Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Size: px
Start display at page:

Download "Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics"

Transcription

1 Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015

2 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary matrices to find the inverse of a matrix (if the inverse exists), properties of invertible matrices.

3 Elementary Matrices Definition An n n matrix is an elementary matrix if it can be obtained from I n by a single elementary row operation.

4 Elementary Matrices Definition An n n matrix is an elementary matrix if it can be obtained from I n by a single elementary row operation. Example E is a 2 2 elementary matrix formed by swapping the two rows of I 2. [ ] 0 1 E = 1 0 Note the effect it has upon multiplying an arbitrary matrix. [ ] [ ] [ ] 0 1 a11 a 12 a 13 a21 a = 22 a a 21 a 22 a 23 a 11 a 12 a 13

5 Left Multiplication by E Theorem If E is an elementary matrix obtained from I m by performing a certain elementary row operation and if A is an m n matrix then EA is the matrix that results from performing the same elementary row operation on A.

6 Left Multiplication by E Theorem If E is an elementary matrix obtained from I m by performing a certain elementary row operation and if A is an m n matrix then EA is the matrix that results from performing the same elementary row operation on A. Example Let A = E 2 = , E 1 =, E 3 = ,, and calculate E 1 A, E 2 A, and E 3 A.

7 Inverse Operations Every elementary row operation has an inverse elementary row operation. Operation Inverse Multiply row i by c 0 Multiply row i by 1/c Swap rows i and j Swap rows i and j Add c times row i to row j Add c times row i to row j

8 Inverse Operations Every elementary row operation has an inverse elementary row operation. Operation Inverse Multiply row i by c 0 Multiply row i by 1/c Swap rows i and j Swap rows i and j Add c times row i to row j Add c times row i to row j Example Let E 1 = , E 2 = , E 3 = and find the corresponding inverse operations ,

9 Invertibility Theorem Every elementary matrix is invertible and the inverse is also an elementary matrix.

10 Invertibility Theorem Every elementary matrix is invertible and the inverse is also an elementary matrix. Proof. Let E be an elementary matrix which results from performing an elementary row operation on I. Let E 0 be the matrix that results from performing the inverse elementary row operation on I. By Thm. 3, E 0 E = I.

11 Invertibility Theorem Every elementary matrix is invertible and the inverse is also an elementary matrix. Proof. Let E be an elementary matrix which results from performing an elementary row operation on I. Let E 0 be the matrix that results from performing the inverse elementary row operation on I. By Thm. 3, E 0 E = I. By Thm. 3, EE 0 = I.

12 Invertibility Theorem Every elementary matrix is invertible and the inverse is also an elementary matrix. Proof. Let E be an elementary matrix which results from performing an elementary row operation on I. Let E 0 be the matrix that results from performing the inverse elementary row operation on I. By Thm. 3, E 0 E = I. By Thm. 3, EE 0 = I. Thus, E 0 = E 1.

13 Equivalence Result Theorem If A is an n n matrix, then the following statements are equivalent: 1. A is invertible. 2. Ax = 0 has only the trivial solution. 3. The reduced row echelon form of A is I n. 4. A is expressible as the product of elementary matrices.

14 Proof (1 = 2) Proof. Suppose A is invertible and let x 0 be any solution of Ax = 0. Ax 0 = 0

15 Proof (1 = 2) Proof. Suppose A is invertible and let x 0 be any solution of Ax = 0. Ax 0 = 0 A 1 Ax 0 = A 1 0 (A 1 A)x 0 = 0 Ix 0 = 0 x 0 = 0

16 Proof (1 = 2) Proof. Suppose A is invertible and let x 0 be any solution of Ax = 0. Ax 0 = 0 A 1 Ax 0 = A 1 0 (A 1 A)x 0 = 0 Ix 0 = 0 x 0 = 0 Thus Ax = 0 has only the trivial solution.

17 Proof (2 = 3) Proof. Suppose Ax = 0 has only the trivial solution, x = 0.

18 Proof (2 = 3) Proof. Suppose Ax = 0 has only the trivial solution, x = 0. The augmented matrix a 11 a 12 a 1n 0 a 21 a 22 a 2n a n1 a n2 a nn 0 can be row reduced by elementary row operations to

19 Proof (2 = 3) Proof. Suppose Ax = 0 has only the trivial solution, x = 0. The augmented matrix a 11 a 12 a 1n 0 a 21 a 22 a 2n a n1 a n2 a nn 0 can be row reduced by elementary row operations to Ignoring last column implies A is row reduced to I n.

