Linear Algebra Miscellaneous Proofs to Know

Size: px
Start display at page:

Download "Linear Algebra Miscellaneous Proofs to Know"

Transcription

1 Linear Algebra Miscellaneous Proofs to Know S. F. Ellermeyer Summer Semester 2010 Definition 1 An n n matrix, A, issaidtobeinvertible if there exists an n n matrix B such that AB BA I n (where I n is the n n identity matrix). Remark 2 We know that if A has an inverse, then that inverse is unique. Thus we denote the inverse of A by A 1. Definition 3 If a b A is a 2 2 matrix, then we define the determinant of A, denoted either by det (A) or A, tobe det (A) ad bc. Theorem 4 Suppose that is a 2 2 matrix. a b A 1. If det (A) 6 0,thenA is invertible and A 1 1 d b det (A) c a. 2. If det (A) 0,thenA is not invertible. 1

2 Proof. Suppose that det (A) 6 0and let 1 d b B. det (A) c a Then, by direct computation, we have µ a b 1 d b AB det (A) c a 1 a b d b det (A) c a 1 ad bc ab + ab ad bc cd cd bc + ad ad bc 0 ad bc ad bc 0 ad bc ad bc ad bc I 2. A similar computation shows that is is also true that BA I 2. Therefore A is invertible and A 1 B (as defined above). Now let us assume that det (A) 0.Then ad bc 0. (1) For the sake of obtaining a contradiction, let us now suppose that A is invertible. Then there is a 2 2 matrix, x1 x B 2, x 4 such that AB I 2.Thus a b x 3 x1 x 2 x 4 x By performing the above matrix multiplication, we see that it must then be true that ax 1 + bx 3 1 (2) ax 2 + bx 4 0 (3) cx 1 + dx 3 0 (4) cx 2 + dx 4 1. (5). 2

3 We will now consider two cases: Case 1: Suppose that a 0. Then, by equation (2), b 6 0. Consequently, by equation (1), c 0and, by equation (3), x 4 0. However, this means that equation (5) is not satisfied (because c 0and x 4 0). Thus it cannot bethecasethata 0. Case 2: Suppose that a 6 0. Then by performing the elementary operation c a E 1 + E 3 E 3, we obtain the system which can also be written as ax 1 + bx 3 1 µ bca + d x 3 c a ax 1 + bx 3 1 ad bc x 3 c a a. Since ad bc 0, then it must be the case that c 0. But then we must also have d 0by equation (1). However, this means that equation (1) is not satisfied,sowehaveonceagainarrivedat acontradiction. We conclude that if det (A) 0,thenA is not invertible. Theorem 5 Suppose that A and B are 2 2 matrices. Then det (AB) det(a)det(b). Proof. Wewillprovethisbycomputation.Let a b e f A and B g h. Then a b AB e f g h ae + bg af + bh ce + dg cf + dh 3

4 and thus det (AB) (ae + bg)(cf + dh) (af + bh)(ce + dg) acef + adeh + bcfg + bdgh acef adfg bceh bdgh adeh + bcfg adfg bceh. Also, det (A)det(B) (ad bc)(eh fg)adeh adfg bceh + bcfg. This shows that det (AB) det(a)det(b). Theorems and Proofs to Know For Exam 2 Definition 6 An indexed set of vectors {v 1, v 2,...,v n } in R m is said to be linearly independent if the vector equation x 1 v 1 + x 2 v x n v n 0 m has only the trivial solution (x 1 x 2 x n 0). If the above vector equation has non trivial solutions, then the set of vectors {v 1, v 2,...,v n } is said to be linearly dependent and any equation of the form c 1 v 1 + c 2 v c n v n 0 m with not all of the numbers c 1,c 2,...,c n equaltozeroiscalledalinear dependence relation for the set {v 1, v 2,...,v n }. Theorem 7 Suppose that {v 1, v 2,...,v n } is a set of two or more vectors in R m. This set of vectors is linearly dependent if and only if at least one of the vectors in this set is a linear combination of the other vectors in the set. Proof. Suppose that {v 1, v 2,...,v n } is a set of two or more vectors in R m and suppose that this set of vectors is linearly dependent. Then we have a linear dependence relation c 1 v 1 + c 2 v c n v n 0 m. 4

