Optimization II. Now lets look at a few examples of the applications of extrema.

Size: px
Start display at page:

Download "Optimization II. Now lets look at a few examples of the applications of extrema."

Transcription

1 Optimization II So far you have learned how to find the relative and absolute etrema of a function. This is an important concept because of how it can be applied to real life situations. In many situations you will be looking to either minimize or maimize a quantity; whether it is time, cost, units produced, volume, etc. Probably the most used application of etrema in the business world is to minimize costs or to maimize revenue and profits. In most of the cases, these application problems will be in the form of a word problem. Therefore, here are some helpful steps in solving these problems. 1. Read through the entire problem carefully before attempting to solve it.. Once you have read the problem, identify the information that is given and what you are being asked to find. 3. Sketching a diagram of the problem can sometimes help to visualize what needs to be done and the equation to be used. 4. Choose a variable to represent your unknown quantity. 5. Use the relationship between the known and unknown quantities to develop the function to be minimized or maimized. Be sure to locate any domain restrictions, it they eist. 6. Find the critical numbers of the function. 7. Find the etrema for the function. Now lets look at a few eamples of the applications of etrema. Eample 1: Find two nonnegative numbers and y for which + y 150, such that y is maimized. Solution: Step 1: Identify given information and what needs to be determined. We are given that and y are nonnegative numbers (therefore 0 and y 0) and that their sum is 150 ( + y 150). We are asked to find the values of and y that maimize the equation y. To do this, we will assign a variable to this equation, such as M y. Gerald Manahan SLAC, San Antonio College, 008 1

2 Eample 1 (Continued): Step : Epress the function to be maimized with only a single variable and determine the domain of the function To maimize the equation M y, we want to rewrite it so that it contains only a single variable (either or y). To do this, we will use the given equation of + y 150 and solve it for either or y. + y 150 y 150 Now we can substitute this into the equation M y M y (150 ) Determine the domain of the function Since & y are nonnegative numbers M (150 ) 0 0 or Therefore, the domain is Step 3: Find the critical numbers of the function First find the derivative M M M ( ) Gerald Manahan SLAC, San Antonio College, 008

3 Eample 1 (Continued): Both numbers (0 and 100) are within our restricted domain (0 150) so both are valid critical numbers. Step 4: Determine the maimum value of the function Evaluate the function M at the critical numbers (0 & 100) and endpoints (0 & 150) of the domain. If 0 M (0) (0) 3 0 If 100 M (100) (100) 3 1,500,000 1,000, ,000 If 150 M (150) (150) 3 3,375,000 3,375,000 0 The maimum value is 500,000, which occurs when 100. So now we can find y. (Remember the problem asked you to find the values for and y) y The solution that maimizes the equation M y is 100 and y 50. Gerald Manahan SLAC, San Antonio College, 008 3

4 Eample : A new communicable disease is spreading in a Teas city. It is estimated that t days after the disease is first observed the percent of the population infected can be approimated by the formula () p t 0t t for 0 t 0. a) After how many days is the percent of the population infected a maimum? b) What is the maimum percent of the population infected? Solution: Step 1: Identify given information and what needs to be determined. Given information: t number of days after disease is first observed () p t 0t t formula for approimating population infected 0 t 0 is the domain restriction for the formula What needs to be determined: The value of t that will maimize the function p(t) and the maimum percent of the population infected. Step : Epress the function to be maimized with only a single variable and determine the domain of the function. Since we were already given the formula in terms of just a single variable (t) and the domain (0 t 0) we can proceed to the net step. Gerald Manahan SLAC, San Antonio College, 008 4

5 Eample (Continued): Step 3: Find the critical numbers of the function First we must find the derivative of p(t). If we split the function into two separate fractions before finding the derivative we can reduce the function to a power function and avoid having to use the quotient rule. 0t t p() t t t 0 1 p t 3 60t 4t 3 60t 4t 3 () ( 3t ) ( 4t ) Find where the derivative is zero or undefined Since the denominator is a constant number () it will never be equal to zero and therefore the derivative will never be undefined. So our only critical numbers will come from when the numerator is equal to zero. 3 60t 4t 0 ( t) 4t t t t 0 t 15 t 0 t 15 Both of these numbers are within our restricted domain 0 t 0 so they are both valid critical numbers. Gerald Manahan SLAC, San Antonio College, 008 5