20 Proof (3 = 4) Proof. Suppose the row reduced form of A is I n.

21 Proof (3 = 4) Proof. Suppose the row reduced form of A is I n. There is a finite sequence of elementary row operations which reduce A to I n.

22 Proof (3 = 4) Proof. Suppose the row reduced form of A is I n. There is a finite sequence of elementary row operations which reduce A to I n. To each elementary row operation corresponds an elementary matrix.

23 Proof (3 = 4) Proof. Suppose the row reduced form of A is I n. There is a finite sequence of elementary row operations which reduce A to I n. To each elementary row operation corresponds an elementary matrix. There exists a finite set of elementary matrices E 1, E 2,..., E k such that E k E k 1 E 2 E 1 A = I n.

24 Proof (3 = 4) Proof. Suppose the row reduced form of A is I n. There is a finite sequence of elementary row operations which reduce A to I n. To each elementary row operation corresponds an elementary matrix. There exists a finite set of elementary matrices E 1, E 2,..., E k such that E k E k 1 E 2 E 1 A = I n. Each elementary matrix has an inverse (which is also an elementary matrix) and thus A = E 1 1 E 1 2 E 1 k 1 E 1 k I n = E 1 1 E 1 2 E 1 k 1 E 1 k.

25 Proof (4 = 1) Proof. Assume A is a product of elementary matrices.

26 Proof (4 = 1) Proof. Assume A is a product of elementary matrices. Since elementary matrices are invertible, then A is a product of invertible matrices, and thus A is invertible.

27 Row Equivalence Definition If matrix B can be obtained from matrix A by a finite sequence of elementary row operations then A and B are said to be row equivalent.

28 Row Equivalence Definition If matrix B can be obtained from matrix A by a finite sequence of elementary row operations then A and B are said to be row equivalent. Remark: An n n matrix A is invertible if and only if A is row equivalent to I n.

29 Matrix Inversion Algorithm Algorithm: to find the inverse of an invertible matrix A, find the set of elementary row operations which reduces A to I and then perform this same sequence of operations on I to produce A 1.

30 Matrix Inversion Algorithm Algorithm: to find the inverse of an invertible matrix A, find the set of elementary row operations which reduces A to I and then perform this same sequence of operations on I to produce A 1. Example Find the inverse of A =

31 Example Example Find the inverse of A =

32 Homework Read Section 1.5 Work exercises 1 6, 8, 9, 11, 15.

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

3.4 Elementary Matrices and Matrix Inverse

3.4 Elementary Matrices and Matrix Inverse Math 220: Summer 2015 3.4 Elementary Matrices and Matrix Inverse A n n elementary matrix is a matrix which is obtained from the n n identity matrix I n n by a single elementary row operation. Elementary

More information

Properties of the Determinant Function

Properties of the Determinant Function Properties of the Determinant Function MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Overview Today s discussion will illuminate some of the properties of the determinant:

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

More information

Mon Feb Matrix inverses, the elementary matrix approach overview of skipped section 2.5. Announcements: Warm-up Exercise:

Mon Feb Matrix inverses, the elementary matrix approach overview of skipped section 2.5. Announcements: Warm-up Exercise: Math 2270-004 Week 6 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 8 Elementary matrices Let us define elementary matrices.

