3 Additional Applications of the Derivative

Size: px
Start display at page:

Download "3 Additional Applications of the Derivative"

Transcription

1 3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 5-9, 11, 15, 17, 23, 24, 32, 35, 37, 43, 55, 56, 57, 67, 68, 71) 3.2 (5, 6, 13, 15, 16, 23, 27, 28, 30, 33, 47, 48, 53, 55, 60a, 63ab) 3.4 (1, 3, 5, 8, 17, 19, 31, 32, 45, 46, 58) mathminer.org

2 3.1 Increasing and Decreasing Functions; Relative Etrema One of our reasons for developing the derivative is to find etreme values of functions. For instance we would be interested in maimizing the profit a business earns. If the profit function happens to be quadratic, we would be able to use the verte formula. In general, there is no formula to find etreme values of functions, so we will use calculus. Before digging in, we need to go over some basic terminolog. First we will just label the following graphs, and then we will look at precise definitions. Note in the graphs above that relative maima and relative minima onl occur where there is a change in direction or turning point of the graph. But an absolute maimum or absolute minimum can occur at an tpe of point on the graph, such as a turning point or an endpoint of the graph. Also note that we often use the word local in place of relative and global in the place of absolute. Here are more formal definitions. Absolute (Global) Etrema Suppose f is defined on an interval I containing c. Then f(c) is the absolute minimum value of f on I if f(c) f() for all in I. absolute maimum value of f on I if f(c) f() for all in I. Relative (Local) Etrema A function f has a relative minimum at = c if f(c) is the minimum value of f on some open interval containing c. relative maimum at = c if f(c) is the maimum value of f on some open interval containing c. 2

3 First we will find relative etrema. These appeared where there was a change in direction of the function, so let s introduce some calculus to deal with direction. A function f is increasing if when 1 < 2, then f( 2 ) > f( 1 ). A function f is decreasing if when 1 < 2, then f( 2 ) < f( 1 ). Sketch a few tangent lines over each interval on each graph. What do ou notice? This leads to a calculus version of increasing and decreasing. Increasing/Decreasing Test If f () > 0 on an interval, then f is increasing on that interval. If f () < 0 on an interval, then f is decreasing on that interval. So what happens if f () = 0? Critical Number A value = c is called a critical number of f() if f (c) = 0 or f (c) is undefined. Eample 1 Find the intervals on which f() = is increasing or decreasing. So what do ou think happens at the critical values that define our intervals of increase and decrease? 3

4 First Derivative Test Let c be a critical number of f(). f has a relative maimum at = c if f () > 0 to the left of c and f () < 0 to the right of c. f has a relative minimum at = c if f () < 0 to the left of c and f () > 0 to the right of c. If f does not change sign at c, then f has neither a maimum nor minimum at = c. Eample 2 Find the etrema of the function f() = and sketch its graph. Eample 3 Find the etrema of the function f() = and sketch its graph. 4

5 Eample 4 A compan determines that if thousand dollars are spent on advertising a certain product, then S() units of the product will be sold, where S() = , where a. How man units will be sold if nothing is spent on advertising? What if the full budget is used? b. How much should be spent on advertising to maimize sales? c. What is the maimum sales level? Eample 5 Sketch a graph of a function that has all of the following properties: f (0) = f (1) = f (2) = 0 f () < 0 when < 0 and > 2 f () > 0 when 0 < < 1 and 1 < < 2 5

6 3.2 Concavit and Points of Inflection The first derivative has to do with the direction a function is heading. We will see here that the second derivative will have to do with the shape of the graph. A function f is concave up if f is increasing in value. A function f is concave down if f is decreasing in value. Sketch tangent lines to each curve. Notice that if a function is concave down, all its tangents are above the graph and if it is concave up, all its tangents are below the graph. The following summarizes the above. Second Derivative Test Let c be a critical number of f(). f is concave up at = c if f () > 0. There is a relative minimum at = c. f is concave down at = c if f () < 0. There is a relative maimum at = c. If f (c) = 0, this test gives no information. Eample 1 Sketch f() =

