G Solution (10 points) Using elementary row operations, we transform the original generator matrix as follows.

Size: px
Start display at page:

Download "G Solution (10 points) Using elementary row operations, we transform the original generator matrix as follows."

Transcription

1 EE 387 October 28, 2015 Algebraic Error-Control Codes Homework #4 Solutions Handout #24 1. LBC over GF(5). Let G be a nonsystematic generator matrix for a linear block code over GF(5) G = Find the systematic generator matrix G = [P I] and the systematic parity-check matrix H = [I P T ] for the linear block code generated by G. Using elementary row operations, we transform the original generator matrix as follows G (normalize row 1, clear column 3) (normalize row 2, clear column 4) (normalize row 3, clear column 5) (normalize row 4, clear column 6) = G (systematic) The parity-check portion of the systematic generator matrix G is 1 1 P = Therefore the systematic parity-check matrix over GF(5) is [ ] H = [I P T ] = = [ ] It is easy to verify that no two columns of H are linearly depent. Therefore the linear block code generate by G has minimum distance 3 and can correct single symbol errors. In fact, the code is a 5-ary Hamming code of blocklength (5 2 1)/(5 1) = 6.

2 2. Puncturing vs. shortening.(blahut#3.18) Under what conditions is puncturing a code by b places equivalent to shortening a code by b places? If the generator matrix that results from deleting b columns has b rows that are all zero, then the number of information symbols the rank of the generator matrix is reduced by b. Hence assuming the generator matrix is in systematic form, the necessary and sufficient condition is that after deleting b columns from information bits, the b rows that had nonzero elements in those deleted b columns all become zero. As an example, consider the following 4 7 generator matrix that defines code with minimum distance 1. When punctured by deleting row 4 and column 4, the new 3 6 generator matrix has minimum distance G 1 = G 2 = In general, if by rearranging rows and columns of a generator matrix G we can obtain a matrix of the form [ ] G1 0 G =, 0 G 2 then the code can be punctured without decreasing minimum distance by deleting either the first or second group of codeword symbols. As shown above, puncturing may increase minimum distance. 3. Weight distribution of Golay codes. (Computational) In 1949, Marcel Golay found the last interesting perfect block codes, the (23,12,7) binary code and the (11,6,5) ternary code. a. The first row of a generator matrix for the (23,12) binary Golay code is [ ]. The other 11 rows are right shifts of this 23-tuple. Find the weight distribution of the code. b. The first row of a generator matrix for a (11,6) ternary Golay code is [ ] = [ ]. The other 5 rows are right shifts of this 11-tuple. Find the weight distribution of the code. Solution (15 points) a. The weight enumerator of the (23,12) binary Golay code is A(x) = 1+253x x x x x x 16 +x 23. The weight distribution was found by the following Matlab code. g = [ ]; % create generator matrix by shifting first row n = 23; k = 12; Page 2 of 5 EE 387, Autumn 2015

3 G = zeros(k, n); for i=0 : k-1 G(i+1,:) = [zeros(1,i) g zeros(1,n-k-i)]; % create 2^12 by 12 matrix of all messages M = [0;1]; n = 2; for m = 2:k M = [zeros(n,1) M; ones(n,1) M ]; n = 2 * n; % create codebook and compute weight distribution C = mod(m * G, 2); W = sum(c, 2); A = histc(w, 0:23) b. The weight enumerator of the (11,6) ternary Golay code is A(x) = 1+132x x x x 9 +24x 11 The weight distribution was found by the following Matlab code. % g(x) = 2 + x^2 + 2x^3 + x^4 + x^5 g = [ ]; % create generator matrix by shifting first row n = 11; k = 6; G = zeros(k, n); for i=0 : k-1 G(i+1, :) = [zeros(1,i) g zeros(1,n-k-i)]; % create 3^6 by 6 matrix of all messages N = 3; M = [0 : N-1] ; for m = 2 : k M = [0*ones(N,1) M; 1*ones(N,1) M; 2*ones(N,1) M]; N = 3 * N; % create codebook and compute weight distribution C = mod(m * G, 3); % Matlab trick to replace 2 s by 1 s C(C == 2) = 1; W = sum(c, 2); A = histc(w, 0:11) Homework #4 Solutions Page 3 of 5