6 Eample (Continued): Step 4: Determine the maimum value of the function Evaluate the function at the critical numbers (0 & 15) and the endpoints (0 & 0) of the domain. If 0 If 15 If 0 () p t p p p ( 0) () p t ( 15) 0t t ( ) ( ) () p t ( 0) 0t t 0( 15) ( 15) t t 0( 0) ( 0) Gerald Manahan SLAC, San Antonio College, 008 6

7 Eample (Continued): The maimum value is when 15. Therefore, the infection of the population will reach its maimum percentage of % after 15 days Eample 3: The total profit (in tens of dollars) from the sale of hundred boes of candy is given by P() Solution: a) Find the number of boes of candy that should be sold in order to produce maimum profit. b) Find the maimum profit. Step 1: Identify given information and what needs to be determined. Given information: boes of candy sold (in hundreds) P() is the profit equation 0 ( is the number of boes sold and must be a nonnegative number since it is impossible to sell a negative amount of boes) What needs to be determined: The number of boes () that must be sold to maimize the profit function and the maimum profit P(). Step : Epress the function to be maimized with only a single variable and determine the domain of the function We are given the function for the profit is already but we are not given the domain. To find the domain, we will factor the given equation to find the zeros. P() P() -( ) P() -( )( 9) - 0 or 0 or Gerald Manahan SLAC, San Antonio College, 008 7

8 Eample 3 (Continued): Since we want to maimize the profit we want to determine where it is positive. The only positive intervals for the profit function are 0 and 9. However, since we cannot sell a negative number of boes cannot be less than zero so our domain would be 9. Step 3: Find the critical numbers of the function First, find the derivative of P() ( ) ( ) 3 P P Now set the derivative equal to zero and solve for. ( ) P ( )( ) The only number in our domain is 6. We would ignore /3 as a possible critical number for the absolute maimum. Gerald Manahan SLAC, San Antonio College, 008 8

9 Eample 3 (Continued): Step 4: Determine the maimum value of the function If If 6 If 9 3 ( ) ( ) ( ) + 11( ) 18( ) P P ( ) P P( 6) ( 6) + 10( 6) 1( 6) ( ) 3 P P( 9) ( 9) + 11( 9) 18( 9) The largest value we get for the profit is 7 when is 6. Since the profit is in tens of dollars and is the boes sold in hundreds, the maimum profit will be $70 when 600 boes are sold. Gerald Manahan SLAC, San Antonio College, 008 9

10 Eample 4: A manufacturing company needs to design an open-topped bo with a square base. The bo must have a volume of 3 in 3. Find the dimensions of the bo that can be built with the minimum amount of materials. Solution: Step 1: Identify given information and what needs to be determined. Given information: The bo does not have a top and the base is a square The volume of the bo must be 3 in 3 What needs to be determined: The dimensions (l, w, h) that will minimize the amount of materials (surface area) need Visual representation: Step : Epress the function to be minimized with only a single variable and determine the domain of the function Our goal is to minimize the material used so we want to minimize the surface area of the bo. By looking at the collapsed view of the bo we can see that the surface area will be made up of the square base and the four sides. Since the base is a square the length and width must be the same. We will let the length/width and y the height of the bo. Surface area of base: l * w * Gerald Manahan SLAC, San Antonio College,

11 Eample 4 (Continued): Surface area of side: l * h * y y Total surface area surface area of base + 4(surface area of side) A + 4y Now we must rewrite this equation so that it has only one variable. To do this, we will use the equation for the volume of a bo and the given volume. V l* w* h 3 * * y 3 y 3 y Substitute the epression for y into our area equation A + A 4 The only restriction on is that it must be greater than zero ( > 0). Step 3: Find the critical numbers of the function First, find the derivative 18 A + A A A Gerald Manahan SLAC, San Antonio College,

12 Eample 4 (Continued): Find the critical numbers 18 A Step 4: Determine the minimum value of the function If 4 18 A + 18 ( 4) y In order to minimize the surface area of the bo the length and width should be 4 in and the height should be in. Gerald Manahan SLAC, San Antonio College, 008 1