7 Inflection Point A point of inflection is a point at which the concavit of a function changes. If a function f has a point of inflection at = c, then f (c) = 0. So these are critical points of f. Eample 2 Determine the intervals where f() = is increasing or decreasing and concave up or concave down. Identif the relative etrema and an points of inflection. Sketch its graph. Eample 3 Determine the intervals where f() = is increasing or decreasing and concave up or concave down. Identif the relative etrema and an points of inflection. Sketch its graph. 7

8 Eample 4 For each of the following functions: a. Identif whether it is increasing or decreasing and whether it is concave up or down. b. Write a mathematical description for each function based on part a. Most functions look like one of the above locall, so these can be used to classif them. Eample 5 Sketch a graph of a function that has all of the following properties: f(2) = 2, f (2) = 0 f () > 0 on (, 2) and f () > 0 on (2, ) f () < 0 on (, 2) and f () > 0 on (2, ) 8

9 Eample 6 A compan estimates that when thousand dollars are spent on the marketing of a certain product, Q() = units of the product will be sold, where a. In the interval, find the amount that should be spent on marketing to maimize the number of units sold. How man units will be sold? b. Where does the graph of Q() have an inflection point? c. Graph Q(). What is the significance of the marketing ependiture that corresponds to the P.O.I.? Q() 9

10 Curve Sketching Strateg Identif the domain of f() and find an intercepts (if the -intercepts are eas to find). Identif whether or not f() has an asmptotes (use domain and Find all critical points of f(). Classif critical points as relative maima or minima. Find all points of inflection of f(). Identif intervals of increase/decrease and concavit. Sketch. lim f()). ± Eample 7 Sketch f() =

11 Eample 8 Sketch g() =

12 3.4 Optimization Note that the following function does not have an absolute maimum or absolute minimum How can we change the graph so that it does attain both an absolute maimum and an absolute minimum? Etreme Value Theorem Suppose f is continuous on the closed interval [a, b]. Then f attains both an absolute maimum and absolute minimum. These will occur at a critical number of f or at an endpoint of the interval. Eample 1 Find the absolute maimum and absolute minimum values of f() = on [ 2.5, 2]. Eample 2 A poll indicates that months after a particular candidate for public office declares her candidac, she will have the support of S() percent of the voters, where S() = 1 29 ( ) for If the election is held in November, when should the politician announce her candidac? Should she epect to win if she needs at least 50% of the vote? 12

13 Eample 3 If C(q) is the cost to produce q units of a particular commodit, then the average cost per unit is given b the function A(q) = C(q). Suppose C(q) = q 3 + 5q q a. Find A (q). b. For what values of q is A(q) increasing? For what values is it decreasing? c. For what level of production q is average cost minimized? What is the minimum average cost? What is the marginal cost at this production level? d. Sketch A(q) and C (q) on the same set of aes. What do ou notice? q 13

14 Eample 4 Suppose the price at which q units of a particular commodit can be sold is given b the demand equation p(q) = 180 2q and the total cost of producing q units is C(q) = q 3 + 5q a. Find the revenue function R(q) and the profit function P (q). b. Find the marginal revenue, cost, and profit. What do ou notice about the difference R (q) C (q)? c. For what values of q is profit increasing? For what values is it decreasing? d. For what level of production is profit maimized? What is the maimum profit? e. Sketch P (q), R (q), and C (q). What do ou notice? q 14

15 Optimization Strateg Identif what needs to be optimized (maimized or minimized) and an unknown quantities involved. Define a variable or variables. Epress a relationship between the unknown quantities with an equation or inequalit. Epress the quantit that is to be optimized in terms of one variable using the above step. Find all critical values and classif them as maimum or minimum. endpoints ma need to be tested. If working in a closed interval, the Interpret the results and answer the original question. Eample 5 There are 320 ards of fencing available to enclose a rectangular field. How should this fencing be used so that the enclosed area is as large as possible? What if a divider is added to make two enclosures? Eample 6 A cable is to be run from a power plant on one side of a river 1200 meters wide to a factor on the other side, 2000 meters downstream. The cost of running the cable under water is $25 per meter, while the cost over land is $20 per meter. What is the most economical route over which to run the cable? 15