4 4. Plotkin bound. Let C = {c 1,c 2,...,c M } be a binary linear block code. a. Let c ij be the j-th bit of c i. Show that for every j, either every c ij is 0 or exactly half of the c ij are 0. b. Use the previous part of this problem to obtain the Plotkin bound, d n 2k 1 2 k 1, on the minimum distance d of any binary parity-check code of blocklength n. a. Suppose that c ij = 1 for some codeword c. If C 0 is the subgroup of codewords for which c ij is 0, then C 1 = c+c 0 is the set of codewords for which c ij is 1. These cosets have the same number of elements. Therefore c ij = 1 for exactly half the values of i. b. By part (a), for each j, the number of ones in bit position j averaged over all codewords is either 0 or 1/2. Summing over all n bit positions, the average number of ones in all codewords is at most n/2. If the code has no useless bit positions, the average is exactly n/2. At least one of the 2 k 1 nonzero codewords has weight the average weight, so an upper bound on the minimum distance is d = w average weight n2k 1 2 k 1 1 n for large k. 2 This inequality is known as the Plotkin bound. The Plotkin bound is achieved by maximumlength codes and by the Reed-Muller codes R(1,m) of order 1 and blocklength 2 m. 5. Prime quadratic polynomials. (Blahut #4.2+) a. How many distinct second-degree monic polynomials of the form x 2 +ax+b (b 0) over are there over GF(16)? b. How many distinct polynomials of the form (x β)(x γ) are there over GF(16)? c. Does this prove that an irreducible second-degree polynomial exists? How many second-degree prime polynomials over GF(16) are there? d. Given that there is at least one prime polynomial over GF(2 m ) of degree 2, prove that there is a prime polynomial of the form x 2 +ax+1. Solution (20 points) a. Thereare16choicesforaand15choicesforb 0. Thereforethenumber ofmonicpolynomials of degree 2 over GF(16) is = 240. b. There are 15 choices for β 0 and 15 choices for γ 0. However, since order is not important, the number of ways to form (x β)(x γ) is the number of ways to pick two different elements fromaset of 15 plus the number of ways to pick a pair of identical elements, that is, ( 15 2) +15 = 120. c. Every reducible monic polynomial of degree 2 with nonzero constant term can be factored as (x β)(x γ) with β 0,γ 0. Since the number of ways of factoring is smaller than the number of polynomials of degree 2, the difference consists of prime polynomials. Hence there are = 120 irreducible monic (i.e., prime) quadratic polynomials over GF(16). Each such polynomial has two zeroes that belong to GF(256) GF(16). Since the number of Page 4 of 5 EE 387, Autumn 2015

5 primitive elements in GF(256) is the number of integers between 0 and 255 that are relatively prime to 255, there are = 128 primitive elements and therefore 64 primitive polynomials of degree 2 over GF(16). The remaining 56 prime polynomials are not primitive. d. Here are two proofs that there is a prime polynomial over GF(2 m ) of the form x 2 +ax+1. i. Let x 2 + bx + c be a prime quadratic polynomial. Obviously, c 0. Every element of GF(2 m ) has a square root. Use the change of variables x = u c: x 2 +bx+c = (u c) 2 +b(u c)+c = cu 2 +bu ( c+c = c u 2 + b ) u+1 c Since x 2 +bx+c is prime, u 2 +(b/ c)u+1 is prime and has constant coefficient 1. ii. The two zeroes of x 2 + αx + 1 are reciprocals, since the product of the zeroes equals the constant coefficient. Thus the possible factors of this polynomial are of the form (x β)(x β 1 ) for nonzero β GF(2 m ). There are 2 m 1 polynomials of this form but 2 m possible values of α. Since 2 m > 2 m 1, there are 2 m 2 m 1 = 2 m 1 > 0 values of α in GF(2 m ) such that x 2 +αx+1 is prime. The first proof gives an explicit method for finding a prime polynomial of the desired form. The second proof is more elegant and can easily be exted to all finite fields, even if not all elements have square roots. 6. Zeroes of polynomials over a ring. (Blahut #4.5) Over Z/(15), the ring of integers modulo 15, show that the polynomial p(x) = x 2 1 has more than two zeroes. Such a polynomial over a field can have only two zeroes. Where does the proof of Theorem fail for a ring? The obvious solutions are+1 and 1 = 14. We can find the other two solutions, +4 and 4 = 11 by trial and error. Or we could use the Chinese remainder theorem, since the solutions to the four pairs of equations, x = ±1 mod 3, x = ±1 mod 5, are solutions of x 2 = 1. The proof of Theorem does not work because polynomials over a ring may not have unique prime factorizations. In this problem, x 2 1 = (x 1)(x+1) = (x 4)(x+4). Therefore the number of prime divisors may be larger than the degree of a polynomial. Homework #4 Solutions Page 5 of 5

Cyclic codes: overview

Cyclic codes: overview Cyclic codes: overview EE 387, Notes 14, Handout #22 A linear block code is cyclic if the cyclic shift of a codeword is a codeword. Cyclic codes have many advantages. Elegant algebraic descriptions: c(x)

