: Streamwise direction, y: Direction of normal to the heater plate, and z: Spanwise direction. Water-based magnetic fluid named MSG-W10 produced by Ferrotec Co. was used in this experiment. The density and viscosity of this magnetic fluid without magnetic field are kg/m 3 and 2.8 mpa s at 25 C measured by ourselves, respectively. Experiment was carried out in both laminar (about 980 of Re) and turbulent flow (about 6700 of Re). In these cases, the Reynolds number is defined by the bulk mean velocity and hydraulic diameter (D h = 18 mm). 2.2 Magnetic field Magnetic fields are applied to the magnetic fluid flow in three directions such as (a) an axial direction, (b) a parallel direction and (c) a vertical direction against the heat transfer direction as shown in Fig. 2. These directions are labelled as (A), (P) and (V), respectively. For applying the magnetic field in (A), we used a solenoid which is 200 mm in length, and the test section is set through in this solenoid having the same axis as shown in Fig. 2(a). This solenoid can apply up to 50 mt of magnetic field on the axis of the solenoid to the magnetic fluid flow. In contrast, uniform magnetic field is applied in (P) and (V) by an electromagnet, and magnetic field intensity can be varied from 0 mt to 500 mt in this study. The diameter of an iron core of this electromagnet is 150 mm. The centers of the solenoid and the electromagnet are set at the center of the test section where is the position of T 5. Therefore, the position of magnetic field areas are (x/d h ) for (V) and (P), and for (A). 2.3 Velocity profile measurement Since magnetic fluid is opaque, it is impossible to measure the velocity distribution by conventional optical methods such as LDV or PIV. Against this difficulty, UVP was applied to the measurement of velocity distribution in this study. UVP, which was developed by Takeda [17], is the measuring method for velocity distribution by ultrasound. Velocity distribution can be composed along the ultrasonic beam emitted from the UVP transducer. Seeding particles used in this study are polymethylmethacrylate particles (MBX-100, produced by Sekisui Plastics Co., Ltd.). These particles have 115 m in mean diameter. The UVP transducer was set on the rectangular duct where the magnetic field exists. In this study, it is important to measure the velocity distribution in an x-y plane, that is, the profile normal to the heater plate. In the case of applying magnetic field in (A), UVP transducer is set just down- 613

3 Fig. 3. Streamwise variation of heat transfer under magnetic field in laminar flow. stream outlet of the solenoid and measured the velocity distribution in an x-y plane. In the case of applying magnetic field by electromagnet (i.e. (V) and (P)), the velocity distribution in x-y plane can be measured in (V) but cannot be measured in (P) because of existence of electromagnet. 2.4 Data reduction The local heat transfer coefficient at each position (h x ) and local Nusselt number (Nu x ) are calculated by the following equations. q hx T T x b, x (1) hx Dh Nux (2) k where, k and q are thermal conductivity and heat flux, respectively. T x is local wall temperature at each positions which was measured by the thermocouples installed in the heater plate as mentioned above. T b, x is bulk temperature of the test fluid flow in the test section. This is estimated by using Eq. (3). Qx Tb, x Tin (3) m c Q x is the amount of heat from inlet of the test section to the position x. c is specific heat of the test fluid. m f is mass flow rate. 3. Results and discussion 3.1 Heat transfer Laminar flow regime Figure 3 shows the streamwise variation of heat transfer under magnetic field in laminar flow regime. The horizontal axis is the position x normalized by hydraulic diameter D h. The vertical axis is the ratio of local Nusselt number under no magnetic field (Nu no mag ) to f Fig. 4. Same as Fig. 3 for (P) and (V) under stronger magnetic field. that under magnetic field (Nu mag ). The magnetic field intensity is 50 mt because of the limitation of applying magnetic field in (A). This figure indicates that the heat transfer significantly increases in (V) and slightly increases in (A), but hardly changes in (P) in the region where the magnetic field is applied. Comparing (P) with (V), Fig. 4 shows the same as Fig. 3 for (P) and (V), but stronger magnetic fields which are 300 and 500 mt are applied. Fig. 4 clearly indicates that enhancement of the heat transfer in (V) becomes large with increasing the magnetic field, but the heat transfer in (P) hardly changes with increasing the magnetic field. In our previous study [14], we made similar experiment for heat transfer in (V) but using other kind of water-based magnetic field, and similar trend of heat transfer enhancement was obtained in (V). In addition, the heat transfer near the inlet and outlet of the magnetic field (i.e. T 4 and T 6 ) is larger than that at the center of the magnetic field. Since magnetic field gradient exist at inlet and outlet of the magnet, it seems that weak convection occurs in these positions. Therefore, heat transfer becomes larger than that at the center position. We discuss the reason for characteristic dependence of heat transfer on magnetic field direction below. Generally, as reasons for the heat transfer enhancement in this case, the change in thermal conductivity and the change in velocity gradient near the heater plate by applying magnetic field can be considered. Considering the change in the thermal conductivity, some researchers reported [15,16] that the thermal conductivity of magnetic fluid increases in the direction of magnetic field because of the formation of chain-like clusters. This increment of thermal conductivity in the magnetic field direction should result in heat transfer enhancement in (P). However, comparing heat transfer in (V) with (P), the opposite result, i.e. the heat transfer is enhanced in (V), was obtained. In addition, the heat transfer in (P) hardly changes even if strong magnetic field is applied as shown in Fig. 4. This fact indicates that the increment of thermal conductivity hardly influence on the heat transfer of magnetic fluid flow. 614

