Aggregate Growth: R =αn 1/ d f

Size: px
Start display at page:

Download "Aggregate Growth: R =αn 1/ d f"

Transcription

1 Aggregate Growth: Mass-ractal aggregates are partly described by the mass-ractal dimension, d, that deines the relationship between size and mass, R =αn 1/ d where α is the lacunarity constant, R is the aggregate overall size and N is the number o primary particles in an aggregate. The mass-ractal dimension ranges rom 1 to 3 in 3-d space. The growth o aggregates was irst modeled using computer simulations in the 's. Some discussion o the approaches and results orm these simulations will be given below. The Smoluchowski equation can also be modiied or mass-ractal aggregation and this is o the most lexibility since generalized results and conditions can be determined. Additionally, selpreserving distributions have been determined or the Smoluchowski approach that enable a general treatment o mass ractal aggregation. Simulations o Nano-Particle Aggregate Formation: The growth o aggregates can be simulated by making simple assumptions concerning transport o particles to the growing agglomerate and the events which occur when a primary particle or cluster collide with the growing aggregate. Depending on the relative kinetics o these two processes, growth can be diusion limited, similar to the original Smoluchowski equation, or reaction (collision) limited. Additionally, one can consider only monomer/cluster collisions or include cluster/cluster collisions as growth proceeds, such as might be expected in the ree molecular range. I one considers the primary particle as a point object, then the ractal dimension o the growing aggregate should increase orm a 0 dimensional point object to a 1 dimensional linear structure, to a branched chain o dimension on the order o as growth proceeds. The increase in dimension with growth is a natural consequence o the persistence o velocity or nano-particle Brownian motion combined with the random path o the colliding particles. The branch content o the growing aggregate should be a unction o l pa. As growth proceeds, the presence o branches and the convoluted shape o the growing aggregate, reminiscent o the Brownian path o the colliding particles, shields the interior bonding sites rom urther growth. For this reason three-dimensional growth is not possible, except by internal rearrangement. Then we can consider that an asymptotic mass ractal dimension is approached in time that is a unction o the persistence o the colliding particle velocity, l pa, and the degree to which monomers dominate over cluster transport. The latter issue is related to the diusion coeicient in the media and thus, the Knudsen number. In all simulations o mass-ractal aggregation an asymptotic dimension has been observed at long times. This means that the overall density o the aggregate, N/R 3 N (1-3/d) diminishes with time in the asymptotic range since N is a monotonically increasing unction o time. Diusion Limited Aggregation: In the simplest simulations, P. Meakin (1980 s) o diusion limited aggregation aggregates o dimension.5 are produced by ixing an initial primary particle at the origin o a three-dimensional lattice and allowing a random walk o primary particles, one at a time, randomly released rom the edge o the lattice until either collision or loss o the particle rom the ixed volume lattice occur. Despite the simplicity o this model, the dimension.5 is 1

2 repeatedly seen in aggregates produced with low primary particle concentration and high reactivity towards bonding. The persistence o velocity is the same as the primary particle size in this case. The cluster is immobile compared to the primary particle, so this could be considered either continuum transport or ree molecular transport or the monomer and continuum transport or the aggregate. I the concentration o primary particles is higher, and cluster cluster aggregation is allowed the mass-ractal dimension is reduced to 1.8 or diusion limited aggregation simulations. These simulations are conducted by randomly distributing primary particles on a lattice, and allowing all primary particles to collide and orm aggregates which also move by Brownian motion and urther aggregate to orm low dimensional branched structures. The persistence o velocity is constant in these simulations regardless o particle mass, l pa = d p. Additionally, variation in diusion coeicient with particle mass is not accounted or so this simulation might relect ree molecular conditions or both agregates and primary particles. The extreme o persistence o velocity is a ballistic growth simulation where primary particles ollow a linear path to the growing aggregate. For ballistic, monomer-cluster growth, similar to the irst simulation discussed, three-dimensional aggregates are produced. I clustercluster aggregation is allowed, similar to the second simulation above, mass-ractals o dimension 1.95 are produced. For this case the persistence o velocity or monomers and aggregates is larger than the lattice diameter. When persistence o velocity relative to primary particle size and variability o the diusion coeicient with particle size and transport regime are considered in more complicated simulations the results are qualitatively similar to the simple simulations mentioned above. In the ree molecular range Mountain ound values o d o 1.89 to.07 or diusion limited cluster-cluster aggregation, or instance. The aggregates that are produced by computer simulation are not monodisperse in N. Generally, the mass distribution o aggregates reach a sel-preserving orm indicating that an analysis based on the Smoluchowski equation as done or coagulation may be possible or aggregation as was done by Friedlander and is discussed below. Reaction Limited Aggregation Simulations: A sticking probability can be introduced into simulations to account or the probability o a particle or cluster bonding with the growing aggregate on impact. The importance o a stinking probability is that a particle just ater collision that does not stick has a much higher probability to transport by Brownian motion to the same or another local site on the aggregate. Then the colliding particles can probe the surace o the growing aggregate. Additionally, colliding particles can become trapped by high coordination number regions o the aggregate since translation away rom a site bounded by multiple aggregate subunits has a lower probability. The net eect o a sticking probability is to allow a type o local rearrangement towards multiply coordinated bonding. This directly leads to higher dimension aggregates. For primary particlecluster growth with a low sticking probability three-dimensional aggregates are ormed. I cluster-cluster aggregation is allowed a mass-ractal aggregate is ormed with a dimension o.09 which is larger than that observed or diusion limited aggregation (1.8). Other Dimensional Descriptions o Mass Fractal Aggregates:

3 The mass-ractal dimension, together with the aggregate size, and primary particle size yield a partial description o a mass-ractal aggregate that is suicient or the study o some aspects o growth and some properties, especially those related to mass/volume ratios. However, the mass-ractal description is not intended to be a complete description. For instance, given the mass-ractal dimension and size inormation it is not possible to reconstruct a acsimile o the aggregate without making assumptions concerning the branch content. I you are told that an object has a size o 100nm and is composed o 1 nm primary particles with a dimension o the object could range rom the regular object, a disk o thickness 1 nm and diameter 100nm with 10,000 primary particles, to a linear chain o diameter 100nm composed o 1 nm steps on a random path that is composed o 10,000 steps. From the mass-ractal dimension there is no possibility o distinguishing between these objects. Dimensional analysis can be used to describe a variety o eatures beyond the mass-size scaling. For instance, the spectral dimension is used to describe the energy distribution in a mass-ractal object, the chemical dimension is used to describe the reactivity o a mass-ractal structure and the connectivity dimension is used to measure the branch content o a mass-ractal structure. The number o primary dimensions that could be deined or a given object is only limited by the number o observable eatures that exist or the object. A primary dimension relects a undamental scaling eature or an object. One eature o a primary dimension in three dimensional space is that the value is equal to the mass-ractal dimension or regular objects and its value is equal to or less than the mass ractal dimension or ractal objects. Because o the wide range o dimensions that can be deined or various systems, the ield o dimensional analysis based on ractal concepts is challenging to understand. Nonetheless, at least two dimensional values are necessary or even the most rudimentary understanding o aggregation, i.e. in order to distinguish between a disk and a linear random walk. I we consider branching in mass-ractal aggregates, a natural measure o the object is the minimum path or primitive path, or number o steps, required to traverse the object between the urthest points in the aggregate, L. For a disk, L is the diameter o the disk, while or a linear random walk with no branching, L is the degree o aggregation, N. The scaling between L and N yields the connectivity dimension, C, or the aggregate, L C = BNl Where B is a scaling preactor similar to the lacunarity or mass-ractal scaling. For a linear chain L N so C = 1. For a disk L N so C = = d. C is a primary dimension. The number o branches, n br, in a mass-ractal aggregate can be determined rom C since, n br N/L The average coordination number or monomers in the aggregate, c N, is given by, c N = n br /N 1/L The average coordination number can be determined rom simulations and it is ound to reach an asymptote in ractal growth. The mass-ractal and connectivity dimensions are not independent in the sense that branched objects o the same path dimension have a larger mass-ractal dimension. For example a linear, Gaussian chain has a mass ractal dimension o and a connectivity dimension o 1. 3

4 For a randomly branched chain that ollows a Gaussian path the mass ractal dimension is.5 and the connectivity dimension is close to. Application o the Smoluchowski Equation to Mass Fractal Aggregaton: The Smoluchowski equation translates the problem o calculating particle growth rate, δn/δt, to the problem o determining the collision requency unction, β ij. For single particles in the ree molecular range, π β( v i,v j ) = π( d pi + d pj ) kt + 1 m i m j 1 Free Molecular Range where the single underlined part corresponds to the collision cross section or i and j aggregates and the double underlined part corresponds to the average relative velocity between agglomerates. β ij.relects the average hydrodynamic volume swept by the two agglomerates. For the ree molecular regime the aggregate is completely draining and the hydrodynamic volume o the aggregate is N agg v 0 where N agg is the degree o aggregation and v 0 is the volume o a primary particle, N agg = v =α R v 0 a 0 d Free Molecular (Free Draining) R is the hydrodynamic radius o the aggregate or the continuum range, i.e. non-draining range. In the continuum range the aggregate, with respect to diusion, is a sphere like object. So while the velocity depends on a Rouse like model, agg = N agg 0, the aggregate cross section is viewed rom a non-draining hydrodynamic perspective. The reason or this is simple, i the aggregates are rigid structures, then penetration between aggregates is unlikely, especially when d, while, small molecules can easily penetrate the aggregates in the ree molecular range. This picture breaks down when d < since it rapidly becomes possible or aggregates to penetrate the hydrodynamic sphere o each other, or instance the hydrodynamic sphere or a rod is a sphere o diameter L. Two rigid rods can easily penetrate each others hydrodynamic radius by lining up. This is not true or d. Additionally, the projected cross section o an object o d < will depend strongly on the orientation o the object. Again this is not necessarily true or a random mass-ractal object with d. As was shown earlier, the calculation o the diusion coeicient or a mass-ractal aggregate requires, a priori, a value or the mass ractal dimension. The calculation using the Smoluchowski equation yields a dierent result than the typical goal o the computer simulations mentioned above. Most computer simulations seek to determine the mass ractal dimension and perhaps the connectivity dimension as a unction o growth conditions, while the Smoluchowski equation seeks to describe the aggregate growth rate and aggregate size distribution with the ractal dimension as an input parameter. 4