The Product and Quotient Rules

The Product and Quotient Rules The Product and Quotient Rules In this section, you will learn how to find the derivative of a product of functions and the derivative of a quotient of functions. A function that is the product of functions

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

If C(x) is the total cost (in dollars) of producing x items of a product, then

If C(x) is the total cost (in dollars) of producing x items of a product, then Supplemental Review Problems for Unit Test : 1 Marginal Analysis (Sec 7) Be prepared to calculate total revenue given the price - demand function; to calculate total profit given total revenue and total

More information

Differentials. In previous sections when you were taking the derivative of a function it was shown that the derivative notations f ( x)

Differentials. In previous sections when you were taking the derivative of a function it was shown that the derivative notations f ( x) Differentials This section will show how differentials can be used for linear approximation, marginal analysis, and error estimation. In previous math courses you learned that the slope of a line is found

More information

Higher-Order Derivatives

Higher-Order Derivatives Higher-Order Derivatives Higher-order derivatives are simply the derivative of a derivative. You would use the same derivative rules that you learned for finding the first derivative of a function. The

More information

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim . Given f( ), find Math 5 Final Eam Review f h f. h0 h a. If f ( ) 5 (Set it up, but do not simplify) If c. If f ( ) 5 f (Simplify) ( ) 7 f (Set it up, but do not simplify) ( ) 7 (Simplify) d. If f. Given

More information

To find the absolute extrema on a continuous function f defined over a closed interval,

To find the absolute extrema on a continuous function f defined over a closed interval, Question 4: How do you find the absolute etrema of a function? The absolute etrema of a function is the highest or lowest point over which a function is defined. In general, a function may or may not have

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Chapter 1 Functions, Graphs, and Limits MA1103 Business Mathematics I Semester I Year 016/017 SBM International Class Lecturer: Dr. Rinovia Simanjuntak 1.1 Functions Function A function is a rule that

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing Find the open interval(s) where the function is changing as requested. 1) Decreasing; f()

More information

Calculus One variable

Calculus One variable Calculus One variable (f ± g) ( 0 ) = f ( 0 ) ± g ( 0 ) (λf) ( 0 ) = λ f ( 0 ) ( (fg) ) ( 0 ) = f ( 0 )g( 0 ) + f( 0 )g ( 0 ) f g (0 ) = f ( 0 )g( 0 ) f( 0 )g ( 0 ) f( 0 ) 2 (f g) ( 0 ) = f (g( 0 )) g

More information

Graphing and Optimization

Graphing and Optimization BARNMC_33886.QXD //7 :7 Page 74 Graphing and Optimization CHAPTER - First Derivative and Graphs - Second Derivative and Graphs -3 L Hôpital s Rule -4 Curve-Sketching Techniques - Absolute Maima and Minima

More information

TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS

TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS INCREASING AND DECREASING FUNCTIONS f ' > 0. A function f ( ) which is differentiable over the interval [ a, b] is increasing

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

Unit 4: Rules of Differentiation

Unit 4: Rules of Differentiation Unit : Rules of Differentiation DAY TOPIC ASSIGNMENT Power Rule p. Power Rule Again p. Even More Power Rule p. 5 QUIZ 5 Rates of Change p. 6-7 6 Rates of Change p. 8-9 7 QUIZ 8 Product Rule p. 0-9 Quotient

More information

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have The questions listed below are drawn from midterm and final eams from the last few years at OSU. As the tet book and structure of the class have recently changed, it made more sense to list the questions

More information

The Review has 16 questions. Simplify all answers, include all units when appropriate.