4 Fig. 5. Velocity distribution under magnetic field in (A). Fig. 7. Streamwise variation of the heat transfer under magnetic field in turbulent flow. Fig. 6. Change in the velocity gradient by applying magnetic field in (A) and (V). Actually, in this experiment, since the region of magnetic field is very short and flow exists, it seems that the chain-like cluster cannot be formed in the magnetic field area and the thermal conductivity hardly changes. Regarding velocity distribution, Figs. 5 and 6 show the actual velocity distribution in (A) measured by UVP and changes in the flow velocity by applying magnetic field in (V) and (A), respectively. In Fig. 5, the vertical axis is the flow velocity (u) normalized by the bulk mean velocity (u b ). The horizontal axis is the distance from the wall (y) normalized by the half of the duct side. On the contrary, in Fig. 6, the vertical axis is the change ratio of the flow velocity by applying magnetic field (u mag /u no mag ). These figures indicate that the velocity gradient near the heater plate slightly decreases in (A), but increases in (V) with increasing the magnetic field intensity. Previously, we measured the velocity distribution in (V) but using different kind of water-based magnetic field [14] and similar result (i.e. increment of velocity gradient in (V)) was obtained. The detail can be found in [14]. Therefore, in the case of (V) in this study, the increment of velocity gradient results in the significant heat transfer enhancement as we have already Fig. 8. Same as Fig. 7 for (P) and (V) under stronger magnetic field discussed previously. In contrast, although it is impossible to measure the velocity gradient near the heater plate in the case of (P), we guess that the velocity gradient decreases near the heater plate with considering our previous measurement [18] of velocity distribution under non-uniform magnetic field. Consequently, the heat transfer hardly changes in (P). On the other hand, in the case of (A), Fig. 5 indicates that the velocity gradient near the heater plate slightly decreases. Considering the results of the change in the thermal conductivity and velocity gradient, the heat transfer should not be enhanced so much because there is no reason for the heat transfer enhancement. However, in fact, the heat transfer is enhanced in (A) and the enhancement level is larger than that in (P) as shown in Fig. 3. It is thought that because magnetic field is not uniform in the solenoid, especially, at inlet and outlet of the solenoid, the weak convection induced by the magnetic field gradient, and this convection results in the heat transfer enhancement in (A). We need more detailed experiment in the future to clarify the heat transfer phenomena in (A). 615