5 Notallofthenumbersc 1, c 2,..., c n are zero. In particular, there is some index j such that c j 60. This means that µ v j c µ 1 v c µ j 1 v j 1 + c µ j+1 v j c n v n c j c j c j c j showing that v j is a linear combination of the other vectors in the set. Conversely, suppose that there is some index j such that v j is a linear combination of the other vectors in the set. Then This means that v j c 1 v 1 + c 2 v c j 1 v j 1 + c j+1 v j c n v n c 1 v 2 + c 2 v c j 1 v j 1 +( 1) v j + c j+1 v j c n v n 0 m and hence that the set {v 1, v 2,...,v n } is linearly dependent (because c j 1 6 0). Theorem 8 Suppose that V is a vector space with addition operation and scalar multiplication operation. Then for any vector u V and any scalar k we have: 1. 0 u 0 2. k u ( 1) u 4. If k u 0, then either k 0or u 0. Proof. In proving this we will assume it to be known (to have already been proved) that the zero vector, 0, of V is unique and that the additive inverse of any vector in V is unique. Proof of Statement 1: and 0 u (0+0) u (simply because 00+0) (0 + 0) u 0 u +0 u (by the distributive property). 5

6 Thus 0 u 0 u +0 u. Since V is closed under scalar multiplication, we know that the vector 0 u is in V. Since all vectors in V have an additive inverse, then we know that (0 u) exists. Adding this vector to both sides of the above equation gives (0 u)+0 u (0 u)+(0 u +0 u). By using the associative property of addition, we obtain (0 u)+0 u ( (0 u)+0 u)+0 u and then by using the fact that (0 u) is the additive inverse of 0 u we obtain u. Finally, by using the fact that 0 is the additive identity of V,weobtain and this completes the proof. Proof of Statement 2: and 0 0 u k 0 k (0 + 0) (because ) k (0 + 0)k 0 + k 0 (by the distributive property). Thus k 0 k 0 + k 0. Since V is closed under scalar multiplication, we know that the vector k 0 is in V. Since all vectors in V have an additive inverse, then we know that (k 0) exists. Adding this vector to both sides of the above equation gives (k 0)+k 0 (k 0)+(k 0 + k 0). By using the associative property of addition, we obtain (k 0)+k 0 ( (k 0)+k 0)+k 0 6

7 and then by using the fact that (k 0) is the additive inverse of k 0 we obtain k 0. Finally, by using the fact that 0 is the additive identity of V,weobtain and this completes the proof. Proof of Statement 3: 0 k 0 u +( 1) u 1 u +( 1) u (because 1 u u) (1+( 1)) u (by the distributive property) 0 u (simply because 1+( 1) 0) 0 (by statement 1 of this theorem). Since u is the unique vector in V such that u +( u) 0 and since we have just shown that u +( 1) u 0, then it must be the case that u ( 1) u. Proof of Statement 4: Suppose that k u 0. Ifk 6 0, then we can multiply both sides of this equation by 1/k to obtain 1 k (k u) 1 k 0. Bytheassociativepropertyofmultiplicationweobtain µ 1 k k u 1 k 0. This gives 1 u 1 k 0. Since 1 u u, the left hand side of the above equation is equal to u. Also, by statement 2 of this theorem, the right hand side of the above equation is equal to 0. Thusu 0. In summary, we have proved that if k u 0 and k 6 0,thenitmust bethecasethatu 0. Thiscompletestheproof. 7