16 Eample 7 A bo with an open top is to be constructed from a square piece of cardboard, 3 feet wide, b cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a bo can have. Eample 8 A clindrical can is to be made to hold 1 liter (equivalent to 1000 cm 3 ) of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can. 16

If C(x) is the total cost (in dollars) of producing x items of a product, then

If C(x) is the total cost (in dollars) of producing x items of a product, then Supplemental Review Problems for Unit Test : 1 Marginal Analysis (Sec 7) Be prepared to calculate total revenue given the price - demand function; to calculate total profit given total revenue and total

More information

Graphing and Optimization

Graphing and Optimization BARNMC_33886.QXD //7 :7 Page 74 Graphing and Optimization CHAPTER - First Derivative and Graphs - Second Derivative and Graphs -3 L Hôpital s Rule -4 Curve-Sketching Techniques - Absolute Maima and Minima

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing Find the open interval(s) where the function is changing as requested. 1) Decreasing; f()

More information

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S)

Math 75B Practice Problems for Midterm II Solutions Ch. 16, 17, 12 (E), , 2.8 (S) Math 75B Practice Problems for Midterm II Solutions Ch. 6, 7, 2 (E),.-.5, 2.8 (S) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1325 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the location and value of each relative etremum for the function. 1)

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

Abe Mirza Graphing f ( x )

Abe Mirza Graphing f ( x ) Abe Mirza Graphing f ( ) Steps to graph f ( ) 1. Set f ( ) = 0 and solve for critical values.. Substitute the critical values into f ( ) to find critical points.. Set f ( ) = 0 and solve for critical values.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question Midterm Review 0 Precalculu Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question ) A graph of a function g is shown below. Find g(0). (-, ) (-, 0) - -

More information

Practice Problems **Note this list of problems is by no means complete and to focus solely on these problems would be unwise.**

Practice Problems **Note this list of problems is by no means complete and to focus solely on these problems would be unwise.** Topics for the Final Eam MATC 100 You will be allowed to use our MATC 100 calculator. The final eam is cumulative (Sections.-., Sections 3.1-3.5, Sections.1-.5) - see the details below. Sections.-. & 3.1-3.3:

More information

SECTION 3.1: Quadratic Functions

SECTION 3.1: Quadratic Functions SECTION 3.: Quadratic Functions Objectives Graph and Analyze Quadratic Functions in Standard and Verte Form Identify the Verte, Ais of Symmetry, and Intercepts of a Quadratic Function Find the Maimum or

More information

Review for Test 2 Calculus I

Review for Test 2 Calculus I Review for Test Calculus I Find the absolute etreme values of the function on the interval. ) f() = -, - ) g() = - + 8-6, ) F() = -,.5 ) F() =, - 6 5) g() = 7-8, - Find the absolute etreme values of the

More information

HW 5 Date: Name Use Scantron 882E to transfer the answers. Graph. 1) y = 5x

HW 5 Date: Name Use Scantron 882E to transfer the answers. Graph. 1) y = 5x HW 5 Date: Name Use Scantron 88E to transfer the answers. Graph. ) = 5 ) A) - - - - - - - - - - - - C) D) - - - - - - - - - - - - Differentiate. ) f() = e8 A) e8 8e8 C) 8e D) 8 e 8 ) 3) = e9/ A) 9 e 9/

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

BARUCH COLLEGE MATH 2205 FALL 2007

BARUCH COLLEGE MATH 2205 FALL 2007 BARUCH COLLEGE MATH 05 FALL 007 MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski, Sarah Harne The final eamination for Math 05 will consist of

More information

REVIEW. log e. log. 3 k. x 4. log ( x+ 3) log x= ,if x 2 y. . h

REVIEW. log e. log. 3 k. x 4. log ( x+ 3) log x= ,if x 2 y. . h Math REVIEW Part I: Problems Simplif (without the use of calculators) ln log 000 e 0 k = k = k 7 log ( ) 8 lo g (log ) Solve the following equations/inequalities Check when necessar 8 =0 9 0 + = log (

More information

?

? NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: WARM UP: Assume that f( ) and g ( ) are differentiable functions: f( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5 9 9-3 1 3-3 6-5 3 8? 1. Let

More information

Math 125 Practice Problems for Test #3

Math 125 Practice Problems for Test #3 Math Practice Problems for Test # Also stud the assigned homework problems from the book. Donʹt forget to look over Test # and Test #! Find the derivative of the function. ) Know the derivatives of all

More information

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have The questions listed below are drawn from midterm and final eams from the last few years at OSU. As the tet book and structure of the class have recently changed, it made more sense to list the questions

More information

5.5 Worksheet - Linearization

5.5 Worksheet - Linearization AP Calculus 4.5 Worksheet 5.5 Worksheet - Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation

More information

Find the integral. 12) 15)

Find the integral. 12) 15) Find the location of the indicated absolute etremum within the specified domain. ) Minimum of f() = /- /; [0, ] 8) Maimum h() ) Minimum of f() = - + - ; [-, ] ) Minimum of f() = ( + )/; [-, ] ) Maimum

More information

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim

Math 1325 Final Exam Review. (Set it up, but do not simplify) lim . Given f( ), find Math 5 Final Eam Review f h f. h0 h a. If f ( ) 5 (Set it up, but do not simplify) If c. If f ( ) 5 f (Simplify) ( ) 7 f (Set it up, but do not simplify) ( ) 7 (Simplify) d. If f. Given

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ), c /, > 0 Find the limit: lim 6+

More information

3.1 Graph Quadratic Functions

3.1 Graph Quadratic Functions 3. Graph Quadratic Functions in Standard Form Georgia Performance Standard(s) MMA3b, MMA3c Goal p Use intervals of increase and decrease to understand average rates of change of quadratic functions. Your

More information

Calculus I 5. Applications of differentiation

Calculus I 5. Applications of differentiation 2301107 Calculus I 5. Applications of differentiation Chapter 5:Applications of differentiation C05-2 Outline 5.1. Extreme values 5.2. Curvature and Inflection point 5.3. Curve sketching 5.4. Related rate

More information

Ex 1: Identify the open intervals for which each function is increasing or decreasing.

Ex 1: Identify the open intervals for which each function is increasing or decreasing. MATH 2040 Notes: Unit 4 Page 1 5.1/5.2 Increasing and Decreasing Functions Part a Relative Extrema Ex 1: Identify the open intervals for which each In algebra we defined increasing and decreasing behavior

More information

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1 Math 160 - Want to have fun with chapter 4? Name Find the derivative. 1) y = 52e3 2) y = 2e - 2e 3) y = (2-2 + 3) e 9e 4) y = 2e + 1 5) y = e - + 1 e e 6) y = 32 + 7 7) y = e3-1 5 Use calculus to find

More information

Applications Functions With a Single Critical Number

Applications Functions With a Single Critical Number Applications 31 Functions With a Single Critical Number Using the CIT we have been able to find the absolute etrema of the continuous functions on a closed interval Using the First Derivative Test, we

More information

206 Calculus and Structures

206 Calculus and Structures 06 Calculus and Structures CHAPTER 4 CURVE SKETCHING AND MAX-MIN II Calculus and Structures 07 Copright Chapter 4 CURVE SKETCHING AND MAX-MIN II 4. INTRODUCTION In Chapter, we developed a procedure for

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS

TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS INCREASING AND DECREASING FUNCTIONS f ' > 0. A function f ( ) which is differentiable over the interval [ a, b] is increasing

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maimum and minimum values The critical points method for finding etrema 43 How derivatives affect the shape of a graph The first

More information

Math 20 Spring 2005 Final Exam Practice Problems (Set 2)

Math 20 Spring 2005 Final Exam Practice Problems (Set 2) Math 2 Spring 2 Final Eam Practice Problems (Set 2) 1. Find the etreme values of f(, ) = 2 2 + 3 2 4 on the region {(, ) 2 + 2 16}. 2. Allocation of Funds: A new editor has been allotted $6, to spend on

More information

Characteristics of Quadratic Functions

Characteristics of Quadratic Functions . Characteristics of Quadratic Functions Essential Question What tpe of smmetr does the graph of f() = a( h) + k have and how can ou describe this smmetr? Parabolas and Smmetr Work with a partner. a. Complete