5 Fig. 9. Change in the standard deviation of streamwise velocity by applying magnetic field in (A) and (V) Turbulent flow regime Figure 7 shows the results of the streamwise variation of the heat transfer in the turbulent flow. As shown in this figure, the heat transfer is suppressed at the region where the magnetic field exists in all directions as already reported in our previous study in the case of (V) [14]. The suppression in (V) and (P) is similar level, but the suppression level by applying the magnetic field in (A) is smaller than that in (V) and (P). This is because turbulent diffusion is suppressed by applying the magnetic field in all magnetic field directions. Moreover, Fig. 8 shows the same as Fig. 7 for (V) and (P), but stronger magnetic field is applied. The suppression of the heat transfer becomes large for both (V) and (P) with increasing the intensity of magnetic field. Regarding the difference of heat transfer downstream of magnetic field, although suppressed heat transfer recovers downstream of the region of magnetic field in the case of applying weak magnetic field as shown in Fig. 7, it does not recover but continue to be suppressed downstream of the magnetic field area by applying strong magnetic field as shown in Fig. 8. This fact means that the turbulent diffusion of magnetic fluid is suppressed strongly by applying strong magnetic field. Consequently, the suppression of turbulent diffusion in magnetic fluid is related to flow velocity and magnetic field intensity. Figure 9 shows the change in the standard deviation of streamwise velocity of magnetic fluid flow by applying the magnetic field. In the UVP measurement, because the spatial and temporal resolution are low comparing with PIV measurement, it is difficult to measure the turbulent fluctuation precisely. However, UVP displays the standard deviation of measured streamwise velocity at each positions. Although the result is not clear as shown in Fig. 9, this figure indicates that the standard deviation of streamwise velocity decreases by applying the strong magnetic field (i.e. 300 mt) throughout half of the rectangular duct. However, it Fig. 10. Change in the frictional coefficient by applying magnetic field in (A) and (V). is difficult to discuss the change in the standard deviation of streamwise velocity under weak magnetic field (i.e 50 mt). Considering Fig. 7, the fact, that is the suppression level in (A) is weaker than that in other direction, shows the possibility that there is characteristic anisotropy of the suppression of turbulent diffusion in relation to the magnetic field direction. Only when the magnetic field is applied in (A) (i.e. streamwise direction of magnetic fluid flow), it seems that the velocity fluctuation normal to the heater plate is not suppressed so strongly. For discussion of this unique turbulent suppression, we will measure the turbulent fluctuation more precisely in the future. 3.2 Frictional coefficient Figure 10 shows the Reynolds number dependence of change in the frictional coefficient by applying the magnetic field for (A) and (V). In this case, the influence of magnetic field on the flow resistance for (P) is the same as (V), because the cross section of the test section is square in this study. Frictional coefficient is calculated by the pressure difference ( p). In this figure, the vertical axis is the ratio of the frictional coefficient with magnetic field to that without magnetic field. This figure clearly indicates that the increment ratio of frictional coefficient increases in (V) with increasing the magnetic field intensity, but slightly increases in (A) in the laminar flow case. However, this increment ratio decreases with increasing Reynolds number in (V). Moreover, the flow resistance hardly changes in (A) under high Reynolds number. Previously, Kamiyama et al. [19] investigated the influence of non-uniform magnetic field on pipe frictional coefficient and made more detailed discussion. They reported that the flow resistance increases in laminar flow, but the magnetic field hardly influences on flow resistance in turbulent flow, namely the similar result is obtained in this study. It is well known that the apparent viscosity increases when the magnetic field is applied to the magnetic fluid. Therefore, this increment of apparent viscosity causes 616