5 The collision cross section, single underlined term above, is determined by the average ractal scaling, N agg = v =α R d Free Molecul, or ractals o dimension between and 3, v 0 a 0 CrossSection R i + R j ( ) i 1 d + j 1 d Substituting or the mass o the aggregates in the irst equation and this expression or the cross section we have, ( ) = 6kT β v i,v j ρ 3 4π λ 6 /d a 1/ d p0 v 1/ d i + v j ( ) v i v j Free Molecular Regime where λ = 1. For the continuum regime the collision kernel is, d β( v i,v j ) = 4π( d pi + d pj )( D i + D j ) Continuum Regime where dpi is the collision diameter or the agglomerates. For ractal aggregates we have, D ~ D 1 /N agg = (d 1 /d agg ) d D 1 Free Molecular Range D ~ D 1 /N agg 1/d = (d 1 / d agg ) D 1 Continuum Range and or large aggregates the continuum regime is used so, β( v i,v j ) = kt ( ) 1 3µ v 1/ d 1/ d i + v j v i 1/ d + v j Sel-Preserving Aggregate Size Distributions: 1/ d Continuum Regime (N>>1000) The collision kernels give above are homogeneous unctions o the colliding aggregate volume, β( αv i,αv j ) =α λ β ( v i,v j ) ; λ = 1 d Free Molecular or the continuum regime λ = 0. Since the kernels are homogeneous the distributions reach an asymptotic sel-preserving distribution. The sel-preserving equation is given by, ( ) = N n v φ ψ η ( ) ; η = v v and v = φ N 5

6 v is the solids raction o the aggregate, and φ is the volume raction o solids in the system. The particle number density, N, decays with, dn dt = ( ) βv i,v j n i n j dv i dv j using the ree molecular regime collision kernel given above, and the sel-preserving number distribution give above, dn dt = 1 acφλ N λ ; c = 6kT ρ 3 4π λ 6 /d a p0 and "a" is an integral unction o the sel-preserving distribution unction above. Values or a are given by Friedlander rom Monte Carlo calculations, Aggregate sel-preserving distributions solved using a discrete sectional model are shown in the igure above (Vemury and Pratsinis). The time to reach the sel preserving size distribution was also calculated by Vemury and Pratsinis and is shown in the igure below. In both cases the selpreserving limit is reached aster than spherical clusters. 6

7 7

For one such collision, a new particle, "k", is formed of volume v k = v i + v j. The rate of formation of "k" particles is, N ij

For one such collision, a new particle, k, is formed of volume v k = v i + v j. The rate of formation of k particles is, N ij Coagulation Theory and The Smoluchowski Equation: Coagulation is defined as growth of particles by collisions among particles. It is usually associated with dense, 3-d growth, in contrast to aggregation

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Quiz 5 Morphology of Complex Materials

Quiz 5 Morphology of Complex Materials 20302 Quiz 5 Morphology of Complex Materials ) a) The density of a mass-fractal decreases with the size of the mass fractal. Calculate the mass density of a mass-fractal and show that it decreases with

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

NON-EQUILIBRIUM REACTION RATES IN THE MACROSCOPIC CHEMISTRY METHOD FOR DSMC CALCULATIONS. March 19, 2007

NON-EQUILIBRIUM REACTION RATES IN THE MACROSCOPIC CHEMISTRY METHOD FOR DSMC CALCULATIONS. March 19, 2007 NON-EQUILIBRIUM REACTION RATES IN THE MACROSCOPIC CHEMISTRY METHOD FOR DSMC CALCULATIONS M.J. GOLDSWORTHY, M.N. MACROSSAN & M.M ABDEL-JAWAD March 9, 7 The Direct Simulation Monte Carlo (DSMC) method is

More information

Transport Properties: Momentum Transport, Viscosity

Transport Properties: Momentum Transport, Viscosity Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,