The Review has 16 questions. Simplify all answers, include all units when appropriate. Math 1 Midterm Eam Review with Answers Name Date The Review has 16 questions. Simplify all answers, include all units when appropriate. 1. [Sec. 1.] Solve the following problems. a. A company s profit

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

Math 251 Final Exam Review Fall 2016

Math 251 Final Exam Review Fall 2016 Below are a set of review problems that are, in general, at least as hard as the problems you will see on the final eam. You should know the formula for area of a circle, square, and triangle. All other

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

3 Additional Applications of the Derivative

3 Additional Applications of the Derivative 3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 5-9, 11, 15,

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

SECTION 3.1: Quadratic Functions

SECTION 3.1: Quadratic Functions SECTION 3.: Quadratic Functions Objectives Graph and Analyze Quadratic Functions in Standard and Verte Form Identify the Verte, Ais of Symmetry, and Intercepts of a Quadratic Function Find the Maimum or

More information

Math 115 Second Midterm November 12, 2018

Math 115 Second Midterm November 12, 2018 EXAM SOLUTIONS Math 5 Second Midterm November, 08. Do not open this eam until you are told to do so.. Do not write your name anywhere on this eam. 3. This eam has 3 pages including this cover. There are

More information

CURVE SKETCHING. Let's take an arbitrary function like the one whose graph is given below:

CURVE SKETCHING. Let's take an arbitrary function like the one whose graph is given below: I. THE FIRST DERIVATIVE TEST: CURVE SKETCHING Let's take an arbitrary function like the one whose graph is given below: As goes from a to p, the graph rises as moves to the right towards the interval P,

More information

Equations Quadratic in Form NOT AVAILABLE FOR ELECTRONIC VIEWING. B x = 0 u = x 1 3

Equations Quadratic in Form NOT AVAILABLE FOR ELECTRONIC VIEWING. B x = 0 u = x 1 3 SECTION.4 Equations Quadratic in Form 785 In Eercises, without solving the equation, determine the number and type of solutions... In Eercises 3 4, write a quadratic equation in standard form with the

More information

Math 120, Winter Answers to Unit Test 3 Review Problems Set B.

Math 120, Winter Answers to Unit Test 3 Review Problems Set B. Math 0, Winter 009. Answers to Unit Test Review Problems Set B. Brief Answers. (These answers are provided to give you something to check your answers against. Remember than on an eam, you will have to

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Differentiation of Eponential Fnctions The net derivative rles that o will learn involve eponential fnctions. An eponential fnction is a fnction in the form of a constant raised to a variable power. The

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

12.1 The Extrema of a Function

12.1 The Extrema of a Function . The Etrema of a Function Question : What is the difference between a relative etremum and an absolute etremum? Question : What is a critical point of a function? Question : How do you find the relative

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144. AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

More information

Find the integral. 12) 15)

Find the integral. 12) 15) Find the location of the indicated absolute etremum within the specified domain. ) Minimum of f() = /- /; [0, ] 8) Maimum h() ) Minimum of f() = - + - ; [-, ] ) Minimum of f() = ( + )/; [-, ] ) Maimum

More information

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #4 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

Chapter 4. Introduction to Mathematical Modeling. Types of Modeling. 1) Linear Modeling 2) Quadratic Modeling 3) Exponential Modeling

Chapter 4. Introduction to Mathematical Modeling. Types of Modeling. 1) Linear Modeling 2) Quadratic Modeling 3) Exponential Modeling Chapter 4 Introduction to Mathematical Modeling Tpes of Modeling 1) Linear Modeling ) Quadratic Modeling ) Eponential Modeling Each tpe of modeling in mathematics is determined b the graph of equation

More information

The speed the speed of light is 30,000,000,000 m/s. Write this number in scientific notation.

The speed the speed of light is 30,000,000,000 m/s. Write this number in scientific notation. Chapter 1 Section 1.1 Scientific Notation Powers of Ten 1 1 1.1.1.1.1 Standard Scientific Notation N n where 1 N and n is an integers Eamples of numbers in scientific notation. 8.17 11 Using Scientific

More information

Review: Properties of Exponents (Allow students to come up with these on their own.) m n m n. a a a. n n n m. a a a. a b a

Review: Properties of Exponents (Allow students to come up with these on their own.) m n m n. a a a. n n n m. a a a. a b a Algebra II Notes Unit Si: Polynomials Syllabus Objectives: 6. The student will simplify polynomial epressions. Review: Properties of Eponents (Allow students to come up with these on their own.) Let a

More information

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method;

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method; QUADRATIC FUNCTIONS A. Eercises: 1.. 3. + = + = + + = +. ( 1)(3 5) (3 5) 1(3 5) 6 10 3 5 6 13 5 = = + = +. ( 7)(5 6) (5 6) 7(5 6) 5 6 35 4 5 41 4 3 5 6 10 1 3 5 Sum: 6 + 10+ 3 5 ( + 1)(3 5) = 6 + 13 5