More information

Math 102 Final Exam Review

Math 102 Final Exam Review . Compute f ( + h) f () h Math 0 Final Eam Review for each of the following functions. Simplify your answers. f () 4 + 5 f ( ) f () + f ( ). Find the domain of each of the following functions. f( ) g (

More information

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP:

Name: NOTES 4: APPLICATIONS OF DIFFERENTIATION. Date: Period: Mrs. Nguyen s Initial: WARM UP: NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: WARM UP: Assume that f ( ) and g ( ) are differentiable functions: f ( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5

More information

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.) Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

3.1-Quadratic Functions & Inequalities

3.1-Quadratic Functions & Inequalities 3.1-Quadratic Functions & Inequalities Quadratic Functions: Quadratic functions are polnomial functions of the form also be written in the form f ( ) a( h) k. f ( ) a b c. A quadratic function ma Verte

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Exam M1 College Algebra Review for Final Eam Revised Fall 017 for College Algebra - Beecher All answers should include our work (this could be a written eplanation of the result, a graph with the relevant feature

More information

One of the most common applications of Calculus involves determining maximum or minimum values.

One of the most common applications of Calculus involves determining maximum or minimum values. 8 LESSON 5- MAX/MIN APPLICATIONS (OPTIMIZATION) One of the most common applications of Calculus involves determining maimum or minimum values. Procedure:. Choose variables and/or draw a labeled figure..

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Applications of differential calculus

Applications of differential calculus Chapter 22 Applications of differential calculus Sllabus reference: 7.4, 7.5 Contents: A B C Properties of curves Rates of change Optimisation 648 APPLICATIONS OF DIFFERENTIAL CALCULUS (Chapter 22) OPENING

More information

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part.

BARUCH COLLEGE MATH 2207 FALL 2007 MANUAL FOR THE UNIFORM FINAL EXAMINATION. No calculator will be allowed on this part. BARUCH COLLEGE MATH 07 FALL 007 MANUAL FOR THE UNIFORM FINAL EXAMINATION The final eamination for Math 07 will consist of two parts. Part I: Part II: This part will consist of 5 questions. No calculator

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

Mini-Lecture 8.1 Solving Quadratic Equations by Completing the Square

Mini-Lecture 8.1 Solving Quadratic Equations by Completing the Square Mini-Lecture 8.1 Solving Quadratic Equations b Completing the Square Learning Objectives: 1. Use the square root propert to solve quadratic equations.. Solve quadratic equations b completing the square.

More information

Calculus One variable

Calculus One variable Calculus One variable (f ± g) ( 0 ) = f ( 0 ) ± g ( 0 ) (λf) ( 0 ) = λ f ( 0 ) ( (fg) ) ( 0 ) = f ( 0 )g( 0 ) + f( 0 )g ( 0 ) f g (0 ) = f ( 0 )g( 0 ) f( 0 )g ( 0 ) f( 0 ) 2 (f g) ( 0 ) = f (g( 0 )) g

More information

Algebra 2 Unit 2 Practice

Algebra 2 Unit 2 Practice Algebra Unit Practice LESSON 7-1 1. Consider a rectangle that has a perimeter of 80 cm. a. Write a function A(l) that represents the area of the rectangle with length l.. A rectangle has a perimeter of

More information

Chiang/Wainwright: Fundamental Methods of Mathematical Economics

Chiang/Wainwright: Fundamental Methods of Mathematical Economics Chiang/Wainwright: Fundamental Methods of Mathematical Economics CHAPTER 9 EXERCISE 9.. Find the stationary values of the following (check whether they are relative maima or minima or inflection points),

More information

Section 5-1 First Derivatives and Graphs

Section 5-1 First Derivatives and Graphs Name Date Class Section 5-1 First Derivatives and Graphs Goal: To use the first derivative to analyze graphs Theorem 1: Increasing and Decreasing Functions For the interval (a,b), if f '( x ) > 0, then

More information

Math Final Review. 1. Match the following functions with the given graphs without using your calculator: f3 (x) = x4 x 5.