8 Theorem 9 Suppose that V is a vector space and suppose that W is a non empty subset of V. If W is closed under addition and closed under scalar multiplication, then W is a subspace of V. Proof. We are given that W is closed under both addition and scalar multiplication. To see that 0 W (where 0 is the zero vector of V ), we first note that since W 6, then there is at least one vector u W. Since W is closed under scalar multiplication, then 0 u W. By Statement 1 of the preceding theorem, 0 u 0. Thus0 W. Now let v be any vector in W and let us show that the additive inverse of v is also in W : First,wenotethatsinceW is closed under scalar multiplication, then ( 1) v W. However, by Statement 3 of the preceding theorem, we know that ( 1) v v. Thus v W. The remaining six vector space axioms, which are all algebraic properties, are automatically satisfied for all vectors in W and all scalars because they are satisfied for all vectors in V.Theproofofthetheoremisthuscomplete. 8

First Midterm Exam Name: Practice Problems September 19, x = ax + sin x.

First Midterm Exam Name: Practice Problems September 19, x = ax + sin x. Math 54 Treibergs First Midterm Exam Name: Practice Problems September 9, 24 Consider the family of differential equations for the parameter a: (a Sketch the phase line when a x ax + sin x (b Use the graphs

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Homework Notes Week 6

Homework Notes Week 6 Homework Notes Week 6 Math 24 Spring 24 34#4b The sstem + 2 3 3 + 4 = 2 + 2 + 3 4 = 2 + 2 3 = is consistent To see this we put the matri 3 2 A b = 2 into reduced row echelon form Adding times the first

More information

MATRICES The numbers or letters in any given matrix are called its entries or elements

MATRICES The numbers or letters in any given matrix are called its entries or elements MATRICES A matrix is defined as a rectangular array of numbers. Examples are: 1 2 4 a b 1 4 5 A : B : C 0 1 3 c b 1 6 2 2 5 8 The numbers or letters in any given matrix are called its entries or elements

More information

6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations

6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations 6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations Gaussian Elimination You can solve a system of linear equations using matrices. Solving a system by transforming it into

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Linear algebra and differential equations (Math 54): Lecture 10

Linear algebra and differential equations (Math 54): Lecture 10 Linear algebra and differential equations (Math 54): Lecture 10 Vivek Shende February 24, 2016 Hello and welcome to class! As you may have observed, your usual professor isn t here today. He ll be back

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

MATH Linear Algebra Homework Solutions: #1 #6

MATH Linear Algebra Homework Solutions: #1 #6 MATH 35-0 Linear Algebra Homework Solutions: # #6 Homework # [Cochran-Bjerke, L Solve the system using row operations to put the associated matrix in strictly triangular form and then back substitute 3x

More information

3.2 Subspace. Definition: If S is a non-empty subset of a vector space V, and S satisfies the following conditions: (i).

3.2 Subspace. Definition: If S is a non-empty subset of a vector space V, and S satisfies the following conditions: (i). . ubspace Given a vector spacev, it is possible to form another vector space by taking a subset of V and using the same operations (addition and multiplication) of V. For a set to be a vector space, it

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

Vector space and subspace

Vector space and subspace Vector space and subspace Math 112, week 8 Goals: Vector space, subspace, span. Null space, column space. Linearly independent, bases. Suggested Textbook Readings: Sections 4.1, 4.2, 4.3 Week 8: Vector

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

Linear Algebra: Sample Questions for Exam 2

Linear Algebra: Sample Questions for Exam 2 Linear Algebra: Sample Questions for Exam 2 Instructions: This is not a comprehensive review: there are concepts you need to know that are not included. Be sure you study all the sections of the book and

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

ICS 6N Computational Linear Algebra Vector Space

ICS 6N Computational Linear Algebra Vector Space ICS 6N Computational Linear Algebra Vector Space Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 24 Vector Space Definition: A vector space is a non empty set V of

More information

Working with Block Structured Matrices

Working with Block Structured Matrices Working with Block Structured Matrices Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today it is not uncommon to perform numerical computations with