6 the increment of flow resistance. In the case of (A), as the magnetic field is applied to the magnetic fluid flow along the streamwise direction, skin friction in (A) does not significantly increase comparing with (V). Therefore, the flow resistance slightly increases by the increase of apparent viscosity. This difference of increment of flow resistance between (V) and (A) indicates that there is also characteristic anisotropy of the change in the apparent viscosity related to the magnetic field direction. 4. Conclusion We investigated the forced convective heat transfer of magnetic fluid by applying magnetic field in a vertical, a parallel and an axial direction against heat transfer direction by using a rectangular duct. In the case of laminar flow, heat transfer is enhanced by applying the magnetic field in the order by the vertical direction and the axial direction. However, the heat transfer hardly changes by applying the magnetic field in the parallel direction even if strong magnetic field is applied. In contrast, in the case of turbulent flow, the heat transfer is suppressed by applying magnetic field in all directions. The suppression of heat transfer is similar level for applying the magnetic field in the vertical direction and the parallel direction. However, the suppression level by applying the magnetic field in the axial direction is much smaller than that in other directions. On the other hand, the flow resistance by applying the magnetic field in the vertical direction (same as the parallel direction) largely increases with increasing the magnetic field in laminar flow regime, but that by applying the magnetic field in the axial direction slightly increases. Acknowledgment This study was partly supported by a Grant-in-Aid for Young Scientists (B) Number of the Japan Society for Promotion of Science. References [1] S. K. Das, S. U. S. Choi, W. Yu and T. Pradeep, Nanofluids; Science and Technology, John Wiley and Sons. Inc., [2] R. E. Rosensweig, Magnetic fluids, Annual Review of Fluid Mechanics. Vol. 19, pp , [3] C. Rinaldi, A. Chaves, E. S. Elborai, X. He and M. Zahn, Magnetic fluid rheology and flows, Current Opinion in Colloid & Interface Science, Vol.10, pp , [4] H. Kikura, Y. Takeda and F. Durst, Velocity profile measurement of the Taylor vortex flow of a magnetic fluid using the ultrasonic Doppler method, Experiments in Fluids, Vol.26, pp , [5] K. Ohno, H. Suzuki and T. Sawada, Analysis of liquid sloshing of a tuned magnetic fluid damper for single and co-axial cylindrical containers, Journal of Magnetism, Magnetic Materials, Vol.323, pp , [6] Ferrotec Corporation home page (referred in 2014); [7] H. Yamaguchi, Z. Zhang, S. Shuchi and K. Shimada, Heat transfer characteristics of magnetic fluid in a partitioned rectangular box, Journal of Magnetism and Magnetic Materials, Vol.252, pp , [8] L. S. Sundar, M. T. Naik, K. V. Sharma, M. K. Singh, and T. Ch. Siva Reddy, Experimental investigation of forced convection heat transfer and friction factor in at tube with Fe3O4 magnetic nanofluid, Experimental Thermal and Fluid Science, Vol.37, pp.65-71, [9] T. Sawada, H. Kikura, A. Saito and T. Tanahashi, Natural convection of a magnetic fluid in concentric horizontal annuli under nonuniform magnetic field, Experimental Thermal and Fluid Science, Vol.7, pp , [10] Y. Iwamoto, H. Yamaguchi and X. D. Niu, Magnetically-driven heat transport device using a binary temperature-sensitive magnetic fluid, Journal of Magnetism and Magnetic Materials, Vol.323, pp , [11] K. Fumoto, M. Ikegawa and T. Kawanami, Heat transfer characteristics of a thermo-sensitive magnetic fluid in micro-channel, Journal of Thermal Science and Technology, Vol.4, pp , [12] R. Azizian, E. Doroodchi, T. Mckrell, J. Buongiorno, L. W. Hu and B. Moghtaderi, Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids, International Journal of Heat and Mass Transfer, Vol.68, pp , [13] M. Motozawa, J. Chang, T. Sawada and Y. Kawaguchi, Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid, Physics Procedia, Vol.9, pp , [14] M. Motozawa, T. Sekine, T. Sawada and Y. Kawaguchi, Variation of forced convective heat transfer in rectangular duct flow of a magnetic fluid under magnetic field, Journal of Physics: Conference Series, Vol.412, , [15] Q. Li, Y. Xuan and J. Wang, Experimental investigations on transport properties of magnetic fluids, Experimental Thermal and Fluid Science, Vol.30, pp , [16] M. Krichler and S. Odenbach, Magnetically induced anisotropy in thermal conductivity in magnetic fluids, in Proceedings of 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Lisbon, [17] Y. Takeda, Velocity profile measurement by ultrasound Doppler shift method, International Journal of Heat and Fluid Flow, Vol.7, pp , [18] S. Tatsuno, M. Motozawa, T. Sawada and Y. Kawaguchi, Influence of non-uniform magnetic field on velocity distribution of rectangular duct flow of a magnetic fluid, in Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization, Nara, [19] S. Kamiyama, K. Koike and T. Oyama, Pipe flow resistance of magnetic fluids in a nonuniform transverse magnetic field, Journal of Magnetism and Magnetic Materials, Vol.39, pp.23-26,

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle Journal of Flow Control, Measurement & Visualization, 24, 2, 54-64 Published Online October 24 in SciRes. http://www.scirp.org/journal/jfcmv http://dx.doi.org/.4236/jfcmv.24.247 Comparison between Numerical

More information

Natural Convection in an Enclosure: Effect of Magnetic Field Dependent Thermal Conductivity

Natural Convection in an Enclosure: Effect of Magnetic Field Dependent Thermal Conductivity Proceedings of the 4 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17) Toronto, Canada August 21 23, 2017 Paper No. 173 DOI: 10.11159/ffhmt17.173 Natural Convection in an Enclosure:

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

A Study On The Heat Transfer of Nanofluids in Pipes

A Study On The Heat Transfer of Nanofluids in Pipes Project Report 2014 MVK160 Heat and Mass Transport May 15, 2014, Lund, Sweden A Study On The Heat Transfer of Nanofluids in Pipes Koh Kai Liang Peter Dept. of Energy Sciences, Faculty of Engineering, Lund

More information

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel To cite this article:

More information

Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux

Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux World Applied Sciences Journal 15 (3): 331-338, 011 ISSN 1818-495 IDOSI Publications, 011 Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux S.M. Peyghambarzadeh

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid

The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid Experimental Thermal and Fluid Science 32 (27) 23 28 www.elsevier.com/locate/etfs The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid H. Nakaharai a, *, J. Takeuchi

More information

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Dmitriy Guzei 1, *, Maxim Pryazhnikov 1, Andrey Minakov 1,, and Vladimir Zhigarev 1

More information

Flow and heat transfer characteristics of tornado-like vortex flow

Flow and heat transfer characteristics of tornado-like vortex flow Advances in Fluid Mechanics VI 277 Flow and heat transfer characteristics of tornado-like vortex flow Y. Suzuki & T. Inoue Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology

More information

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS Proceedings of the ASME 2009 InterPACK Conference IPACK2009 July 19-23, 2009, San Francisco, California, USA Proceedings of InterPACK09 ASME/Pacific Rim Technical Conference and Exhibition on Packaging

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

ANALYSIS OF FREQUENCY CHARACTERISTICS ON NON-INVASIVE ULTRASONIC-DOPPLER FLOW MEASUREMENT FOR METAL PIPES

ANALYSIS OF FREQUENCY CHARACTERISTICS ON NON-INVASIVE ULTRASONIC-DOPPLER FLOW MEASUREMENT FOR METAL PIPES 4th International Symposium on Ultrasonic Doppler Method for Fluid Mechanics and Fluid Engineering Sapporo, 6.-8. September, 2004 ANALYSIS OF FREQUENCY CHARACTERISTICS ON NON-INVASIVE ULTRASONIC-DOPPLER

More information

VERIFICATION TEST OF A THREE-SURFACE-MULTI-LAYERED CHANNEL TO REDUCE MHD PRESSURE DROP

VERIFICATION TEST OF A THREE-SURFACE-MULTI-LAYERED CHANNEL TO REDUCE MHD PRESSURE DROP NTHAS8: The Eighth Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety Beppu, Japan, December 9-12, 212 Paper Number N8P189 VERIFICATION TEST OF A THREE-SURFACE-MULTI-LAYERED CHANNEL TO REDUCE

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 03, March 2019, pp. 555-566. Article ID: IJMET_10_03_057 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=3

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

Conjugate heat transfer from an electronic module package cooled by air in a rectangular duct

Conjugate heat transfer from an electronic module package cooled by air in a rectangular duct Conjugate heat transfer from an electronic module package cooled by air in a rectangular duct Hideo Yoshino a, Motoo Fujii b, Xing Zhang b, Takuji Takeuchi a, and Souichi Toyomasu a a) Fujitsu Kyushu System

More information

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING Yukinori Kametani Department of mechanical engineering Keio

More information

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger International Journal of Engineering Studies. ISSN 0975-6469 Volume 8, Number 2 (2016), pp. 211-224 Research India Publications http://www.ripublication.com Numerical Analysis of Fe 3 O 4 Nanofluid Flow

More information

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions Advanced Computational Methods in Heat Transfer X 25 Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions F. Selimovic & B. Sundén

More information

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION OBJECTIVE The objective of the experiment is to compare the heat transfer characteristics of free and forced convection.

More information

Transitional Flow and Heat Transfer Characteristics in a Rectangular Duct with Stagger-arrayed Short Pin Fins

Transitional Flow and Heat Transfer Characteristics in a Rectangular Duct with Stagger-arrayed Short Pin Fins Chinese Journal of Aeronautics 22(2009) 237-242 Chinese Journal of Aeronautics www.elsevier.com/locate/cja Transitional Flow and Heat Transfer Characteristics in a Rectangular Duct with Stagger-arrayed

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

COMSOL Conference 2010

COMSOL Conference 2010 Presented at the COMSOL Conference 2010 Boston COMSOL Conference 2010 Understanding Ferrofluid Spin-Up Flows in Rotating Uniform Magnetic Fields Shahriar Khushrushahi, Prof. Markus Zahn Massachusetts Institute

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 25-27, 2008

5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 25-27, 2008 Numerical Determination of Temperature and Velocity Profiles for Forced and Mixed Convection Flow through Narrow Vertical Rectangular Channels ABDALLA S. HANAFI Mechanical power department Cairo university

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID THERMAL SCIENCE: Year 2016, Vol. 20, No. 1, pp. 89-97 89 HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID by Adnan M. HUSSEIN a*, Rosli Abu BAKAR b, Kumaran KADIRGAMA

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

FLOW VISUALIZATION OF FERROMAGNETIC NANO- PARTICLES ON MICROCHANNEL FLOW USING DARK FIELD MICROSCOPY

FLOW VISUALIZATION OF FERROMAGNETIC NANO- PARTICLES ON MICROCHANNEL FLOW USING DARK FIELD MICROSCOPY ISTP-16,, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FLOW VISUALIZATION OF FERROMAGNETIC NANO- PARTICLES ON MICROCHANNEL FLOW USING DARK FIELD MICROSCOPY Hiroshige Kikura*, Junichiro Matsushita

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Convection in Three-Dimensional Separated and Attached Flow

Convection in Three-Dimensional Separated and Attached Flow Convection in Three-Dimensional Separated and Attached Flow B. F. Armaly Convection Heat Transfer Laboratory Department of Mechanical and Aerospace Engineering, and Engineering Mechanics University of