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maimum and minimum values The critical points method for finding etrema 43 How derivatives affect the shape of a graph The first

More information

x x x 2. Use your graphing calculator to graph each of the functions below over the interval 2,2

x x x 2. Use your graphing calculator to graph each of the functions below over the interval 2,2 MSLC Math 48 Final Eam Review Disclaimer: This should NOT be used as your only guide for what to study.. Use the piece-wise defined function 4 4 if 0 f( ) to answer the following: if a) Compute f(-), f(-),

More information

Circle your answer choice on the exam AND fill in the answer sheet below with the letter of the answer that you believe is the correct answer.

Circle your answer choice on the exam AND fill in the answer sheet below with the letter of the answer that you believe is the correct answer. ircle your answer choice on the eam AND fill in the answer sheet below with the letter of the answer that you believe is the correct answer. Problem Number Letter of Answer Problem Number Letter of Answer.

More information

by using the derivative rules. o Building blocks: d

by using the derivative rules. o Building blocks: d Calculus for Business an Social Sciences - Prof D Yuen Eam Review version /9/01 Check website for any poste typos an upates Eam is on Sections, 5, 6,, 1,, Derivatives Rules Know how to fin the formula

More information

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics

THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics. Mathematics 01 MTU Elements of Calculus in Economics THE INSTITUTE OF FINANCE MANAGEMENT (IFM) Department of Mathematics Mathematics 0 MTU 070 Elements of Calculus in Economics Calculus Calculus deals with rate of change of quantity with respect to another

More information

IMPORTANT NOTES HERE IS AN EXAMPLE OF A SCANTRON FORM FOR YOUR EXAM.

IMPORTANT NOTES HERE IS AN EXAMPLE OF A SCANTRON FORM FOR YOUR EXAM. IMPORTANT NOTES HERE IS AN EXAMPLE OF A SCANTRON FORM FOR YOUR EXAM. YOU NEED TO MAKE SURE YOU PROPERLY FILL OUT THE SCANTRON FORM.. Write and bubble in your first and last name.. VERY important, write

More information

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown.

Name: Period: SM Starter on Reading Quadratic Graph. This graph and equation represent the path of an object being thrown. SM Name: Period: 7.5 Starter on Reading Quadratic Graph This graph and equation represent the path of an object being thrown. 1. What is the -ais measuring?. What is the y-ais measuring? 3. What are the

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

I have not checked this review sheet for errors, hence there maybe errors in this document. thank you.

I have not checked this review sheet for errors, hence there maybe errors in this document. thank you. I have not checked this review sheet for errors, hence there maybe errors in this document. thank you. Class test II Review sections 3.7(differentials)-5.5(logarithmic differentiation) ecluding section

More information

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Show all of your work on the test paper. All of the problems must be solved symbolically using Calculus. You may use your calculator to confirm

More information

AP Exam Practice Questions for Chapter 3

AP Exam Practice Questions for Chapter 3 AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f are and. So, the answer is B.. Evaluate each statement. I: Because

More information

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP:

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP: NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: WARM UP: Assume that f ( ) and g ( ) are differentiable functions: f ( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5

More information

5.3 Polynomials and Polynomial Functions

5.3 Polynomials and Polynomial Functions 70 CHAPTER 5 Eponents, Polnomials, and Polnomial Functions 5. Polnomials and Polnomial Functions S Identif Term, Constant, Polnomial, Monomial, Binomial, Trinomial, and the Degree of a Term and of a Polnomial.

More information

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part.

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part. BARUCH COLLEGE MATH 07 FALL 007 MANUAL FOR THE UNIFORM FINAL EXAMINATION The final eamination for Math 07 will consist of two parts. Part I: Part II: This part will consist of 5 questions. No calculator

More information

MA 22000, Lesson 2 Functions & Addition/Subtraction Polynomials Algebra section of text: Sections 3.5 and 5.2, Calculus section of text: Section R.