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

Review 1 Math 321: Linear Algebra Spring 2010

Review 1 Math 321: Linear Algebra Spring 2010 Department of Mathematics and Statistics University of New Mexico Review 1 Math 321: Linear Algebra Spring 2010 This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Review of Matrices and Block Structures

Review of Matrices and Block Structures CHAPTER 2 Review of Matrices and Block Structures Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today it is not uncommon to perform numerical computations

More information

Basics. A VECTOR is a quantity with a specified magnitude and direction. A MATRIX is a rectangular array of quantities

Basics. A VECTOR is a quantity with a specified magnitude and direction. A MATRIX is a rectangular array of quantities Some Linear Algebra Basics A VECTOR is a quantity with a specified magnitude and direction Vectors can exist in multidimensional space, with each element of the vector representing a quantity in a different

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

Final Examination 201-NYC-05 - Linear Algebra I December 8 th, and b = 4. Find the value(s) of a for which the equation Ax = b

Final Examination 201-NYC-05 - Linear Algebra I December 8 th, and b = 4. Find the value(s) of a for which the equation Ax = b Final Examination -NYC-5 - Linear Algebra I December 8 th 7. (4 points) Let A = has: (a) a unique solution. a a (b) infinitely many solutions. (c) no solution. and b = 4. Find the value(s) of a for which

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

August 23, 2017 Let us measure everything that is measurable, and make measurable everything that is not yet so. Galileo Galilei. 1.

August 23, 2017 Let us measure everything that is measurable, and make measurable everything that is not yet so. Galileo Galilei. 1. August 23, 2017 Let us measure everything that is measurable, and make measurable everything that is not yet so. Galileo Galilei 1. Vector spaces 1.1. Notations. x S denotes the fact that the element x

More information

1 4 3 A Scalar Multiplication

1 4 3 A Scalar Multiplication 1 Matrices A matrix is a rectangular array of variables or constants in horizontal rows and vertical columns, usually enclosed in brackets. In a matrix, the numbers or data are organized so that each position

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

3.4 Elementary Matrices and Matrix Inverse

3.4 Elementary Matrices and Matrix Inverse Math 220: Summer 2015 3.4 Elementary Matrices and Matrix Inverse A n n elementary matrix is a matrix which is obtained from the n n identity matrix I n n by a single elementary row operation. Elementary

More information

Answers and Solutions to Selected Homework Problems From Section 2.5 S. F. Ellermeyer. and B =. 0 2

Answers and Solutions to Selected Homework Problems From Section 2.5 S. F. Ellermeyer. and B =. 0 2 Answers and Solutions to Selected Homework Problems From Section 2.5 S. F. Ellermeyer 5. Since gcd (2; 4) 6, then 2 is a zero divisor (and not a unit) in Z 4. In fact, we see that 2 2 0 in Z 4. Thus 2x

More information

Unit 3: Matrices. Juan Luis Melero and Eduardo Eyras. September 2018

Unit 3: Matrices. Juan Luis Melero and Eduardo Eyras. September 2018 Unit 3: Matrices Juan Luis Melero and Eduardo Eyras September 2018 1 Contents 1 Matrices and operations 4 1.1 Definition of a matrix....................... 4 1.2 Addition and subtraction of matrices..............

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

More information

Linear Algebra The Inverse of a Matrix

Linear Algebra The Inverse of a Matrix Linear Algebra The Inverse of a Matrix Dr. Bisher M. Iqelan biqelan@iugaza.edu.ps Department of Mathematics The Islamic University of Gaza 2017-2018, Semester 2 Dr. Bisher M. Iqelan (IUG) Sec.2.2: The

More information

Math 4377/6308 Advanced Linear Algebra I Dr. Vaughn Climenhaga, PGH 651A HOMEWORK 3

Math 4377/6308 Advanced Linear Algebra I Dr. Vaughn Climenhaga, PGH 651A HOMEWORK 3 Math 4377/6308 Advanced Linear Algebra I Dr. Vaughn Climenhaga, PGH 651A Fall 2013 HOMEWORK 3 Due 4pm Wednesday, September 11. You will be graded not only on the correctness of your answers but also on

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices.