More information

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diusion I. Introduction A. There are a group o biophysical techniques that are based on transport processes. 1. Transport processes

More information

Intrinsic Small-Signal Equivalent Circuit of GaAs MESFET s

Intrinsic Small-Signal Equivalent Circuit of GaAs MESFET s Intrinsic Small-Signal Equivalent Circuit o GaAs MESFET s M KAMECHE *, M FEHAM M MELIANI, N BENAHMED, S DALI * National Centre o Space Techniques, Algeria Telecom Laboratory, University o Tlemcen, Algeria

More information

Crossover from ballistic to Epstein diffusion in the freemolecular

Crossover from ballistic to Epstein diffusion in the freemolecular This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Crossover

More information

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES CAPTER 8 ANALYSS O AVERAGE SQUARED DERENCE SURACES n Chapters 5, 6, and 7, the Spectral it algorithm was used to estimate both scatterer size and total attenuation rom the backscattered waveorms by minimizing

More information

Transient Adsorption and Desorption in Micrometer Scale Features

Transient Adsorption and Desorption in Micrometer Scale Features Journal o The Electrochemical Society, 149 8 G461-G473 2002 0013-4651/2002/149 8 /G461/13/$7.00 The Electrochemical Society, Inc. Transient Adsorption and Desorption in Micrometer Scale Features Matthias

More information

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018 Internal Energy o a Gas Work Done by a Gas Special Processes The First Law o Thermodynamics p Diagrams The First Law o Thermodynamics is all about the energy o a gas: how much energy does the gas possess,

More information

Pre-AP Physics Chapter 1 Notes Yockers JHS 2008

Pre-AP Physics Chapter 1 Notes Yockers JHS 2008 Pre-AP Physics Chapter 1 Notes Yockers JHS 2008 Standards o Length, Mass, and Time ( - length quantities) - mass - time Derived Quantities: Examples Dimensional Analysis useul to check equations and to

More information

CHAPTER 4 Reactor Statics. Table of Contents

CHAPTER 4 Reactor Statics. Table of Contents CHAPTER 4 Reactor Statics Prepared by Dr. Benjamin Rouben, & Consulting, Adjunct Proessor, McMaster University & University o Ontario Institute o Technology (UOIT) and Dr. Eleodor Nichita, Associate Proessor,

More information

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS n * D n d Fluid z z z FIGURE 8-1. A SYSTEM IS IN EQUILIBRIUM EVEN IF THERE ARE VARIATIONS IN THE NUMBER OF MOLECULES IN A SMALL VOLUME, SO LONG AS THE PROPERTIES ARE UNIFORM ON A MACROSCOPIC SCALE 8. INTRODUCTION

More information

Probabilistic Model of Error in Fixed-Point Arithmetic Gaussian Pyramid

Probabilistic Model of Error in Fixed-Point Arithmetic Gaussian Pyramid Probabilistic Model o Error in Fixed-Point Arithmetic Gaussian Pyramid Antoine Méler John A. Ruiz-Hernandez James L. Crowley INRIA Grenoble - Rhône-Alpes 655 avenue de l Europe 38 334 Saint Ismier Cedex

More information

Chaotic scattering from hydrogen atoms in a circularly polarized laser field

Chaotic scattering from hydrogen atoms in a circularly polarized laser field Chaotic scattering rom hydrogen atoms in a circularly polarized laser ield Elias Okon, William Parker, Will Chism, and Linda E. Reichl Center or Studies in Statistical Mechanics and Complex Systems, The

More information

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1.

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1. TLT-5/56 COMMUNICATION THEORY, Exercise 3, Fall Problem. The "random walk" was modelled as a random sequence [ n] where W[i] are binary i.i.d. random variables with P[W[i] = s] = p (orward step with probability

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Particle Dynamics: Brownian Diffusion

Particle Dynamics: Brownian Diffusion Particle Dynamics: Brownian Diffusion Prof. Sotiris E. Pratsinis Particle Technology Laboratory Department of Mechanical and Process Engineering, ETH Zürich, Switzerland www.ptl.ethz.ch 1 or or or or nucleation

More information

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 27.1 Introduction We shall analyze the motion o systems o particles and rigid bodies that are undergoing translational and rotational

More information

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance We begin by returning to our system o equations or low o a layer o uniorm density on a rotating earth. du dv h + [ u( H + h)] + [ v( H t y d

More information

The achievable limits of operational modal analysis. * Siu-Kui Au 1)

The achievable limits of operational modal analysis. * Siu-Kui Au 1) The achievable limits o operational modal analysis * Siu-Kui Au 1) 1) Center or Engineering Dynamics and Institute or Risk and Uncertainty, University o Liverpool, Liverpool L69 3GH, United Kingdom 1)