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

Fluid Flow and Heat Transfer of Combined Forced-Natural Convection around Vertical Plate Placed in Vertical Downward Flow of Water

Fluid Flow and Heat Transfer of Combined Forced-Natural Convection around Vertical Plate Placed in Vertical Downward Flow of Water Advanced Experimental Mechanics, Vol.2 (2017), 41-46 Copyright C 2017 JSEM Fluid Flow and Heat Transfer of Combined Forced-Natural Convection around Vertical Plate Placed in Vertical Downward Flow of Water

More information

Thermo Hydraulic Performance of Solar Air Heater by Using Double Inclined Discrete Rib Roughened Absorber Plate

Thermo Hydraulic Performance of Solar Air Heater by Using Double Inclined Discrete Rib Roughened Absorber Plate Thermo Hydraulic Performance of Solar Air Heater by Using Double Inclined Discrete Rib Roughened Absorber Plate Rahul kumar¹, Ravindra mohan² ¹Research Scholar, ²Assistant Professor, Mechanical Engineering

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory)

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory) Applied Thermal and Fluid Engineering Energy Engineering (Thermal Engineering Laboratory) Professor Assoc. Professor Hajime Nakamura Shunsuke Yamada Outline of Research In our laboratory, we have been

More information

Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances

Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances Journal of Physics: Conference Series Study on the natural air cooling design of electronic equipment casings: Effects of the height and size of outlet vent on the flow resistances To cite this article:

More information

Experimental Analysis of Heat Transfer Enhancement over Dimpled Surface on One Side of Plate

Experimental Analysis of Heat Transfer Enhancement over Dimpled Surface on One Side of Plate Experimental Analysis of Heat Transfer Enhancement over Dimpled Surface on One Side of Plate Avinash A. Ranaware Mechanical Engineering Department ME Student, G. S. Moze COE, Balewadi Pune, India aviranaware83@yahoo.in

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 September 11(11): 1-10 Open Access Journal Two-Dimensional Numerical

More information

An Essential Requirement in CV Based Industrial Appliances.

An Essential Requirement in CV Based Industrial Appliances. Measurement of Flow P M V Subbarao Professor Mechanical Engineering Department An Essential Requirement in CV Based Industrial Appliances. Mathematics of Flow Rate The Scalar Product of two vectors, namely

More information

Heat Transfer Enhancement in Fe3O4-water Nanofluid through a Finned Tube Counter Flow Heat Exchanger

Heat Transfer Enhancement in Fe3O4-water Nanofluid through a Finned Tube Counter Flow Heat Exchanger Heat Transfer Enhancement in Fe3O4-ater Nanofluid through a Finned Tube Counter Flo Heat Exchanger Md.Sikindar Baba Research scholar, Jaaharlal Nehru Technological University, Hyderabad, Telangana, India

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced.

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced. 1 Heat Transfer F12-ENG-135 - Lab #4 Forced convection School of Engineering, UC Merced. October 23, 2012 1 General purpose of the Laboratory To gain a physical understanding of the behavior of the average

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

Y.; Kobayashi, H.; Inatani, Y. Citation Physics Procedia (2015), 67: Right article under the CC BY-NC-ND

Y.; Kobayashi, H.; Inatani, Y. Citation Physics Procedia (2015), 67: Right article under the CC BY-NC-ND Title Forced flow boiling heat transfer p for manganin plate pasted on one si Yoneda, K.; Shirai, Y.; Shiotsu, M. Author(s) Matsuzawa, T.; Shigeta, H.; Tatsumo Y.; Kobayashi, H.; Inatani, Y. Citation Physics

More information

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow

Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Numerical and Experimental Study on the Effect of Guide Vane Insertion on the Flow Characteristics in a 90º Rectangular Elbow Sutardi 1, Wawan A. W., Nadia, N. and Puspita, K. 1 Mechanical Engineering

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

More information

Lab Section Date. ME4751 Air Flow Rate Measurement

Lab Section Date. ME4751 Air Flow Rate Measurement Name Lab Section Date ME4751 Air Flow Rate Measurement Objective The objective of this experiment is to determine the volumetric flow rate of air flowing through a pipe using a Pitot-static tube and a

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink

Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink The Egyptian International Journal of Engineering Sciences and Technology Vol. 20 (July 2016) 10 24 http://www.eijest.zu.edu.eg Thermo-Fluid Performance of a Vapor- Chamber Finned Heat Sink Saeed A.A.