More information

x n k m(x) ) Codewords can be characterized by (and errors detected by): c(x) mod g(x) = 0 c(x)h(x) = 0 mod (x n 1)

x n k m(x) ) Codewords can be characterized by (and errors detected by): c(x) mod g(x) = 0 c(x)h(x) = 0 mod (x n 1) Cyclic codes: review EE 387, Notes 15, Handout #26 A cyclic code is a LBC such that every cyclic shift of a codeword is a codeword. A cyclic code has generator polynomial g(x) that is a divisor of every

More information

Vector spaces. EE 387, Notes 8, Handout #12

Vector spaces. EE 387, Notes 8, Handout #12 Vector spaces EE 387, Notes 8, Handout #12 A vector space V of vectors over a field F of scalars is a set with a binary operator + on V and a scalar-vector product satisfying these axioms: 1. (V, +) is

More information

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013 Coding Theory and Applications Solved Exercises and Problems of Cyclic Codes Enes Pasalic University of Primorska Koper, 2013 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a collection of solved

More information

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x].

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x]. The second exam will be on Friday, October 28, 2. It will cover Sections.7,.8, 3., 3.2, 3.4 (except 3.4.), 4. and 4.2 plus the handout on calculation of high powers of an integer modulo n via successive

More information

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes S-723410 BCH and Reed-Solomon Codes 1 S-723410 BCH and Reed-Solomon Codes 3 Background The algebraic structure of linear codes and, in particular, cyclic linear codes, enables efficient encoding and decoding

More information

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 Notation: We will use the notations x 1 x 2 x n and also (x 1, x 2,, x n ) to denote a vector x F n where F is a finite field. 1. [20=6+5+9]

More information

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Cyclic Codes March 22, 2007 1. A cyclic code, C, is an ideal genarated by its minimal degree polynomial, g(x). C = < g(x) >, = {m(x)g(x) : m(x) is

More information

ELEC 519A Selected Topics in Digital Communications: Information Theory. Hamming Codes and Bounds on Codes

ELEC 519A Selected Topics in Digital Communications: Information Theory. Hamming Codes and Bounds on Codes ELEC 519A Selected Topics in Digital Communications: Information Theory Hamming Codes and Bounds on Codes Single Error Correcting Codes 2 Hamming Codes (7,4,3) Hamming code 1 0 0 0 0 1 1 0 1 0 0 1 0 1

More information

7.1 Definitions and Generator Polynomials

7.1 Definitions and Generator Polynomials Chapter 7 Cyclic Codes Lecture 21, March 29, 2011 7.1 Definitions and Generator Polynomials Cyclic codes are an important class of linear codes for which the encoding and decoding can be efficiently implemented

More information

5.0 BCH and Reed-Solomon Codes 5.1 Introduction

5.0 BCH and Reed-Solomon Codes 5.1 Introduction 5.0 BCH and Reed-Solomon Codes 5.1 Introduction A. Hocquenghem (1959), Codes correcteur d erreurs; Bose and Ray-Chaudhuri (1960), Error Correcting Binary Group Codes; First general family of algebraic

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Spring 2009 Instructor : Stefaan Delcroix Chapter 1 Introduction to Error-Correcting Codes It happens quite often that a message becomes corrupt

More information

Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16

Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16 Solutions of Exam Coding Theory (2MMC30), 23 June 2016 (1.a) Consider the 4 4 matrices as words in F 16 2, the binary vector space of dimension 16. C is the code of all binary 4 4 matrices such that the

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

Rings. EE 387, Notes 7, Handout #10

Rings. EE 387, Notes 7, Handout #10 Rings EE 387, Notes 7, Handout #10 Definition: A ring is a set R with binary operations, + and, that satisfy the following axioms: 1. (R, +) is a commutative group (five axioms) 2. Associative law for

More information

EE 229B ERROR CONTROL CODING Spring 2005

EE 229B ERROR CONTROL CODING Spring 2005 EE 229B ERROR CONTROL CODING Spring 2005 Solutions for Homework 1 1. Is there room? Prove or disprove : There is a (12,7) binary linear code with d min = 5. If there were a (12,7) binary linear code with

More information

Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 25 Finite Fields Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay September 25, 2014 2 / 25 Fields Definition A set F together

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Fall 2011 Instructor : Stefaan Delcroix Contents 1 Introduction to Error-Correcting Codes 3 2 Basic Concepts and Properties 6 2.1 Definitions....................................