Math Final Review. 1. Match the following functions with the given graphs without using your calculator: f3 (x) = x4 x 5. Mat 5 Final Review. Matc te following functions wit te given graps witout using our calculator: f () = /3 f4 () = f () = /3 54 5 + 5 f5 () = f3 () = 4 5 53 5 + 5 f6 () = 5 5 + 5 (Ans: A, E, D, F, B, C)

More information

Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls

Chapter 5. Increasing and Decreasing functions Theorem 1: For the interval (a,b) f (x) f(x) Graph of f + Increases Rises - Decreases Falls Chapter 5 Section 5.1 First Derivative and Graphs Objectives: The student will be able to identify increasing and decreasing functions and local extrema The student will be able to apply the first derivative

More information

Optimization II. Now lets look at a few examples of the applications of extrema.

Optimization II. Now lets look at a few examples of the applications of extrema. Optimization II So far you have learned how to find the relative and absolute etrema of a function. This is an important concept because of how it can be applied to real life situations. In many situations

More information

NAME DATE PERIOD. Study Guide and Intervention

NAME DATE PERIOD. Study Guide and Intervention NAME DATE PERID Stud Guide and Intervention Graph To graph a quadratic inequalit in two variables, use the following steps: 1. Graph the related quadratic equation, = a 2 + b + c. Use a dashed line for

More information

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b?

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b? Pre Calculus Worksheet 1. Da 1 1. The relation described b the set of points {(-,5,0,5,,8,,9 ) ( ) ( ) ( )} is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

3 2 (C) 1 (D) 2 (E) 2. Math 112 Fall 2017 Midterm 2 Review Problems Page 1. Let. . Use these functions to answer the next two questions.

3 2 (C) 1 (D) 2 (E) 2. Math 112 Fall 2017 Midterm 2 Review Problems Page 1. Let. . Use these functions to answer the next two questions. Math Fall 07 Midterm Review Problems Page Let f and g. Evaluate and simplify f g. Use these functions to answer the net two questions.. (B) (E) None of these f g. Evaluate and simplify. (B) (E). Consider

More information

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint.

Math 121. Practice Questions Chapters 2 and 3 Fall Find the other endpoint of the line segment that has the given endpoint and midpoint. Math 11. Practice Questions Chapters and 3 Fall 01 1. Find the other endpoint of the line segment that has the given endpoint and midpoint. Endpoint ( 7, ), Midpoint (, ). Solution: Let (, ) denote the

More information

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #4 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

Math 1050 REVIEW for Exam 1. Use synthetic division to find the quotient and the remainder. 1) x3 - x2 + 6 is divided by x + 2

Math 1050 REVIEW for Exam 1. Use synthetic division to find the quotient and the remainder. 1) x3 - x2 + 6 is divided by x + 2 Math 0 REVIEW for Eam 1 Use snthetic division to find the quotient and the remainder. 1) 3-2 + 6 is divided b + 2 Use snthetic division to determine whether - c is a factor of the given polnomial. 2) 3-32

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

To do this which theorem did you use? b) Determine which points are inflections and mark the concavity on a number line for f.

To do this which theorem did you use? b) Determine which points are inflections and mark the concavity on a number line for f. Math 13, Lab 11 1 a) Let f() = + 4 Determine which critical points are local maima, minima, and which are not etreme and mark this on a number line for b) Determine which points are inflections and mark

More information

Chapter Four. Chapter Four

Chapter Four. Chapter Four Chapter Four Chapter Four CHAPTER FOUR 99 ConcepTests for Section 4.1 1. Concerning the graph of the function in Figure 4.1, which of the following statements is true? (a) The derivative is zero at two

More information

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013

Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Name: MA 160 Dr. Katiraie (100 points) Test #3 Spring 2013 Show all of your work on the test paper. All of the problems must be solved symbolically using Calculus. You may use your calculator to confirm

More information

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis Final eam practice for Math 6 Disclaimer: The actual eam is different Find the volume of the solid generated b revolving the shaded region about the given ais. Use the disc/washer method ) About the -ais

More information

Format. Suggestions for study

Format. Suggestions for study *** Mac users using the Remote Desktop to access Scientific Notebook need to bring an Ethernet cord to the eam and use it to connect to the internet. That is, you should not connect to the internet using

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N.