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Exam review This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Sample question Suppose u, v and w are non-zero vectors in R 7. They span

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Linear Algebra (Math-324) Lecture Notes

Linear Algebra (Math-324) Lecture Notes Linear Algebra (Math-324) Lecture Notes Dr. Ali Koam and Dr. Azeem Haider September 24, 2017 c 2017,, Jazan All Rights Reserved 1 Contents 1 Real Vector Spaces 6 2 Subspaces 11 3 Linear Combination and

More information

Final Examination 201-NYC-05 December and b =

Final Examination 201-NYC-05 December and b = . (5 points) Given A [ 6 5 8 [ and b (a) Express the general solution of Ax b in parametric vector form. (b) Given that is a particular solution to Ax d, express the general solution to Ax d in parametric

More information

Math Matrix Theory - Spring 2012

Math Matrix Theory - Spring 2012 Math 440 - Matrix Theory - Spring 202 HW #2 Solutions Which of the following are true? Why? If not true, give an example to show that If true, give your reasoning (a) Inverse of an elementary matrix is

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

Practice Final Exam Solutions

Practice Final Exam Solutions MAT 242 CLASS 90205 FALL 206 Practice Final Exam Solutions The final exam will be cumulative However, the following problems are only from the material covered since the second exam For the material prior

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

An overview of key ideas

An overview of key ideas An overview of key ideas This is an overview of linear algebra given at the start of a course on the mathematics of engineering. Linear algebra progresses from vectors to matrices to subspaces. Vectors

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

This MUST hold matrix multiplication satisfies the distributive property.

This MUST hold matrix multiplication satisfies the distributive property. The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients

More information

Math 544, Exam 2 Information.

Math 544, Exam 2 Information. Math 544, Exam 2 Information. 10/12/10, LC 115, 2:00-3:15. Exam 2 will be based on: Sections 1.7, 1.9, 3.2, 3.3, 3.4; The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/544fa10/544.html)

More information

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 CHAPTER 4 MATRICES 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 Matrices Matrices are of fundamental importance in 2-dimensional and 3-dimensional graphics programming

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b . FINITE-DIMENSIONAL VECTOR SPACES.. Fields By now you ll have acquired a fair knowledge of matrices. These are a concrete embodiment of something rather more abstract. Sometimes it is easier to use matrices,

More information

Problem 1: Solving a linear equation

Problem 1: Solving a linear equation Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

Undergraduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1 Undergraduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 15, 2014 Outline 1 Courses Description and Requirement 2 Course Outline ematical techniques used in economics courses

More information

Math Exam 1 Solutions October 12, 2010

Math Exam 1 Solutions October 12, 2010 Math 415.5 Exam 1 Solutions October 1, 1 As can easily be expected, the solutions provided below are not the only ways to solve these problems, and other solutions may be completely valid. If you have

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices:

Mathematics I. Exercises with solutions. 1 Linear Algebra. Vectors and Matrices Let , C = , B = A = Determine the following matrices: Mathematics I Exercises with solutions Linear Algebra Vectors and Matrices.. Let A = 5, B = Determine the following matrices: 4 5, C = a) A + B; b) A B; c) AB; d) BA; e) (AB)C; f) A(BC) Solution: 4 5 a)

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Math 265 Linear Algebra Sample Spring 2002., rref (A) =

Math 265 Linear Algebra Sample Spring 2002., rref (A) = Math 265 Linear Algebra Sample Spring 22. It is given that A = rref (A T )= 2 3 5 3 2 6, rref (A) = 2 3 and (a) Find the rank of A. (b) Find the nullityof A. (c) Find a basis for the column space of A.