More information

EE 229B ERROR CONTROL CODING Spring 2005

EE 229B ERROR CONTROL CODING Spring 2005 EE 9B ERROR CONTROL CODING Spring 005 Solutions for Homework 1. (Weights of codewords in a cyclic code) Let g(x) be the generator polynomial of a binary cyclic code of length n. (a) Show that if g(x) has

More information

Section VI.33. Finite Fields

Section VI.33. Finite Fields VI.33 Finite Fields 1 Section VI.33. Finite Fields Note. In this section, finite fields are completely classified. For every prime p and n N, there is exactly one (up to isomorphism) field of order p n,

More information

Finite fields: some applications Michel Waldschmidt 1

Finite fields: some applications Michel Waldschmidt 1 Ho Chi Minh University of Science HCMUS Update: 16/09/2013 Finite fields: some applications Michel Waldschmidt 1 Exercises We fix an algebraic closure F p of the prime field F p of characteristic p. When

More information

MATH3302 Coding Theory Problem Set The following ISBN was received with a smudge. What is the missing digit? x9139 9

MATH3302 Coding Theory Problem Set The following ISBN was received with a smudge. What is the missing digit? x9139 9 Problem Set 1 These questions are based on the material in Section 1: Introduction to coding theory. You do not need to submit your answers to any of these questions. 1. The following ISBN was received

More information

: Error Correcting Codes. October 2017 Lecture 1

: Error Correcting Codes. October 2017 Lecture 1 03683072: Error Correcting Codes. October 2017 Lecture 1 First Definitions and Basic Codes Amnon Ta-Shma and Dean Doron 1 Error Correcting Codes Basics Definition 1. An (n, K, d) q code is a subset of

More information

EE512: Error Control Coding

EE512: Error Control Coding EE51: Error Control Coding Solution for Assignment on BCH and RS Codes March, 007 1. To determine the dimension and generator polynomial of all narrow sense binary BCH codes of length n = 31, we have to

More information

Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

More information

ECEN 604: Channel Coding for Communications

ECEN 604: Channel Coding for Communications ECEN 604: Channel Coding for Communications Lecture: Introduction to Cyclic Codes Henry D. Pfister Department of Electrical and Computer Engineering Texas A&M University ECEN 604: Channel Coding for Communications

More information

Fundamental Theorem of Algebra

Fundamental Theorem of Algebra EE 387, Notes 13, Handout #20 Fundamental Theorem of Algebra Lemma: If f(x) is a polynomial over GF(q) GF(Q), then β is a zero of f(x) if and only if x β is a divisor of f(x). Proof: By the division algorithm,

More information

1 Vandermonde matrices

1 Vandermonde matrices ECE 771 Lecture 6 BCH and RS codes: Designer cyclic codes Objective: We will begin with a result from linear algebra regarding Vandermonde matrices This result is used to prove the BCH distance properties,

More information

Information Theory. Lecture 7

Information Theory. Lecture 7 Information Theory Lecture 7 Finite fields continued: R3 and R7 the field GF(p m ),... Cyclic Codes Intro. to cyclic codes: R8.1 3 Mikael Skoglund, Information Theory 1/17 The Field GF(p m ) π(x) irreducible

More information

ELEC 405/ELEC 511 Error Control Coding and Sequences. Hamming Codes and the Hamming Bound

ELEC 405/ELEC 511 Error Control Coding and Sequences. Hamming Codes and the Hamming Bound ELEC 45/ELEC 5 Error Control Coding and Sequences Hamming Codes and the Hamming Bound Single Error Correcting Codes ELEC 45 2 Hamming Codes One form of the (7,4,3) Hamming code is generated by This is

More information

Algebra for error control codes

Algebra for error control codes Algebra for error control codes EE 387, Notes 5, Handout #7 EE 387 concentrates on block codes that are linear: Codewords components are linear combinations of message symbols. g 11 g 12 g 1n g 21 g 22

More information

Combinatória e Teoria de Códigos Exercises from the notes. Chapter 1

Combinatória e Teoria de Códigos Exercises from the notes. Chapter 1 Combinatória e Teoria de Códigos Exercises from the notes Chapter 1 1.1. The following binary word 01111000000?001110000?00110011001010111000000000?01110 encodes a date. The encoding method used consisted

More information

} has dimension = k rank A > 0 over F. For any vector b!

} has dimension = k rank A > 0 over F. For any vector b! FINAL EXAM Math 115B, UCSB, Winter 2009 - SOLUTIONS Due in SH6518 or as an email attachment at 12:00pm, March 16, 2009. You are to work on your own, and may only consult your notes, text and the class

More information

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups.