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N. Calculus Review Packet 1. Consider the function f() = 3 3 2 24 + 30. Write down f(0). Find f (). Find the gradient of the graph of f() at the point where = 1. The graph of f() has a local maimum point,

More information

MATH 111 Departmental Midterm Exam Review Exam date: Tuesday, March 1 st. Exam will cover sections and will be NON-CALCULATOR EXAM.

MATH 111 Departmental Midterm Exam Review Exam date: Tuesday, March 1 st. Exam will cover sections and will be NON-CALCULATOR EXAM. MATH Departmental Midterm Eam Review Eam date: Tuesday, March st Eam will cover sections -9 + - and will be NON-CALCULATOR EXAM Terms to know: quadratic function, ais of symmetry, verte, minimum/maimum

More information

The Review has 16 questions. Simplify all answers, include all units when appropriate.

The Review has 16 questions. Simplify all answers, include all units when appropriate. Math 1 Midterm Eam Review with Answers Name Date The Review has 16 questions. Simplify all answers, include all units when appropriate. 1. [Sec. 1.] Solve the following problems. a. A company s profit

More information

UNIT 2 QUADRATIC FUNCTIONS AND MODELING Lesson 2: Interpreting Quadratic Functions Instruction

UNIT 2 QUADRATIC FUNCTIONS AND MODELING Lesson 2: Interpreting Quadratic Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: knowing the standard form of quadratic functions using graphing technolog to model quadratic functions Introduction The tourism

More information

CHAPTER 2 Polynomial and Rational Functions

CHAPTER 2 Polynomial and Rational Functions CHAPTER Polnomial and Rational Functions Section. Quadratic Functions..................... 9 Section. Polnomial Functions of Higher Degree.......... Section. Real Zeros of Polnomial Functions............

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

Max-min Word Problems

Max-min Word Problems Ma-min Word Problems In this section, we ll use our results on maima and minima for functions to do word problems which involve finding the largest or smallest value of lengths, areas, volumes, costs,

More information

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. For the given epression (), sketch the general shape of the graph of = f(). [Hint: it ma

More information

Problems to practice for FINAL. 1. Below is the graph of a function ( ) At which of the marked values ( and ) is: (a) ( ) greatest = (b) ( ) least

Problems to practice for FINAL. 1. Below is the graph of a function ( ) At which of the marked values ( and ) is: (a) ( ) greatest = (b) ( ) least Problems to practice for FINAL. Below is the graph of a function () At which of the marked values ( and ) is: (a) () greatest = (b) () least = (c) () the greatest = (d) () the least = (e) () = = (f) ()

More information

Maximum and Minimum Values - 3.3

Maximum and Minimum Values - 3.3 Maimum and Minimum Values - 3.3. Critical Numbers Definition A point c in the domain of f is called a critical number offiff c or f c is not defined. Eample a. The graph of f is given below. Find all possible

More information

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1 Week #6 - Talor Series, Derivatives and Graphs Section 4.1 From Calculus, Single Variable b Hughes-Hallett, Gleason, McCallum et. al. Copright 2005 b John Wile & Sons, Inc. This material is used b permission

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

Circle your answer choice on the exam AND fill in the answer sheet below with the letter of the answer that you believe is the correct answer.

Circle your answer choice on the exam AND fill in the answer sheet below with the letter of the answer that you believe is the correct answer. ircle your answer choice on the eam AND fill in the answer sheet below with the letter of the answer that you believe is the correct answer. Problem Number Letter of Answer Problem Number Letter of Answer.