MA 22000, Lesson 2 Functions & Addition/Subtraction Polynomials Algebra section of text: Sections 3.5 and 5.2, Calculus section of text: Section R. MA 000, Lesson Functions & Addition/Subtraction Polynomials Algebra section of tet: Sections.5 and 5., Calculus section of tet: Section R.1 Definition: A relation is any set of ordered pairs. The set of

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

?

? NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: WARM UP: Assume that f( ) and g ( ) are differentiable functions: f( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5 9 9-3 1 3-3 6-5 3 8? 1. Let

More information

Identifying end behavior of the graph of a polynomial function

Identifying end behavior of the graph of a polynomial function 56 Polnomial Functions 3.1.1 Eercises For a link to all of the additional resources available for this section, click OSttS Chapter 3 materials. In Eercises 1-10, find the degree, the leading term, the

More information

Recall that when you multiply or divide both sides of an inequality by a negative number, you must

Recall that when you multiply or divide both sides of an inequality by a negative number, you must Unit 3, Lesson 5.3 Creating Rational Inequalities Recall that a rational equation is an equation that includes the ratio of two rational epressions, in which a variable appears in the denominator of at

More information

Chapter 10 Introduction to the Derivative

Chapter 10 Introduction to the Derivative Chapter 0 Introduction to the Derivative The concept of a derivative takes up half the study of Calculus. A derivative, basically, represents rates of change. 0. Limits: Numerical and Graphical Approaches

More information

Math 026 Review Exercises for the Final Exam

Math 026 Review Exercises for the Final Exam Math 06 Review Eercises for the Final Eam The following are review eercises for the Math 06 final eam. These eercises are provided for you to practice or test yourself for readiness for the final eam.

More information

Describe in words how the graph of each function below would differ from the graph of f (x).

Describe in words how the graph of each function below would differ from the graph of f (x). MATH 111 Exam # Review (4.1-4.4, 6.1, 6.) Describe in words how the graph of each function below would differ from the graph of f (. 1. f ( x 7). f (. f ( 5 4. f ( 5. 7 f ( 6. f ( x ) 9 7. f ( 8. f ( 9.

More information

Chapter Four. Chapter Four

Chapter Four. Chapter Four Chapter Four Chapter Four CHAPTER FOUR 99 ConcepTests for Section 4.1 1. Concerning the graph of the function in Figure 4.1, which of the following statements is true? (a) The derivative is zero at two

More information

Review for Test 2 Calculus I

Review for Test 2 Calculus I Review for Test Calculus I Find the absolute etreme values of the function on the interval. ) f() = -, - ) g() = - + 8-6, ) F() = -,.5 ) F() =, - 6 5) g() = 7-8, - Find the absolute etreme values of the

More information

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x

Partial Fractions. dx dx x sec tan d 1 4 tan 2. 2 csc d. csc cot C. 2x 5. 2 ln. 2 x 2 5x 6 C. 2 ln. 2 ln x 460_080.qd //04 :08 PM Page CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial

More information

This theorem guarantees solutions to many problems you will encounter. exists, then f ( c)

This theorem guarantees solutions to many problems you will encounter. exists, then f ( c) Maimum and Minimum Values Etreme Value Theorem If f () is continuous on the closed interval [a, b], then f () achieves both a global (absolute) maimum and global minimum at some numbers c and d in [a,

More information

Practice Problems **Note this list of problems is by no means complete and to focus solely on these problems would be unwise.**

Practice Problems **Note this list of problems is by no means complete and to focus solely on these problems would be unwise.** Topics for the Final Eam MATC 100 You will be allowed to use our MATC 100 calculator. The final eam is cumulative (Sections.-., Sections 3.1-3.5, Sections.1-.5) - see the details below. Sections.-. & 3.1-3.3:

More information

4.3 Division of Polynomials

4.3 Division of Polynomials 4.3 Division of Polynomials Learning Objectives Divide a polynomials by a monomial. Divide a polynomial by a binomial. Rewrite and graph rational functions. Introduction A rational epression is formed

More information

5.6 Asymptotes; Checking Behavior at Infinity

5.6 Asymptotes; Checking Behavior at Infinity 5.6 Asymptotes; Checking Behavior at Infinity checking behavior at infinity DEFINITION asymptote In this section, the notion of checking behavior at infinity is made precise, by discussing both asymptotes