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. Binary codes Let us assume that a message to be transmitted is in binary form. That is, it is a word in the alphabet

More information

Proof: Let the check matrix be

Proof: Let the check matrix be Review/Outline Recall: Looking for good codes High info rate vs. high min distance Want simple description, too Linear, even cyclic, plausible Gilbert-Varshamov bound for linear codes Check matrix criterion

More information

ELEC-E7240 Coding Methods L (5 cr)

ELEC-E7240 Coding Methods L (5 cr) Introduction ELEC-E7240 Coding Methods L (5 cr) Patric Östergård Department of Communications and Networking Aalto University School of Electrical Engineering Spring 2017 Patric Östergård (Aalto) ELEC-E7240

More information

ELEC 405/ELEC 511 Error Control Coding. Hamming Codes and Bounds on Codes

ELEC 405/ELEC 511 Error Control Coding. Hamming Codes and Bounds on Codes ELEC 405/ELEC 511 Error Control Coding Hamming Codes and Bounds on Codes Single Error Correcting Codes (3,1,3) code (5,2,3) code (6,3,3) code G = rate R=1/3 n-k=2 [ 1 1 1] rate R=2/5 n-k=3 1 0 1 1 0 G

More information

B. Cyclic Codes. Primitive polynomials are the generator polynomials of cyclic codes.

B. Cyclic Codes. Primitive polynomials are the generator polynomials of cyclic codes. B. Cyclic Codes A cyclic code is a linear block code with the further property that a shift of a codeword results in another codeword. These are based on polynomials whose elements are coefficients from

More information

Plotkin s Bound in Codes Equipped with the Euclidean Weight Function

Plotkin s Bound in Codes Equipped with the Euclidean Weight Function Tamsui Oxford Journal of Mathematical Sciences 5() (009) 07-4 Aletheia University Plotkin s Bound in Codes Equipped with the Euclidean Weight Function Sapna Jain Department of Mathematics, University of

More information

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1.

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1. Cyclic Codes II Generator Matrix We would now like to consider how the ideas we have previously discussed for linear codes are interpreted in this polynomial version of cyclic codes. Theorem 6: If the

More information

: Error Correcting Codes. November 2017 Lecture 2

: Error Correcting Codes. November 2017 Lecture 2 03683072: Error Correcting Codes. November 2017 Lecture 2 Polynomial Codes and Cyclic Codes Amnon Ta-Shma and Dean Doron 1 Polynomial Codes Fix a finite field F q. For the purpose of constructing polynomial

More information

ELG 5372 Error Control Coding. Lecture 12: Ideals in Rings and Algebraic Description of Cyclic Codes

ELG 5372 Error Control Coding. Lecture 12: Ideals in Rings and Algebraic Description of Cyclic Codes ELG 5372 Error Control Coding Lecture 12: Ideals in Rings and Algebraic Description of Cyclic Codes Quotient Ring Example + Quotient Ring Example Quotient Ring Recall the quotient ring R={,,, }, where

More information

Reed-Muller Codes. These codes were discovered by Muller and the decoding by Reed in Code length: n = 2 m, Dimension: Minimum Distance

Reed-Muller Codes. These codes were discovered by Muller and the decoding by Reed in Code length: n = 2 m, Dimension: Minimum Distance Reed-Muller Codes Ammar Abh-Hhdrohss Islamic University -Gaza ١ Reed-Muller Codes These codes were discovered by Muller and the decoding by Reed in 954. Code length: n = 2 m, Dimension: Minimum Distance

More information

MATH32031: Coding Theory Part 15: Summary

MATH32031: Coding Theory Part 15: Summary MATH32031: Coding Theory Part 15: Summary 1 The initial problem The main goal of coding theory is to develop techniques which permit the detection of errors in the transmission of information and, if necessary,

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 x + + a n 1 x n 1 + a n x n, where the coefficients a 0, a 1, a 2,,

More information

Error Correction Review

Error Correction Review Error Correction Review A single overall parity-check equation detects single errors. Hamming codes used m equations to correct one error in 2 m 1 bits. We can use nonbinary equations if we create symbols

More information

Orthogonal Arrays & Codes

Orthogonal Arrays & Codes Orthogonal Arrays & Codes Orthogonal Arrays - Redux An orthogonal array of strength t, a t-(v,k,λ)-oa, is a λv t x k array of v symbols, such that in any t columns of the array every one of the possible

More information

Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014

Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014 Anna Dovzhik 1 Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014 Sharing data across channels, such as satellite, television, or compact disc, often

More information

Error Correcting Codes Questions Pool

Error Correcting Codes Questions Pool Error Correcting Codes Questions Pool Amnon Ta-Shma and Dean Doron January 3, 018 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to

More information

Finite Mathematics. Nik Ruškuc and Colva M. Roney-Dougal

Finite Mathematics. Nik Ruškuc and Colva M. Roney-Dougal Finite Mathematics Nik Ruškuc and Colva M. Roney-Dougal September 19, 2011 Contents 1 Introduction 3 1 About the course............................. 3 2 A review of some algebraic structures.................