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Math 4377/6308 Advanced Linear Algebra 3.1 Elementary Matrix Operations and Elementary Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Math 60. Rumbos Spring Solutions to Assignment #17

Math 60. Rumbos Spring Solutions to Assignment #17 Math 60. Rumbos Spring 2009 1 Solutions to Assignment #17 a b 1. Prove that if ad bc 0 then the matrix A = is invertible and c d compute A 1. a b Solution: Let A = and assume that ad bc 0. c d First consider

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Properties of the matrix product Let us show that the matrix product we

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 8: Inverse of a Matrix Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Announcements We will not make it to section. tonight,

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

Inverting Matrices. 1 Properties of Transpose. 2 Matrix Algebra. P. Danziger 3.2, 3.3

Inverting Matrices. 1 Properties of Transpose. 2 Matrix Algebra. P. Danziger 3.2, 3.3 3., 3.3 Inverting Matrices P. Danziger 1 Properties of Transpose Transpose has higher precedence than multiplication and addition, so AB T A ( B T and A + B T A + ( B T As opposed to the bracketed expressions

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 9: Characterizations of Invertible Matrices Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Announcements Review for Exam 1

More information

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Linear Independence MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Given a set of vectors {v 1, v 2,..., v r } and another vector v span{v 1, v 2,...,

More information

Homework 1.1 and 1.2 WITH SOLUTIONS

Homework 1.1 and 1.2 WITH SOLUTIONS Math 220 Linear Algebra (Spring 2018) Homework 1.1 and 1.2 WITH SOLUTIONS Due Thursday January 25 These will be graded in detail and will count as two (TA graded) homeworks. Be sure to start each of these

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

E k E k 1 E 2 E 1 A = B

E k E k 1 E 2 E 1 A = B Theorem.5. suggests that reducing a matrix A to (reduced) row echelon form is tha same as multiplying A from left by the appropriate elementary matrices. Hence if B is a matrix obtained from a matrix A

More information

Kevin James. MTHSC 3110 Section 2.2 Inverses of Matrices

Kevin James. MTHSC 3110 Section 2.2 Inverses of Matrices MTHSC 3110 Section 2.2 Inverses of Matrices Definition Suppose that T : R n R m is linear. We will say that T is invertible if for every b R m there is exactly one x R n so that T ( x) = b. Note If T is

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW

REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW 20 CHAPTER 1 Systems of Linear Equations REPLACE ONE ROW BY ADDING THE SCALAR MULTIPLE OF ANOTHER ROW The last type of operation is slightly more complicated. Suppose that we want to write down the elementary

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.4 Inverse Math 4377/6308 Advanced Linear Algebra 2.4 Invertibility and Isomorphisms Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377 Jiwen He,

More information

Inverses and Elementary Matrices

Inverses and Elementary Matrices Inverses and Elementary Matrices 1-12-2013 Matrix inversion gives a method for solving some systems of equations Suppose a 11 x 1 +a 12 x 2 + +a 1n x n = b 1 a 21 x 1 +a 22 x 2 + +a 2n x n = b 2 a n1 x

More information

Systems of Linear Equations. By: Tri Atmojo Kusmayadi and Mardiyana Mathematics Education Sebelas Maret University

Systems of Linear Equations. By: Tri Atmojo Kusmayadi and Mardiyana Mathematics Education Sebelas Maret University Systems of Linear Equations By: Tri Atmojo Kusmayadi and Mardiyana Mathematics Education Sebelas Maret University Standard of Competency: Understanding the properties of systems of linear equations, matrices,

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Lecture 18: Section 4.3

Lecture 18: Section 4.3 Lecture 18: Section 4.3 Shuanglin Shao November 6, 2013 Linear Independence and Linear Dependence. We will discuss linear independence of vectors in a vector space. Definition. If S = {v 1, v 2,, v r }

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

February 20 Math 3260 sec. 56 Spring 2018

February 20 Math 3260 sec. 56 Spring 2018 February 20 Math 3260 sec. 56 Spring 2018 Section 2.2: Inverse of a Matrix Consider the scalar equation ax = b. Provided a 0, we can solve this explicity x = a 1 b where a 1 is the unique number such that

More information

Matrix multiplications that do row operations

Matrix multiplications that do row operations May 6, 204 Matrix multiplications that do row operations page Matrix multiplications that do row operations Introduction We have yet to justify our method for finding inverse matrices using row operations:

More information

MATH10212 Linear Algebra B Homework Week 3. Be prepared to answer the following oral questions if asked in the supervision class

MATH10212 Linear Algebra B Homework Week 3. Be prepared to answer the following oral questions if asked in the supervision class MATH10212 Linear Algebra B Homework Week Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra its Applications. Pearson, 2006. ISBN 0-521-2871-4. Normally, homework

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Matrix Inverses. November 19, 2014