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

CHAPTER 5 Reactor Dynamics. Table of Contents

CHAPTER 5 Reactor Dynamics. Table of Contents 1 CHAPTER 5 Reactor Dynamics prepared by Eleodor Nichita, UOIT and Benjamin Rouben, 1 & 1 Consulting, Adjunct Proessor, McMaster & UOIT Summary: This chapter addresses the time-dependent behaviour o nuclear

More information

Solutions for Homework #8. Landing gear

Solutions for Homework #8. Landing gear Solutions or Homewor #8 PROBEM. (P. 9 on page 78 in the note) An airplane is modeled as a beam with masses as shown below: m m m m π [rad/sec] anding gear m m.5 Find the stiness and mass matrices. Find

More information

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors Plasma and Fusion Research: Letters Volume 5, 044 200) Feasibility o a Multi-Pass Thomson Scattering System with Conocal Spherical Mirrors Junichi HIRATSUKA, Akira EJIRI, Yuichi TAKASE and Takashi YAMAGUCHI

More information

Scattering of Solitons of Modified KdV Equation with Self-consistent Sources

Scattering of Solitons of Modified KdV Equation with Self-consistent Sources Commun. Theor. Phys. Beijing, China 49 8 pp. 89 84 c Chinese Physical Society Vol. 49, No. 4, April 5, 8 Scattering o Solitons o Modiied KdV Equation with Sel-consistent Sources ZHANG Da-Jun and WU Hua

More information

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation

Micromechanics of Colloidal Suspensions: Dynamics of shear-induced aggregation : Dynamics of shear-induced aggregation G. Frungieri, J. Debona, M. Vanni Politecnico di Torino Dept. of Applied Science and Technology Lagrangian transport: from complex flows to complex fluids Lecce,

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions Math- Lesson -4 Review: Cube, Cube Root, and Eponential Functions Quiz - Graph (no calculator):. y. y ( ) 4. y What is a power? vocabulary Power: An epression ormed by repeated Multiplication o the same

More information

Strain and Stress Measurements with a Two-Dimensional Detector

Strain and Stress Measurements with a Two-Dimensional Detector Copyright ISSN (C) 97-, JCPDS-International Advances in X-ray Centre Analysis, or Volume Diraction 4 Data 999 5 Strain and Stress Measurements with a Two-Dimensional Detector Baoping Bob He and Kingsley

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

THE EFFECT OF SHEAR ON COLLOIDAL AGGREGATION AND GELATION STUDIED USING SMALL-ANGLE LIGHT SCATTERING TAHEREH MOKHTARI

THE EFFECT OF SHEAR ON COLLOIDAL AGGREGATION AND GELATION STUDIED USING SMALL-ANGLE LIGHT SCATTERING TAHEREH MOKHTARI THE EFFECT OF SHEAR ON COLLOIDAL AGGREGATION AND GELATION STUDIED USING SMALL-ANGLE LIGHT SCATTERING by TAHEREH MOKHTARI B.S., Shari University o Technology, 1998 A REPORT submitted in partial ulillment

More information

This article was published in an Elsevier journal. The attached copy is urnished to the author or non-commercial research and education use, including or instruction at the author s institution, sharing

More information

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS (Adopted on 4 June 203) (Adopted on 4 June 203) ANNEX 8 (Adopted on 4 June 203) MSC 92/26/Add. Annex 8, page THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) o the Convention on the International

More information

( 1) ( 2) ( 1) nan integer, since the potential is no longer simple harmonic.

( 1) ( 2) ( 1) nan integer, since the potential is no longer simple harmonic. . Anharmonic Oscillators Michael Fowler Landau (para 8) considers a simple harmonic oscillator with added small potential energy terms mα + mβ. We ll simpliy slightly by dropping the term, to give an equation

More information

Experimental investigations of sedimentation of flocs in suspensions of biological water treatment plants

Experimental investigations of sedimentation of flocs in suspensions of biological water treatment plants Computational Methods in Multiphase Flow IV 93 Experimental investigations o sedimentation o locs in suspensions o biological water treatment plants B. Zajdela 1,, A. Hribernik & M. Hribersek 1 gional

More information

Characterization of Internal State Variable for fiber fracture in UD Composite

Characterization of Internal State Variable for fiber fracture in UD Composite Characterization o Internal State ariable or iber racture in UD Composite Modris Megnis,, Povl Brondsted 3, Sai A. Rehman 4, Tanveer Ahmad 5 Summary The continuum damage mechanics is used to describe the

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information

Modeling of Mature Soot Dynamics and Optical Properties

Modeling of Mature Soot Dynamics and Optical Properties Modeling of Mature Soot Dynamics and Optical Properties Georgios A. Kelesidis, Sotiris E. Pratsinis Particle Technology Laboratory, ETH Zurich, Zurich, Switzerland Aleksandar Duric, Martin Allemann Siemens

More information

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( )