More information

Fault Tolerance & Reliability CDA Chapter 2 Cyclic Polynomial Codes

Fault Tolerance & Reliability CDA Chapter 2 Cyclic Polynomial Codes Fault Tolerance & Reliability CDA 5140 Chapter 2 Cyclic Polynomial Codes - cylic code: special type of parity check code such that every cyclic shift of codeword is a codeword - for example, if (c n-1,

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x),

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x), Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 + + a n 1 x n 1 + a n x n, where the coefficients a 1, a 2,, a n are

More information

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding Chapter 6 Reed-Solomon Codes 6. Finite Field Algebra 6. Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding 6. Finite Field Algebra Nonbinary codes: message and codeword symbols

More information

3. Coding theory 3.1. Basic concepts

3. Coding theory 3.1. Basic concepts 3. CODING THEORY 1 3. Coding theory 3.1. Basic concepts In this chapter we will discuss briefly some aspects of error correcting codes. The main problem is that if information is sent via a noisy channel,

More information

17 Galois Fields Introduction Primitive Elements Roots of Polynomials... 8

17 Galois Fields Introduction Primitive Elements Roots of Polynomials... 8 Contents 17 Galois Fields 2 17.1 Introduction............................... 2 17.2 Irreducible Polynomials, Construction of GF(q m )... 3 17.3 Primitive Elements... 6 17.4 Roots of Polynomials..........................

More information

Chapter 3 Linear Block Codes

Chapter 3 Linear Block Codes Wireless Information Transmission System Lab. Chapter 3 Linear Block Codes Institute of Communications Engineering National Sun Yat-sen University Outlines Introduction to linear block codes Syndrome and

More information

Reed-Solomon codes. Chapter Linear codes over finite fields

Reed-Solomon codes. Chapter Linear codes over finite fields Chapter 8 Reed-Solomon codes In the previous chapter we discussed the properties of finite fields, and showed that there exists an essentially unique finite field F q with q = p m elements for any prime

More information

Open problems on cyclic codes

Open problems on cyclic codes Open problems on cyclic codes Pascale Charpin Contents 1 Introduction 3 2 Different kinds of cyclic codes. 4 2.1 Notation.............................. 5 2.2 Definitions............................. 6

More information

We saw in the last chapter that the linear Hamming codes are nontrivial perfect codes.

We saw in the last chapter that the linear Hamming codes are nontrivial perfect codes. Chapter 5 Golay Codes Lecture 16, March 10, 2011 We saw in the last chapter that the linear Hamming codes are nontrivial perfect codes. Question. Are there any other nontrivial perfect codes? Answer. Yes,

More information

Commutative Rings and Fields

Commutative Rings and Fields Commutative Rings and Fields 1-22-2017 Different algebraic systems are used in linear algebra. The most important are commutative rings with identity and fields. Definition. A ring is a set R with two

More information

Codes and Rings: Theory and Practice

Codes and Rings: Theory and Practice Codes and Rings: Theory and Practice Patrick Solé CNRS/LAGA Paris, France, January 2017 Geometry of codes : the music of spheres R = a finite ring with identity. A linear code of length n over a ring R

More information

ECEN 5682 Theory and Practice of Error Control Codes

ECEN 5682 Theory and Practice of Error Control Codes ECEN 5682 Theory and Practice of Error Control Codes Introduction to Algebra University of Colorado Spring 2007 Motivation and For convolutional codes it was convenient to express the datawords and the

More information

ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes

ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes Kevin Buckley - 2010 109 ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes m GF(2 ) adder m GF(2 ) multiplier

More information

: Coding Theory. Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, upattane

: Coding Theory. Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, upattane 2301532 : Coding Theory Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, 2006 http://pioneer.chula.ac.th/ upattane Chapter 1 Error detection, correction and decoding 1.1 Basic definitions and

More information

Lecture 12: November 6, 2017

Lecture 12: November 6, 2017 Information and Coding Theory Autumn 017 Lecturer: Madhur Tulsiani Lecture 1: November 6, 017 Recall: We were looking at codes of the form C : F k p F n p, where p is prime, k is the message length, and

More information

ERROR CORRECTING CODES

ERROR CORRECTING CODES ERROR CORRECTING CODES To send a message of 0 s and 1 s from my computer on Earth to Mr. Spock s computer on the planet Vulcan we use codes which include redundancy to correct errors. n q Definition. A

More information

Communications II Lecture 9: Error Correction Coding. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Communications II Lecture 9: Error Correction Coding. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Communications II Lecture 9: Error Correction Coding Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Outline Introduction Linear block codes Decoding Hamming