More information

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Gulshan Singh Baghel 1, Dr. A R Jaurker 2 1. Student, M.E. (Heat Power engineering), Jabalpur

More information

GÖRTLER VORTICES AND THEIR EFFECT ON HEAT TRANSFER

GÖRTLER VORTICES AND THEIR EFFECT ON HEAT TRANSFER ISTP-6, 2005, PRAGUE 6 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA GÖRTLER VORTICES AND THEIR EFFECT ON HEAT TRANSFER Petr Sobolík*, Jaroslav Hemrle*, Sadanari Mochizuki*, Akira Murata*, Jiří Nožička**

More information

Comparison of the Heat Transfer Efficiency of Nanofluids

Comparison of the Heat Transfer Efficiency of Nanofluids 703 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 43, 2015 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-34-1; ISSN 2283-9216 The Italian

More information

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 143 Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

More information

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1. PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 216 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Comparative

More information

Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins

Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins 1 Mohit Taneja, 2 Sandeep Nandal, 3 Arpan Manchanda, 4 Ajay

More information

AN EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN AN INCLINED RECTANGULAR DUCT EXPOSED TO UNIFORM HEAT FLUX FROM UPPER SURFACE

AN EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN AN INCLINED RECTANGULAR DUCT EXPOSED TO UNIFORM HEAT FLUX FROM UPPER SURFACE AN EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN AN INCLINED RECTANGULAR DUCT EXPOSED TO UNIFORM HEAT FLUX FROM UPPER SURFACE Dr. Ahmed F. Khudheyer Ali Jawad Obaid Mazin Y. Abdul-Kareem ahyaja@yahoo.com

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

HEAT TRANSFER IN THE LAMINAR AND TRANSITIONAL FLOW REGIMES OF SMOOTH VERTICAL TUBE FOR UPFLOW DIRECTION

HEAT TRANSFER IN THE LAMINAR AND TRANSITIONAL FLOW REGIMES OF SMOOTH VERTICAL TUBE FOR UPFLOW DIRECTION HEAT TRANSFER IN THE LAMINAR AND TRANSITIONAL FLOW REGIMES OF SMOOTH VERTICAL TUBE FOR UPFLOW DIRECTION Bashir A.I. and Meyer J.P.* *Author for correspondence Department of Mechanical and Aeronautical

More information

INDUSTRIAL APPLICATION EXPERIENCES OF NEW TYPE FLOW- METERING SYSTEM BASED ON ULTRASONIC-DOPPLER FLOW VELOCITY-PROFILE MEASUREMENT

INDUSTRIAL APPLICATION EXPERIENCES OF NEW TYPE FLOW- METERING SYSTEM BASED ON ULTRASONIC-DOPPLER FLOW VELOCITY-PROFILE MEASUREMENT INDUSTRIAL APPLICATION EXPERIENCES OF NEW TYPE FLOW- METERING SYSTEM BASED ON ULTRASONIC-DOPPLER FLOW VELOCITY-PROFILE MEASUREMENT Michitsugu Mori 1, Kenichi Tezuka 1, Hideaki Tezuka 1, Noriyuki Furuichi

More information

Transport phenomenon in a jet type mold cooling pipe

Transport phenomenon in a jet type mold cooling pipe Computational Methods and Experimental Measurements XIV 437 Transport phenomenon in a jet type mold cooling pipe H. Kawahara 1 & T. Nishimura 2 1 Shipping Technology, Oshima National College of Maritime

More information

EXPERIMENTAL STUDY OF HEAT TRANSFER AND PRESSURE LOSS IN CHANNELS WITH MINIATURE V RIB-DIMPLE HYBRID STRUCTURE

EXPERIMENTAL STUDY OF HEAT TRANSFER AND PRESSURE LOSS IN CHANNELS WITH MINIATURE V RIB-DIMPLE HYBRID STRUCTURE EXPERIMENTAL STUDY OF HEAT TRANSFER AND PRESSURE LOSS IN CHANNELS WITH MINIATURE V RIB-DIMPLE HYBRID STRUCTURE Yu Rao and Peng Zhang. Institute of Turbomachinery, School of Mechanical Engineering, Shanghai

More information

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 62 CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 5.1 INTRODUCTION The primary objective of this work is to investigate the convective heat transfer characteristics of silver/water nanofluid. In order

More information

HEAT TRANSFER AND FLOW CHARACTERISTICS OF A BACKWARD-FACING STEP FLOW WITH MIST

HEAT TRANSFER AND FLOW CHARACTERISTICS OF A BACKWARD-FACING STEP FLOW WITH MIST Paper No. IMPRES13-119 HEAT TRANSFER AND FLOW CHARACTERISTICS OF A BACKWARD-FACING STEP FLOW WITH MIST Masaki HIGA 1,*, Izuru SENAHA, Yoshitaka MIYAFUJI 3, Sumio KATO and Shoichi MATSUDA 1 Graduate School