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( ) SIO B, Rudnick! XVIII.Wavelets The goal o a wavelet transorm is a description o a time series that is both requency and time selective. The wavelet transorm can be contrasted with the well-known and very

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

Lecture 25: Heat and The 1st Law of Thermodynamics Prof. WAN, Xin

Lecture 25: Heat and The 1st Law of Thermodynamics Prof. WAN, Xin General Physics I Lecture 5: Heat and he 1st Law o hermodynamics Pro. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Latent Heat in Phase Changes Latent Heat he latent heat o vaporization or

More information

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs Fluctuationlessness Theorem and its Application to Boundary Value Problems o ODEs NEJLA ALTAY İstanbul Technical University Inormatics Institute Maslak, 34469, İstanbul TÜRKİYE TURKEY) nejla@be.itu.edu.tr

More information

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma Chapter 4 Imaging Lecture 21 d (110) Imaging Imaging in the TEM Diraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging or phase contrast imaging STEM imaging a

More information

Pulling by Pushing, Slip with Infinite Friction, and Perfectly Rough Surfaces

Pulling by Pushing, Slip with Infinite Friction, and Perfectly Rough Surfaces 1993 IEEE International Conerence on Robotics and Automation Pulling by Pushing, Slip with Ininite Friction, and Perectly Rough Suraces Kevin M. Lynch Matthew T. Mason The Robotics Institute and School

More information

( ) ( ) ( ) + ( ) Ä ( ) Langmuir Adsorption Isotherms. dt k : rates of ad/desorption, N : totally number of adsorption sites.

( ) ( ) ( ) + ( ) Ä ( ) Langmuir Adsorption Isotherms. dt k : rates of ad/desorption, N : totally number of adsorption sites. Langmuir Adsorption sotherms... 1 Summarizing Remarks... Langmuir Adsorption sotherms Assumptions: o Adsorp at most one monolayer o Surace is uniorm o No interaction between adsorbates All o these assumptions

More information

Partially fluidized shear granular flows: Continuum theory and molecular dynamics simulations

Partially fluidized shear granular flows: Continuum theory and molecular dynamics simulations Partially luidized shear granular lows: Continuum theory and molecular dynamics simulations Dmitri Volson, 1 Lev S. Tsimring, 1 and Igor S. Aranson 2 1 Institute or Nonlinear Science, University o Caliornia,

More information

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance Global Weak Solution o Planetary Geostrophic Equations with Inviscid Geostrophic Balance Jian-Guo Liu 1, Roger Samelson 2, Cheng Wang 3 Communicated by R. Temam) Abstract. A reormulation o the planetary

More information

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP IOSR Journal o Mathematics (IOSR-JM) e-issn:78-578, p-issn: 39-765X.Volume,Issue Ver. III (Jan.-Feb.6)PP 88- www.iosrjournals.org Eect o Chemical Reaction on MHD Boundary Layer Flow o Williamson Nanoluid

More information

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd.

2.6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics. References - geostatistics. References geostatistics (cntd. .6 Two-dimensional continuous interpolation 3: Kriging - introduction to geostatistics Spline interpolation was originally developed or image processing. In GIS, it is mainly used in visualization o spatial

More information

Physics 5153 Classical Mechanics. Solution by Quadrature-1

Physics 5153 Classical Mechanics. Solution by Quadrature-1 October 14, 003 11:47:49 1 Introduction Physics 5153 Classical Mechanics Solution by Quadrature In the previous lectures, we have reduced the number o eective degrees o reedom that are needed to solve

More information

An introduction to X-ray Absorption Fine Structure Spectroscopy

An introduction to X-ray Absorption Fine Structure Spectroscopy An introduction to X-ray Absorption Fine Structure Spectroscopy Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France sakura@esr.r S. Pascarelli An Introduction to XAFS - Cheiron

More information

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity X-ray Diraction Interaction o Waves Reciprocal Lattice and Diraction X-ray Scattering by Atoms The Integrated Intensity Basic Principles o Interaction o Waves Periodic waves characteristic: Frequency :

More information

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does Geosciences 567: CHAPTER (RR/GZ) CHAPTER : INTRODUCTION Inverse Theory: What It Is and What It Does Inverse theory, at least as I choose to deine it, is the ine art o estimating model parameters rom data

More information

An Alternative Poincaré Section for Steady-State Responses and Bifurcations of a Duffing-Van der Pol Oscillator

An Alternative Poincaré Section for Steady-State Responses and Bifurcations of a Duffing-Van der Pol Oscillator An Alternative Poincaré Section or Steady-State Responses and Biurcations o a Duing-Van der Pol Oscillator Jang-Der Jeng, Yuan Kang *, Yeon-Pun Chang Department o Mechanical Engineering, National United

More information

Probabilistic Analysis of Multi-layered Soil Effects on Shallow Foundation Settlement