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Discussion 6A Solution

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Discussion 6A Solution CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Discussion 6A Solution 1. Polynomial intersections Find (and prove) an upper-bound on the number of times two distinct degree

More information

GF(2 m ) arithmetic: summary

GF(2 m ) arithmetic: summary GF(2 m ) arithmetic: summary EE 387, Notes 18, Handout #32 Addition/subtraction: bitwise XOR (m gates/ops) Multiplication: bit serial (shift and add) bit parallel (combinational) subfield representation

More information

Finite Fields. SOLUTIONS Network Coding - Prof. Frank H.P. Fitzek

Finite Fields. SOLUTIONS Network Coding - Prof. Frank H.P. Fitzek Finite Fields In practice most finite field applications e.g. cryptography and error correcting codes utilizes a specific type of finite fields, namely the binary extension fields. The following exercises

More information

Decoding Procedure for BCH, Alternant and Goppa Codes defined over Semigroup Ring

Decoding Procedure for BCH, Alternant and Goppa Codes defined over Semigroup Ring Decoding Procedure for BCH, Alternant and Goppa Codes defined over Semigroup Ring Antonio Aparecido de Andrade Department of Mathematics, IBILCE, UNESP, 15054-000, São José do Rio Preto, SP, Brazil E-mail:

More information

CONSTRUCTION OF QUASI-CYCLIC CODES

CONSTRUCTION OF QUASI-CYCLIC CODES CONSTRUCTION OF QUASI-CYCLIC CODES by Thomas Aaron Gulliver B.Sc., 1982 and M.Sc., 1984 University of New Brunswick A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

More information

Section 3 Error Correcting Codes (ECC): Fundamentals

Section 3 Error Correcting Codes (ECC): Fundamentals Section 3 Error Correcting Codes (ECC): Fundamentals Communication systems and channel models Definition and examples of ECCs Distance For the contents relevant to distance, Lin & Xing s book, Chapter

More information

A Brief Encounter with Linear Codes

A Brief Encounter with Linear Codes Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 8-2014 A Brief Encounter with Linear Codes Brent El-Bakri Boise State University, brentelbakri@boisestate.edu

More information

Math 512 Syllabus Spring 2017, LIU Post

Math 512 Syllabus Spring 2017, LIU Post Week Class Date Material Math 512 Syllabus Spring 2017, LIU Post 1 1/23 ISBN, error-detecting codes HW: Exercises 1.1, 1.3, 1.5, 1.8, 1.14, 1.15 If x, y satisfy ISBN-10 check, then so does x + y. 2 1/30

More information

Cyclic Codes. Saravanan Vijayakumaran August 26, Department of Electrical Engineering Indian Institute of Technology Bombay

Cyclic Codes. Saravanan Vijayakumaran August 26, Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 25 Cyclic Codes Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 26, 2014 2 / 25 Cyclic Codes Definition A cyclic shift

More information

Chapter 5. Cyclic Codes

Chapter 5. Cyclic Codes Wireless Information Transmission System Lab. Chapter 5 Cyclic Codes Institute of Communications Engineering National Sun Yat-sen University Outlines Description of Cyclic Codes Generator and Parity-Check

More information

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions Basic Questions 1. Give an example of a prime ideal which is not maximal. In the ring Z Z, the ideal {(0,

More information

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q MATH-315201 This question paper consists of 6 printed pages, each of which is identified by the reference MATH-3152 Only approved basic scientific calculators may be used. c UNIVERSITY OF LEEDS Examination

More information

Chapter 6 Lagrange Codes

Chapter 6 Lagrange Codes Chapter 6 Lagrange Codes 6. Introduction Joseph Louis Lagrange was a famous eighteenth century Italian mathematician [] credited with minimum degree polynomial interpolation amongst his many other achievements.

More information

LECTURE NOTES IN CRYPTOGRAPHY

LECTURE NOTES IN CRYPTOGRAPHY 1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

More information

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials Outline MSRI-UP 2009 Coding Theory Seminar, Week 2 John B. Little Department of Mathematics and Computer Science College of the Holy Cross Cyclic Codes Polynomial Algebra More on cyclic codes Finite fields

More information

Construction of quasi-cyclic self-dual codes

Construction of quasi-cyclic self-dual codes Construction of quasi-cyclic self-dual codes Sunghyu Han, Jon-Lark Kim, Heisook Lee, and Yoonjin Lee December 17, 2011 Abstract There is a one-to-one correspondence between l-quasi-cyclic codes over a

More information

New Algebraic Decoding of (17,9,5) Quadratic Residue Code by using Inverse Free Berlekamp-Massey Algorithm (IFBM)