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS Math 50B Midterm II Information Spring 019 SOLUTIONS TO PRACTICE PROBLEMS Problem 1. Determine whether each set S below forms a subspace of the given vector space V. Show carefully that your answer is

More information

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008 Linear Algebra Chih-Wei Yi Dept. of Computer Science National Chiao Tung University November, 008 Section De nition and Examples Section De nition and Examples Section De nition and Examples De nition

More information

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity:

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity: Diagonalization We have seen that diagonal and triangular matrices are much easier to work with than are most matrices For example, determinants and eigenvalues are easy to compute, and multiplication

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ Question No: 1 (Marks: 1) If for a linear transformation the equation T(x) =0 has only the trivial solution then T is One-to-one Onto Question

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then 1 Sec 21 Matrix Operations Review Let A, B, and C be matrices of the same size, and let r and s be scalars Then (i) A + B = B + A (iv) r(a + B) = ra + rb (ii) (A + B) + C = A + (B + C) (v) (r + s)a = ra

More information

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic.

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. MATH 300, Second Exam REVIEW SOLUTIONS NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. [ ] [ ] 2 2. Let u = and v =, Let S be the parallelegram

More information

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th. Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

Math 313 (Linear Algebra) Exam 2 - Practice Exam

Math 313 (Linear Algebra) Exam 2 - Practice Exam Name: Student ID: Section: Instructor: Math 313 (Linear Algebra) Exam 2 - Practice Exam Instructions: For questions which require a written answer, show all your work. Full credit will be given only if

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Math 60. Rumbos Spring Solutions to Assignment #17

Math 60. Rumbos Spring Solutions to Assignment #17 Math 60. Rumbos Spring 2009 1 Solutions to Assignment #17 a b 1. Prove that if ad bc 0 then the matrix A = is invertible and c d compute A 1. a b Solution: Let A = and assume that ad bc 0. c d First consider

More information

Vector Spaces 4.5 Basis and Dimension

Vector Spaces 4.5 Basis and Dimension Vector Spaces 4.5 and Dimension Summer 2017 Vector Spaces 4.5 and Dimension Goals Discuss two related important concepts: Define of a Vectors Space V. Define Dimension dim(v ) of a Vectors Space V. Vector

More information

Math 221 Midterm Fall 2017 Section 104 Dijana Kreso

Math 221 Midterm Fall 2017 Section 104 Dijana Kreso The University of British Columbia Midterm October 5, 017 Group B Math 1: Matrix Algebra Section 104 (Dijana Kreso) Last Name: Student Number: First Name: Section: Format: 50 min long exam. Total: 5 marks.

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 9: Characterizations of Invertible Matrices Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Announcements Review for Exam 1

More information

Criteria for Determining If A Subset is a Subspace

Criteria for Determining If A Subset is a Subspace These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

Math 24 Spring 2012 Questions (mostly) from the Textbook

Math 24 Spring 2012 Questions (mostly) from the Textbook Math 24 Spring 2012 Questions (mostly) from the Textbook 1. TRUE OR FALSE? (a) The zero vector space has no basis. (F) (b) Every vector space that is generated by a finite set has a basis. (c) Every vector

More information

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop Fall 2017 Inverse of a matrix Authors: Alexander Knop Institute: UC San Diego Row-Column Rule If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding

More information

Math 313 Chapter 1 Review

Math 313 Chapter 1 Review Math 313 Chapter 1 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 1.1 Introduction to Systems of Linear Equations 2 2 1.2 Gaussian Elimination 3 3 1.3 Matrices and Matrix Operations

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

February 20 Math 3260 sec. 56 Spring 2018

February 20 Math 3260 sec. 56 Spring 2018 February 20 Math 3260 sec. 56 Spring 2018 Section 2.2: Inverse of a Matrix Consider the scalar equation ax = b. Provided a 0, we can solve this explicity x = a 1 b where a 1 is the unique number such that

More information