Probabilistic Analysis of Multi-layered Soil Effects on Shallow Foundation Settlement Probabilistic Analysis o Multi-layered Soil ects on Shallow Foundation Settlement 54 Y L Kuo B Postgraduate Student, School o Civil and nvironmental ngineering, University o Adelaide, Australia M B Jaksa

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introduction to Analog And Digital Communications Second Edition Simon Haykin, Michael Moher Chapter Fourier Representation o Signals and Systems.1 The Fourier Transorm. Properties o the Fourier Transorm.3

More information

Basic mathematics of economic models. 3. Maximization

Basic mathematics of economic models. 3. Maximization John Riley 1 January 16 Basic mathematics o economic models 3 Maimization 31 Single variable maimization 1 3 Multi variable maimization 6 33 Concave unctions 9 34 Maimization with non-negativity constraints

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

/639 Final Exam Solutions, 2007

/639 Final Exam Solutions, 2007 580.439/639 Final Exam Solutions, 2007 Problem Part a) Larger conductance in the postsynaptic receptor array; action potentials (usually Ca ++ ) propagating in the orward direction in the dendrites; ampliication

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

There are eight problems on the exam. Do all of the problems. Show your work

There are eight problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals o Physical Chemistry Final Exam April 23, 2012 There are eight problems on the exam. Do all o the problems. Show your work R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3.

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3. Quadratic Functions The translation o a unction is simpl the shiting o a unction. In this section, or the most part, we will be graphing various unctions b means o shiting the parent unction. We will go

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

Molecular Fluorescence Spectroscopy Jose Hodak

Molecular Fluorescence Spectroscopy Jose Hodak Molecular Fluorescence Spectroscopy Jose Hodak Introduction This notes were prepared based mainly on Bernard Valeur molecular luorescence book. I would recommend this book to the students who need learn

More information

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b). 8. THEOREM I the partial derivatives and eist near (a b) and are continuous at (a b) then is dierentiable at (a b). For a dierentiable unction o two variables z= ( ) we deine the dierentials d and d to

More information

AH 2700A. Attenuator Pair Ratio for C vs Frequency. Option-E 50 Hz-20 khz Ultra-precision Capacitance/Loss Bridge

AH 2700A. Attenuator Pair Ratio for C vs Frequency. Option-E 50 Hz-20 khz Ultra-precision Capacitance/Loss Bridge 0 E ttenuator Pair Ratio or vs requency NEEN-ERLN 700 Option-E 0-0 k Ultra-precision apacitance/loss ridge ttenuator Ratio Pair Uncertainty o in ppm or ll Usable Pairs o Taps 0 0 0. 0. 0. 07/08/0 E E E

More information

Positronium formation in 2S-state in atomic hydrogen

Positronium formation in 2S-state in atomic hydrogen Indian Journal o Pure & Applied Physics Vol. 46, April 008, pp. 45-50 Positronium ormation in S-state in atomic hydrogen V S Kulhar* Department o Physics, University o Rajasthan, Jaipur 0 055 Received

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

Gas-side mass transfer coefficient of a laboratory column equipped with one sieve tray

Gas-side mass transfer coefficient of a laboratory column equipped with one sieve tray Gas-side mass transer coeicient o a laoratory column equipped with one sieve tray Zhivko Ivanov, Zhelcho Steanov, Bogdan Bogdanov Astract: The inluence o plate geometry on the characteristics o luid low

More information

Light, Quantum Mechanics and the Atom

Light, Quantum Mechanics and the Atom Light, Quantum Mechanics and the Atom Light Light is something that is amiliar to most us. It is the way in which we are able to see the world around us. Light can be thought as a wave and, as a consequence,

More information

Anderson impurity in a semiconductor

Anderson impurity in a semiconductor PHYSICAL REVIEW B VOLUME 54, NUMBER 12 Anderson impurity in a semiconductor 15 SEPTEMBER 1996-II Clare C. Yu and M. Guerrero * Department o Physics and Astronomy, University o Caliornia, Irvine, Caliornia

More information

Transverse vibration and instability of fluid conveying triple-walled carbon nanotubes based on strain-inertia gradient theory

Transverse vibration and instability of fluid conveying triple-walled carbon nanotubes based on strain-inertia gradient theory Journal o Theoretical and Applied Vibration and Acoustics () 6-7 (05) Journal o Theoretical and Applied Vibration and Acoustics I S A V journal homepage: http://tava.isav.ir Transverse vibration and instability

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

Natural convection in a vertical strip immersed in a porous medium

Natural convection in a vertical strip immersed in a porous medium European Journal o Mechanics B/Fluids 22 (2003) 545 553 Natural convection in a vertical strip immersed in a porous medium L. Martínez-Suástegui a,c.treviño b,,f.méndez a a Facultad de Ingeniería, UNAM,