Matrix Inverses. November 19, 2014 Matrix Inverses November 9, 204 22 The Inverse of a Matrix Now that we have discussed how to multiply two matrices, we can finally have a proper discussion of what we mean by the expression A for a matrix

More information

MATH10212 Linear Algebra B Homework Week 4

MATH10212 Linear Algebra B Homework Week 4 MATH22 Linear Algebra B Homework Week 4 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra and its Applications. Pearson, 26. ISBN -52-2873-4. Normally, homework

More information

Linear Algebra The Inverse of a Matrix

Linear Algebra The Inverse of a Matrix Linear Algebra The Inverse of a Matrix Dr. Bisher M. Iqelan biqelan@iugaza.edu.ps Department of Mathematics The Islamic University of Gaza 2017-2018, Semester 2 Dr. Bisher M. Iqelan (IUG) Sec.2.2: The

More information

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 205 Motivation When working with an inner product space, the most

More information

6-2 Matrix Multiplication, Inverses and Determinants

6-2 Matrix Multiplication, Inverses and Determinants Find AB and BA, if possible. 1. A = A = ; A is a 1 2 matrix and B is a 2 2 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of AB, find

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

Math "Matrix Approach to Solving Systems" Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25

Math Matrix Approach to Solving Systems Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25 Math 102 6.3 "Matrix Approach to Solving Systems" Bibiana Lopez Crafton Hills College November 2010 (CHC) 6.3 November 2010 1 / 25 Objectives: * Define a matrix and determine its order. * Write the augmented

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Diagonalization MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Motivation Today we consider two fundamental questions: Given an n n matrix A, does there exist a basis

More information

Systems of Ordinary Differential Equations

Systems of Ordinary Differential Equations Systems of Ordinary Differential Equations MATH 365 Ordinary Differential Equations J Robert Buchanan Department of Mathematics Fall 2018 Objectives Many physical problems involve a number of separate

More information

Linear Algebra I Lecture 8

Linear Algebra I Lecture 8 Linear Algebra I Lecture 8 Xi Chen 1 1 University of Alberta January 25, 2019 Outline 1 2 Gauss-Jordan Elimination Given a system of linear equations f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

MODEL ANSWERS TO THE THIRD HOMEWORK

MODEL ANSWERS TO THE THIRD HOMEWORK MODEL ANSWERS TO THE THIRD HOMEWORK 1 (i) We apply Gaussian elimination to A First note that the second row is a multiple of the first row So we need to swap the second and third rows 1 3 2 1 2 6 5 7 3

More information

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit. Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

Lecture 2 Systems of Linear Equations and Matrices, Continued

Lecture 2 Systems of Linear Equations and Matrices, Continued Lecture 2 Systems of Linear Equations and Matrices, Continued Math 19620 Outline of Lecture Algorithm for putting a matrix in row reduced echelon form - i.e. Gauss-Jordan Elimination Number of Solutions

More information

INVERSE OF A MATRIX [2.2]

INVERSE OF A MATRIX [2.2] INVERSE OF A MATRIX [2.2] The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now) such

More information

Math 1021, Linear Algebra 1. Section: A at 10am, B at 2:30pm

Math 1021, Linear Algebra 1. Section: A at 10am, B at 2:30pm Math 1021, Linear Algebra 1. Section: A at 10am, B at 2:30pm All course information is available on Moodle. Text: Nicholson, Linear algebra with applications, 7th edition. We shall cover Chapters 1,2,3,4,5:

More information

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form Math 2 Homework #7 March 4, 2 7.3.3. Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y/2. Hence the solution space consists of all vectors of the form ( ( ( ( x (5 + 3y/2 5/2 3/2 x =

More information

Elementary matrices, continued. To summarize, we have identified 3 types of row operations and their corresponding

Elementary matrices, continued. To summarize, we have identified 3 types of row operations and their corresponding Elementary matrices, continued To summarize, we have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

Math Matrix Theory - Spring 2012

Math Matrix Theory - Spring 2012 Math 440 - Matrix Theory - Spring 202 HW #2 Solutions Which of the following are true? Why? If not true, give an example to show that If true, give your reasoning (a) Inverse of an elementary matrix is