More information

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3

dx dx x sec tan d 1 4 tan 2 2 csc d 2 ln 2 x 2 5x 6 C 2 ln 2 ln x ln x 3 x 2 C Now, suppose you had observed that x 3 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Partial Fractions Understand the concept of a partial fraction decomposition. Use partial fraction decomposition with

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Baruch College MTH 1030 Sample Final B Form 0809 PAGE 1

Baruch College MTH 1030 Sample Final B Form 0809 PAGE 1 Baruch College MTH 00 Sample Final B Form 0809 PAGE MTH 00 SAMPLE FINAL B BARUCH COLLEGE DEPARTMENT OF MATHEMATICS SPRING 00 PART I (NO PARTIAL CREDIT, NO CALCULATORS ALLOWED). ON THE FINAL EXAM, THERE

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

Equations and Inequalities

Equations and Inequalities Equations and Inequalities Figure 1 CHAPTER OUTLINE.1 The Rectangular Coordinate Systems and Graphs. Linear Equations in One Variable.3 Models and Applications. Comple Numbers.5 Quadratic Equations.6 Other

More information

3.1 Graph Quadratic Functions

3.1 Graph Quadratic Functions 3. Graph Quadratic Functions in Standard Form Georgia Performance Standard(s) MMA3b, MMA3c Goal p Use intervals of increase and decrease to understand average rates of change of quadratic functions. Your

More information

A = Chapter 6. Linear Programming: The Simplex Method. + 21x 3 x x 2. C = 16x 1. + x x x 1. + x 3. 16,x 2.

A = Chapter 6. Linear Programming: The Simplex Method. + 21x 3 x x 2. C = 16x 1. + x x x 1. + x 3. 16,x 2. Chapter 6 Linear rogramming: The Simple Method Section The Dual roblem: Minimization with roblem Constraints of the Form Learning Objectives for Section 6. Dual roblem: Minimization with roblem Constraints

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question Midterm Review 0 Precalculu Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question ) A graph of a function g is shown below. Find g(0). (-, ) (-, 0) - -

More information

Pre-Calculus Summer Homework

Pre-Calculus Summer Homework Pre-Calculus Summer Homework In an effort to use less paper, the math department will not be printing off your summer homework. You can go to the homework websites of Mr. Coulson, Mrs. Hopkins, and Mr.

More information

3.5 Graphs of Polynomial Functions

3.5 Graphs of Polynomial Functions . Graphs of olynomial Functions Symmetry of olynomial Functions: This information is a review of symmetry from the unit on graphs of functions. We W will be considering two types of symmetry in this lesson;

More information

7.1 Functions of Two or More Variables

7.1 Functions of Two or More Variables Hartfield MATH 2040 Unit 5 Page 1 7.1 Functions of Two or More Variables Definition: A function f of two variables is a rule such that each ordered pair (, y) in the domain of f corresponds to eactly one

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Eample: change in the sales of a company; change in the value

More information

MATH 112 Final Exam Study Questions

MATH 112 Final Exam Study Questions MATH Final Eam Study Questions Spring 08 Note: Certain eam questions have been more challenging for students. Questions marked (***) are similar to those challenging eam questions.. A company produces

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop 3 Rational Functions LEARNING CENTER Overview Workshop III Rational Functions General Form Domain and Vertical Asymptotes Range and Horizontal Asymptotes Inverse Variation

More information

Q.5 Polynomial and Rational Inequalities

Q.5 Polynomial and Rational Inequalities 393 Q.5 Polynomial and Rational Inequalities In sections L4 and L5, we discussed solving linear inequalities in one variable as well as solving systems of such inequalities. In this section, we examine

More information

Functions and Their Graphs

Functions and Their Graphs Functions and Their Graphs 015 College Board. All rights reserved. Unit Overview In this unit you will study polynomial and rational functions, their graphs, and their zeros. You will also learn several

More information

Additional Factoring Examples:

Additional Factoring Examples: Honors Algebra -3 Solving Quadratic Equations by Graphing and Factoring Learning Targets 1. I can solve quadratic equations by graphing. I can solve quadratic equations by factoring 3. I can write a quadratic