More information

Study of Compound Heat Transfer Enhancement of Horizontal Liquid-Solid Fluidized Bed Heat Exchanger with a Kenics Static Mixer

Study of Compound Heat Transfer Enhancement of Horizontal Liquid-Solid Fluidized Bed Heat Exchanger with a Kenics Static Mixer International Symposium on Energy Science and Chemical Engineering (ISESCE 015) Study of Compound Heat ransfer Enhancement of Horizontal Liquid-Solid Fluidized Bed Heat Exchanger with a Kenics Static Mixer

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes

More information

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles Journal of Mathematics and Statistics Original Research Paper Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles 1 Amnart Boonloi and 2 Withada

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER SECOND EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina A WILEY-INTERSCIENCE PUBUCATION JOHN WILEY & SONS, INC. New York

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT 10 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017 DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT Bing-Chen Wang Department

More information

FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT

FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT J. H.ZHANG, L.XIONG, N.X.WANG and W ZHOU Department of reactor physics, Shanghai institute of applied physics, Chinese academy of

More information

LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS

LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS CH-1211 Geneva 23 Switzerland EDMS No. ST/CV - Cooling of Electronics & Detectors GUIDE LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS Objectives Guide to Leakless Cooling System

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

PARTICLE MOTION IN WATER-PARTICLE, GAS-PARTICLE AND GAS-DROPLET TWO-PHASE FLOWS

PARTICLE MOTION IN WATER-PARTICLE, GAS-PARTICLE AND GAS-DROPLET TWO-PHASE FLOWS ISTP-6, 5, PRAGUE 6 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA PARTICLE MOTION IN WATER-PARTICLE, GAS-PARTICLE AND GAS-DROPLET TWO-PHASE FLOWS Tsuneaki ISHIMA*, Masaaki YOKOTA**, Toshimichi ARAI***,

More information

Department of Mechanical Engineering, Indian Institute of Technology, Mumbai , Bombay Powai, India

Department of Mechanical Engineering, Indian Institute of Technology, Mumbai , Bombay Powai, India Hindawi Publishing Corporation International Journal of Rotating Machinery Volume, Article ID 1, 11 pages doi:1.11//1 Research Article Effect of Aspect Ratio, Channel Orientation, Rib Pitch-to-Height Ratio,

More information

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE Proceedings of the International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington, DC, USA IHTC14-22751 THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

More information

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer Thermal Engineering and Environment Athens Greece August 5-7 007 49 Laminar Mixed Convection in the Entrance Region of Horizontal Quarter

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids International Journal of Energy Science and Engineering Vol. 2, No. 3, 2016, pp. 13-22 http://www.aiscience.org/journal/ijese ISSN: 2381-7267 (Print); ISSN: 2381-7275 (Online) Experimental and Theoretical

More information

Experimental Study on Heat Transfer Augmentation for High Heat Flux Removal in Rib-Roughened Narrow Channels

Experimental Study on Heat Transfer Augmentation for High Heat Flux Removal in Rib-Roughened Narrow Channels Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 35, No. 9, p. 671-678 (September 1998) TECHNICAL REPORT Experimental Study on Heat Transfer Augmentation for High Heat Flux Removal in Rib-Roughened Narrow

More information

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER.

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER. White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER Prepared by: Dr. Thomas J. Gieseke NUWCDIVNPT - Code 8233 March 29, 1999

More information

Heat Transfer And Pressure Drop of Nanofluids Containing Aluminium Oxide with Transformer Oil in Horizontal Pipe

Heat Transfer And Pressure Drop of Nanofluids Containing Aluminium Oxide with Transformer Oil in Horizontal Pipe Heat Transfer And Pressure Drop of Nanofluids Containing Aluminium Oxide with Transformer Oil in Horizontal Pipe Anuj Khullar 1, Sumeet Sharma 2 & D. Gangacharyulu 3 1&2 Department of Mechanical Engineering,

More information

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 208 Boiling Heat Transfer and Pressure Drop of inside a Small-Diameter 2.5 mm

More information

Effect of Particle Size on Thermal Conductivity and Viscosity of Magnetite Nanofluids

Effect of Particle Size on Thermal Conductivity and Viscosity of Magnetite Nanofluids Chapter VII Effect of Particle Size on Thermal Conductivity and Viscosity of Magnetite Nanofluids 7.1 Introduction 7.2 Effect of Particle Size on Thermal Conductivity of Magnetite Nanofluids 7.3 Effect

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information