More information

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES EWTOS LAWS O OTIO AD RICTIOS STRAIGHT LIES ITRODUCTIO In this chapter, we shall study the motion o bodies along with the causes o their motion assuming that mass is constant. In addition, we are going

More information

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France X-RAY ABSORPTION SPECTROSCOPY: FUNDAMENTALS AND SIMPLE MODEL OF EXAFS Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Part I: Fundamentals o X-ray Absorption Fine Structure:

More information

Least-Squares Spectral Analysis Theory Summary

Least-Squares Spectral Analysis Theory Summary Least-Squares Spectral Analysis Theory Summary Reerence: Mtamakaya, J. D. (2012). Assessment o Atmospheric Pressure Loading on the International GNSS REPRO1 Solutions Periodic Signatures. Ph.D. dissertation,

More information

Mixed Signal IC Design Notes set 6: Mathematics of Electrical Noise

Mixed Signal IC Design Notes set 6: Mathematics of Electrical Noise ECE45C /8C notes, M. odwell, copyrighted 007 Mied Signal IC Design Notes set 6: Mathematics o Electrical Noise Mark odwell University o Caliornia, Santa Barbara rodwell@ece.ucsb.edu 805-893-344, 805-893-36

More information

An introduction to X-ray Absorption Spectroscopy. Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

An introduction to X-ray Absorption Spectroscopy. Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France An introduction to X-ray Absorption Spectroscopy Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France S. Pascarelli Joint ICTP-IAEA Workshop - Trieste, 14 1 Outline X-ray Absorption

More information

Introduction to Nanofluids

Introduction to Nanofluids Chapter 1 Introduction to Nanoluids 1.1 Introduction Thermal properties o liquids play a decisive role in heating as well as cooling applications in industrial processes. Thermal conductivity o a liquid

More information

Feedback Linearization

Feedback Linearization Feedback Linearization Peter Al Hokayem and Eduardo Gallestey May 14, 2015 1 Introduction Consider a class o single-input-single-output (SISO) nonlinear systems o the orm ẋ = (x) + g(x)u (1) y = h(x) (2)

More information

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid Acoustic orcing o leural waves and acoustic ields or a thin plate in a luid Darryl MCMAHON Maritime Division, Deence Science and Technology Organisation, HMAS Stirling, WA Australia ABSTACT Consistency

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

Scoring functions. Talk Overview. Eran Eyal. Scoring functions what and why

Scoring functions. Talk Overview. Eran Eyal. Scoring functions what and why Scoring unctions Talk Overview Scoring unctions what and why Force ields based on approximation o molecular orces as we understand them Knowledge-based potentials let the data speak May 2011 Eran Eyal

More information

Polarizability and alignment of dielectric nanoparticles in an external electric field: Bowls, dumbbells, and cuboids

Polarizability and alignment of dielectric nanoparticles in an external electric field: Bowls, dumbbells, and cuboids Polarizability and alignment o dielectric nanoparticles in an external electric ield: Bowls, dumbbells, and cuboids Bas W. Kwaadgras, Maarten Verdult, Marjolein Dijkstra, and René van Roij Citation: J.

More information

Estimation of Sample Reactivity Worth with Differential Operator Sampling Method

Estimation of Sample Reactivity Worth with Differential Operator Sampling Method Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.842-850 (2011) ARTICLE Estimation o Sample Reactivity Worth with Dierential Operator Sampling Method Yasunobu NAGAYA and Takamasa MORI Japan Atomic

More information

arxiv: v1 [hep-lat] 26 Dec 2014

arxiv: v1 [hep-lat] 26 Dec 2014 arxiv:42.7928v [hep-lat] 26 Dec 204 A perturbative sty o the chirally rotated Schrödinger Functional in QCD Stean Sint School o Mathematics, Trinity College, Dublin 2, Ireland E-mail: sint@maths.tcd.ie

More information

Decoherence and the Classical Limit

Decoherence and the Classical Limit Chapter 26 Decoherence and the Classical Limit 26.1 Introduction Classical mechanics deals with objects which have a precise location and move in a deterministic way as a function of time. By contrast,

More information

Flip-Flop Functions KEY

Flip-Flop Functions KEY For each rational unction, list the zeros o the polynomials in the numerator and denominator. Then, using a calculator, sketch the graph in a window o [-5.75, 6] by [-5, 5], and provide an end behavior

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory The Floating Potential o Cylindrical Langmuir Probes Francis F. Chen and Donald Arnush Electrical Engineering Department LTP-15 May, 1 Electrical Engineering

More information

Ph.D. Crina Gudelia Costea

Ph.D. Crina Gudelia Costea Politecnico di Torino - Dipartimento di Scienza dei Materiali ed Ingegneria Chimica Ph.D. Crina Gudelia Costea Adisor: prof. Marco Vanni Introduction Morphology of aggregates Porosity and permeability

More information