More information

10.7 Polynomial and Rational Inequalities

10.7 Polynomial and Rational Inequalities 10.7 Polynomial and Rational Inequalities In this section we want to turn our attention to solving polynomial and rational inequalities. That is, we want to solve inequalities like 5 4 0. In order to do

More information

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S) Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),.-.5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual

More information

Finding Slope. Find the slopes of the lines passing through the following points. rise run

Finding Slope. Find the slopes of the lines passing through the following points. rise run Finding Slope Find the slopes of the lines passing through the following points. y y1 Formula for slope: m 1 m rise run Find the slopes of the lines passing through the following points. E #1: (7,0) and

More information

Quadratic and Other Inequalities in One Variable

Quadratic and Other Inequalities in One Variable Quadratic and Other Inequalities in One Variable If a quadratic equation is not in the standard form equaling zero, but rather uses an inequality sign ( , ), the equation is said to be a quadratic

More information

Math 103 Final Exam Review Problems Rockville Campus Fall 2006

Math 103 Final Exam Review Problems Rockville Campus Fall 2006 Math Final Eam Review Problems Rockville Campus Fall. Define a. relation b. function. For each graph below, eplain why it is or is not a function. a. b. c. d.. Given + y = a. Find the -intercept. b. Find

More information

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f " ( k) < 0.

K. Function Analysis. ). This is commonly called the first derivative test. f ( x) is concave down for values of k such that f  ( k) < 0. K. Function Analysis What you are finding: You have a function f ( ). You want to find intervals where f ( ) is increasing and decreasing, concave up and concave down. You also want to find values of where

More information

REVIEW. log e. log. 3 k. x 4. log ( x+ 3) log x= ,if x 2 y. . h

REVIEW. log e. log. 3 k. x 4. log ( x+ 3) log x= ,if x 2 y. . h Math REVIEW Part I: Problems Simplif (without the use of calculators) ln log 000 e 0 k = k = k 7 log ( ) 8 lo g (log ) Solve the following equations/inequalities Check when necessar 8 =0 9 0 + = log (

More information

M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Exam M1 College Algebra Review for Final Eam Revised Fall 017 for College Algebra - Beecher All answers should include our work (this could be a written eplanation of the result, a graph with the relevant feature

More information

The Remainder and Factor Theorems

The Remainder and Factor Theorems Page 1 of 7 6.5 The Remainder and Factor Theorems What you should learn GOAL 1 Divide polynomials and relate the result to the remainder theorem and the factor theorem. GOAL 2 Use polynomial division in

More information

Exam 2 Review F15 O Brien. Exam 2 Review:

Exam 2 Review F15 O Brien. Exam 2 Review: Eam Review:.. Directions: Completely rework Eam and then work the following problems with your book notes and homework closed. You may have your graphing calculator and some blank paper. The idea is to

More information

Algebra II Notes Rational Functions Unit Rational Functions. Math Background

Algebra II Notes Rational Functions Unit Rational Functions. Math Background Algebra II Notes Rational Functions Unit 6. 6.6 Rational Functions Math Background Previously, you Simplified linear, quadratic, radical and polynomial functions Performed arithmetic operations with linear,

More information

Equations and Inequalities

Equations and Inequalities Equations and Inequalities Figure 1 CHAPTER OUTLINE 1 The Rectangular Coordinate Systems and Graphs Linear Equations in One Variable Models and Applications Comple Numbers Quadratic Equations 6 Other Types

More information

Algebra II Notes Unit Nine: Rational Equations and Functions

Algebra II Notes Unit Nine: Rational Equations and Functions Syllabus Objectives: 9. The student will solve a problem by applying inverse and joint variation. 9.6 The student will develop mathematical models involving rational epressions to solve realworld problems.

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during this eam. If you consider a question to be ambiguous, state your assumptions in the margin and do the best you can to provide the

More information

2.3 Quadratic Functions

2.3 Quadratic Functions 88 Linear and Quadratic Functions. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions:

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

Asymptotes are additional pieces of information essential for curve sketching.

Asymptotes are additional pieces of information essential for curve sketching. Mathematics 00a Summary Notes page 57 4. Curve Sketching Asymptotes are additional pieces of information essential for curve sketching. Vertical Asymptotes The line a is a vertical asymptote of the graph

More information