New Algebraic Decoding of (17,9,5) Quadratic Residue Code by using Inverse Free Berlekamp-Massey Algorithm (IFBM) International Journal of Computational Intelligence Research (IJCIR). ISSN: 097-87 Volume, Number 8 (207), pp. 205 2027 Research India Publications http://www.ripublication.com/ijcir.htm New Algebraic

More information

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005 Chapter 7 Error Control Coding Mikael Olofsson 2005 We have seen in Chapters 4 through 6 how digital modulation can be used to control error probabilities. This gives us a digital channel that in each

More information

Quasi-reducible Polynomials

Quasi-reducible Polynomials Quasi-reducible Polynomials Jacques Willekens 06-Dec-2008 Abstract In this article, we investigate polynomials that are irreducible over Q, but are reducible modulo any prime number. 1 Introduction Let

More information

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Linear Block Codes February 14, 2007 1. Code 1: n = 4, n k = 2 Parity Check Equations: x 1 + x 3 = 0, x 1 + x 2 + x 4 = 0 Parity Bits: x 3 = x 1,

More information

Some error-correcting codes and their applications

Some error-correcting codes and their applications Chapter 14 Some error-correcting codes and their applications J. D. Key 1 14.1 Introduction In this chapter we describe three types of error-correcting linear codes that have been used in major applications,

More information

Quasi-cyclic codes. Jay A. Wood. Algebra for Secure and Reliable Communications Modeling Morelia, Michoacán, Mexico October 12, 2012

Quasi-cyclic codes. Jay A. Wood. Algebra for Secure and Reliable Communications Modeling Morelia, Michoacán, Mexico October 12, 2012 Quasi-cyclic codes Jay A. Wood Department of Mathematics Western Michigan University http://homepages.wmich.edu/ jwood/ Algebra for Secure and Reliable Communications Modeling Morelia, Michoacán, Mexico

More information

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS JEREMY BOOHER Continued fractions usually get short-changed at PROMYS, but they are interesting in their own right and useful in other areas

More information

On Irreducible Polynomial Remainder Codes

On Irreducible Polynomial Remainder Codes 2011 IEEE International Symposium on Information Theory Proceedings On Irreducible Polynomial Remainder Codes Jiun-Hung Yu and Hans-Andrea Loeliger Department of Information Technology and Electrical Engineering

More information

A 2-error Correcting Code

A 2-error Correcting Code A 2-error Correcting Code Basic Idea We will now try to generalize the idea used in Hamming decoding to obtain a linear code that is 2-error correcting. In the Hamming decoding scheme, the parity check

More information

Explicit Methods in Algebraic Number Theory

Explicit Methods in Algebraic Number Theory Explicit Methods in Algebraic Number Theory Amalia Pizarro Madariaga Instituto de Matemáticas Universidad de Valparaíso, Chile amaliapizarro@uvcl 1 Lecture 1 11 Number fields and ring of integers Algebraic

More information

Skew Cyclic Codes Of Arbitrary Length

Skew Cyclic Codes Of Arbitrary Length Skew Cyclic Codes Of Arbitrary Length Irfan Siap Department of Mathematics, Adıyaman University, Adıyaman, TURKEY, isiap@adiyaman.edu.tr Taher Abualrub Department of Mathematics and Statistics, American

More information

Lecture 2 Linear Codes

Lecture 2 Linear Codes Lecture 2 Linear Codes 2.1. Linear Codes From now on we want to identify the alphabet Σ with a finite field F q. For general codes, introduced in the last section, the description is hard. For a code of

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

Hamming codes and simplex codes ( )

Hamming codes and simplex codes ( ) Chapter 6 Hamming codes and simplex codes (2018-03-17) Synopsis. Hamming codes are essentially the first non-trivial family of codes that we shall meet. We start by proving the Distance Theorem for linear

More information

Introduction to binary block codes

Introduction to binary block codes 58 Chapter 6 Introduction to binary block codes In this chapter we begin to study binary signal constellations, which are the Euclidean-space images of binary block codes. Such constellations have nominal

More information

Chapter 4. Remember: F will always stand for a field.

Chapter 4. Remember: F will always stand for a field. Chapter 4 Remember: F will always stand for a field. 4.1 10. Take f(x) = x F [x]. Could there be a polynomial g(x) F [x] such that f(x)g(x) = 1 F? Could f(x) be a unit? 19. Compare with Problem #21(c).

More information

Duadic Codes over Finite Commutative Rings

Duadic Codes over Finite Commutative Rings The Islamic University of Gaza Faculty of Science Department of Mathematics Duadic Codes over Finite Commutative Rings PRESENTED BY Ikhlas Ibraheem Diab Al-Awar SUPERVISED BY Prof. Mohammed Mahmoud AL-Ashker

More information