More information

Honors Math 2 Unit 1 Test #2 Review 1

Honors Math 2 Unit 1 Test #2 Review 1 Honors Math Unit 1 Test # Review 1 Test Review & Study Guide Modeling with Quadratics Show ALL work for credit! Use etra paper, if needed. Factor Completely: 1. Factor 8 15. Factor 11 4 3. Factor 1 4.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Linear equations 1 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) Find the slope of the line passing through the points (, -3) and (2, -1). 1)

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

12.1 The Extrema of a Function

12.1 The Extrema of a Function . The Etrema of a Function Question : What is the difference between a relative etremum and an absolute etremum? Question : What is a critical point of a function? Question : How do you find the relative

More information

MATH 115: Review for Chapter 3

MATH 115: Review for Chapter 3 MATH : Review for Chapter Can ou use the Zero-Product Propert to solve quadratic equations b factoring? () Solve each equation b factoring. 6 7 8 + = + ( ) = 8 7p ( p ) p ( p) = = c = c = + Can ou solve

More information

Math 251 Final Exam Review Fall 2016

Math 251 Final Exam Review Fall 2016 Below are a set of review problems that are, in general, at least as hard as the problems you will see on the final eam. You should know the formula for area of a circle, square, and triangle. All other

More information

Sample Final Exam 4 MATH 1110 CALCULUS I FOR ENGINEERS

Sample Final Exam 4 MATH 1110 CALCULUS I FOR ENGINEERS Dept. of Math. Sciences, UAEU Sample Final Eam Fall 006 Sample Final Eam MATH 0 CALCULUS I FOR ENGINEERS Section I: Multiple Choice Problems [0% of Total Final Mark, distributed equally] No partial credit

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

Chapter 4 Applications of Derivatives. Section 4.1 Extreme Values of Functions (pp ) Section Quick Review 4.1

Chapter 4 Applications of Derivatives. Section 4.1 Extreme Values of Functions (pp ) Section Quick Review 4.1 Section. 6 8. Continued (e) vt () t > 0 t > 6 t > 8. (a) d d e u e u du where u d (b) d d d d e + e e e e e e + e e + e (c) y(). (d) m e e y (). 7 y. 7( ) +. y 7. + 0. 68 0. 8 m. 7 y0. 8( ) +. y 0. 8+.

More information

10.3 Solving Nonlinear Systems of Equations

10.3 Solving Nonlinear Systems of Equations 60 CHAPTER 0 Conic Sections Identif whether each equation, when graphed, will be a parabola, circle, ellipse, or hperbola. Then graph each equation.. - 7 + - =. = +. = + + 6. + 9 =. 9-9 = 6. 6 - = 7. 6

More information

Functions and Their Graphs

Functions and Their Graphs Functions and Their Graphs 015 College Board. All rights reserved. Unit Overview In this unit you will study polynomial and rational functions, their graphs, and their zeros. You will also learn several

More information

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Read To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Find these vocabular words in Lesson 5-1 and the Multilingual Glossar. Vocabular quadratic function parabola verte

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Test 1-0312-Chap. 2.4,2.7, 3.1-3.6,4.1,.4,. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write an inequalit statement involving the

More information

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power Precalculus Notes: Section. Modeling High Degree Polnomial Functions Graphs of Polnomials Polnomial Notation f ( ) a a a... a a a is a polnomial function of degree n. n n 1 n n n1 n 1 0 n is the degree

More information

Graph is a parabola that opens up if a 7 0 and opens down if a 6 0. a - 2a, fa - b. 2a bb

Graph is a parabola that opens up if a 7 0 and opens down if a 6 0. a - 2a, fa - b. 2a bb 238 CHAPTER 3 Polynomial and Rational Functions Chapter Review Things to Know Quadratic function (pp. 150 157) f12 = a 2 + b + c Graph is a parabola that opens up if a 7 0 and opens down if a 6 0. Verte:

More information

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method;

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method; QUADRATIC FUNCTIONS A. Eercises: 1.. 3. + = + = + + = +. ( 1)(3 5) (3 5) 1(3 5) 6 10 3 5 6 13 5 = = + = +. ( 7)(5 6) (5 6) 7(5 6) 5 6 35 4 5 41 4 3 5 6 10 1 3 5 Sum: 6 + 10+ 3 5 ( + 1)(3 5) = 6 + 13 5

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Chapter 1 Functions, Graphs, and Limits MA1103 Business Mathematics I Semester I Year 016/017 SBM International Class Lecturer: Dr. Rinovia Simanjuntak 1.1 Functions Function A function is a rule that

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and

More information