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

MATH10212 Linear Algebra B Homework Week 5

MATH10212 Linear Algebra B Homework Week 5 MATH Linear Algebra B Homework Week 5 Students are strongly advised to acquire a copy of the Textbook: D C Lay Linear Algebra its Applications Pearson 6 (or other editions) Normally homework assignments

More information

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise:

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise: Math 2270-004 Week 5 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

MATH 2030: ASSIGNMENT 4 SOLUTIONS

MATH 2030: ASSIGNMENT 4 SOLUTIONS MATH 23: ASSIGNMENT 4 SOLUTIONS More on the LU factorization Q.: pg 96, q 24. Find the P t LU factorization of the matrix 2 A = 3 2 2 A.. By interchanging row and row 4 we get a matrix that may be easily

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4]. Lecture Notes: Rank of a Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Linear Independence Definition 1. Let r 1, r 2,..., r m

More information

Math 51, Homework-2. Section numbers are from the course textbook.

Math 51, Homework-2. Section numbers are from the course textbook. SSEA Summer 2017 Math 51, Homework-2 Section numbers are from the course textbook. 1. Write the parametric equation of the plane that contains the following point and line: 1 1 1 3 2, 4 2 + t 3 0 t R.

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

INVERSE OF A MATRIX [2.2] 8-1

INVERSE OF A MATRIX [2.2] 8-1 INVERSE OF A MATRIX [2.2] 8-1 The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now)

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS nn Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula Syllabus for Math 308, Paul Smith Book: Kolman-Hill Chapter 1. Linear Equations and Matrices 1.1 Systems of Linear Equations Definition of a linear equation and a solution to a linear equations. Meaning

More information

MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018)

MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018) MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018) COURSEWORK 3 SOLUTIONS Exercise ( ) 1. (a) Write A = (a ij ) n n and B = (b ij ) n n. Since A and B are diagonal, we have a ij = 0 and

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

Linear Algebra 1 Exam 1 Solutions 6/12/3

Linear Algebra 1 Exam 1 Solutions 6/12/3 Linear Algebra 1 Exam 1 Solutions 6/12/3 Question 1 Consider the linear system in the variables (x, y, z, t, u), given by the following matrix, in echelon form: 1 2 1 3 1 2 0 1 1 3 1 4 0 0 0 1 2 3 Reduce

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.4 Solving Systems of Linear Equations 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.4. Solving Systems of Linear Equations Note. We give an algorithm for solving a system of linear equations (called

More information

Solving Consistent Linear Systems

Solving Consistent Linear Systems Solving Consistent Linear Systems Matrix Notation An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.

More information

(I.D) Solving Linear Systems via Row-Reduction

(I.D) Solving Linear Systems via Row-Reduction (I.D) Solving Linear Systems via Row-Reduction Turning to the promised algorithmic approach to Gaussian elimination, we say an m n matrix M is in reduced-row echelon form if: the first nonzero entry of

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

MATH10212 Linear Algebra B Homework 6. Be prepared to answer the following oral questions if asked in the supervision class:

MATH10212 Linear Algebra B Homework 6. Be prepared to answer the following oral questions if asked in the supervision class: MATH0 Linear Algebra B Homework 6 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra its Applications Pearson, 006 (or other editions) Normally, homework assignments

More information

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done.

P = 1 F m(p ) = IP = P I = f(i) = QI = IQ = 1 F m(p ) = Q, so we are done. Section 1.6: Invertible Matrices One can show (exercise) that the composition of finitely many invertible functions is invertible. As a result, we have the following: Theorem 6.1: Any admissible row operation

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1

CHAPTER 3 REVIEW QUESTIONS MATH 3034 Spring a 1 b 1 . Let U = { A M (R) A = and b 6 }. CHAPTER 3 REVIEW QUESTIONS MATH 334 Spring 7 a b a and b are integers and a 6 (a) Let S = { A U det A = }. List the elements of S; that is S = {... }. (b) Let T = { A

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University Chapter Section - Systems of Equations and Augmented Matrices D.S. Malik Creighton University Systems of Linear Equations Common ways to solve a system of equations: Eliminationi Substitution Elimination

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 10 Row expansion of the determinant Our next goal is

More information