t=a z=t z=a INTEGRAL EQUATIONS t=z z=x dz D.C. Sharma z=a z=a z t=z z=x t=a M.C. Goyal z=a

Size: px
Start display at page:

Download "t=a z=t z=a INTEGRAL EQUATIONS t=z z=x dz D.C. Sharma z=a z=a z t=z z=x t=a M.C. Goyal z=a"

Transcription

1 z t= B(,) z=t z= z g t=z dt t= A(,) z B(,) z=t z= z= t A(,) t t=z z= B(,) dz D.C. Shrm M.C. Goyl z= A(,) t t= z e r dz z z= i B(,) t= C op yr ig ht ed M t er t IL i l INTEGRAL EQUATIONS A(,) PH dt

2 Itegrl Equtios D.C. Shrm Hed, Deprtmet of Mthemtics De, School of Mthemtics, Sttistics d Computtiol Scieces Cetrl Uiversity of Rjsth, Kishgrh, Ajmer M.C. Goyl De (Acdemics), Professor d Hed of Deprtmet of Mthemtics Rjsth College of Egieerig for Wome, Jipur PHI Lerig Copyrighted Mteril Delhi

3 Cotets Prefce... i Ackowledgemets... i 1. Bsic Cocepts Itroductio 1 1. Ael s Prolem Iitil Vlue Prolem d Boudry Vlue Prolem 1.4 Itegrl Equtio Specil Kids of Kerels Clssifictio of Itegrl Equtio Iterted Kerels Reciprocl Kerl or Resolvet Kerel Eigevlues d Eigefuctios Solutio of Itegrl Equtio 8 Eercise Applictios to Ordiry Differetil Equtios Itroductio 1. Method of Coversio of Iitil Vlue Prolem to Volterr Itegrl Equtio 1 Eercise Alterte Method of Trsformig the Iitil Vlue Prolem ito Volterr Itegrl Equtio 18 Eercise. 1.4 Boudry Vlue Prolem d its Coversio to Fredholm Itegrl Equtio 1 Eercise.3 7 PHI Lerig Copyrighted Mteril v

4 vi Cotets 3. Solutio of Homogeeous Fredholm Itegrl Equtios of the Secod Kid Itroductio 9 3. Chrcteristic Vlue (or Eigevlue) d Chrcteristic Fuctio (or Eigefuctio) Solutio of Homogeeous Fredholm Itegrl Equtio of the Secod Kid with Seprle (or Degeerte) Kerel Orthogolity of Two Fuctios Orthogolity of Eigefuctios Rel Eigevlues 34 Eercise Fredholm Itegrl Equtios with Seprle Kerels Itroductio Solutio of Fredholm Itegrl Equtio of the Secod Kid with Seprle (or Degeerte) Kerel 41 Eercise Itegrl Equtios with Symmetric Kerels Itroductio Symmetric Kerl Regulrity Coditio Ier or Sclr Product of Two Fuctios Orthogol System of Fuctios Fudmetl Properties of Eigevlues d Eigefuctios of Symmetric Kerels Hilert Schmidt Theorem Schmidt s Solutio of No-homogeeous Fredholm Itegrl Equtio of the Secod Kid 63 Prctice Questios with Itermedite Results 77 Eercise Solutio of Itegrl Equtios of the Secod Kid y Successive Approimtio PHI Lerig Copyrighted Mteril 6.1 Itroductio Iterted Kerel or Fuctio Resolvet Kerel or Reciprocl Kerel Solutio of Fredholm Itegrl Equtio of the Secod Kid y Successive Sustitutio Solutio of Volterr Itegrl Equtio of the Secod Kid y Successive Sustitutios 87

5 Cotets vii 6.6 Solutio of Fredholm Itegrl Equtio of the Secod Kid y Successive Approimtios: Itertive Method (Itertive Scheme) Neum Series Resolvet Kerel of Fredholm Itegrl Equtio Illustrtios Bsed o the Solutio of Fredholm Itegrl Equtio y Successive Approimtios (Itertive Method) 9 Eercise Eercise Reciprocl Fuctios Aother Approch to Solve Fredholm Itegrl Equtio of the Secod Kid (Volterr Solutio) Solutio of Volterr Itegrl Equtio of the Secod Kid y Successive Approimtios: Itertive Method (Neum Series) Resolvet Kerel d Volterr Itegrl Equtio Illustrtios to Epli the Solutio of Volterr Itegrl Equtio y Successive Approimtios (or Itertive Method) 11 Eercise Clssicl Fredholm Theory Itroductio Fredholm s First Theorem Workig Rule for Evlutig the Resolvet Kerel d Solutio of Fredholm Itegrl Equtio of the Secod Kid y Usig Fredholm s First Theorem Fredholm s Secod Fudmetl Theorem Fredholm s Third Theorem 15 Eercise Itegrl Trsform Methods Itroductio Sigulr Itegrl Equtio Lplce Trsform Some Importt Properties of Lplce Trsform Iverse Lplce Trsform Some Importt Properties of Iverse Lplce Trsform Covolutio of Two Fuctios The Heviside Epsio Formul The Comple Iversio Formul Itegrl Equtios i Specil Forms 163 PHI Lerig Copyrighted Mteril

6 viii Cotets 8.11 Applictio of Lplce Trsform to Fid the Solutios of Volterr Itegrl Equtio Covolutio Type Kerels of Volterr Itegrl Equtio: Workig Procedure Resolvet Kerel of Volterr Itegrl Equtio y Usig Lplce Trsform Solutio of Itegrl Equtios of the Type y Usig Lplce Trsform: Workig Procedure Fourier Trsforms d Their Importt Properties Applictio of Fourier Trsform to Determie the Solutio of Sigulr Itegrl Equtios 179 Eercise Ide PHI Lerig Copyrighted Mteril

7 Prefce Itegrl Equtios re eig used s essetil effective tool y the mthemticis, egieers d theoreticl physicists to uderstd d solve reserch prolems i their field. Two-poit iitil vlue prolems d oudry vlue prolems with fied d vrile oudry re ofte ecoutered y reserchers. Itegrl equtios hve ow ee estlished s fr effective d highly useful rch i lmost ll disciplies of kowledge. Hece, this course hs ee tke s idispesle prt of sylli of ll Idi uiversities t postgrdute level. Not oly tht, i competitive emitios like NET/SET, this course iherits importce. Therefore, it ecomes ecessry for studets d techer like to follow the cocepts d opertios of itegrl equtios. Lookig to these requiremets, we hve tried to provide the cocepts d priciples quite clerly d i orgised mer. I order to mke the ook user-friedly, we hve preseted the mtter i simple wy d it is complete i ll respects from the emitio poit-of-view. By presetig sufficiet umer of ssorted emples, we hve tried to iculcte the hit d crete cofidece i studets to try to solve more d more prolems o their ow. Becuse of uthor s log eperiece of techig d lso eig ctively egged i reserch, it is epected tht the ook shll prove immesely eeficil to the studets for whom it is met. All suggestios for the improvemet of the ook shll e thkfully ckowledged. PHI Lerig Copyrighted Mteril D.C. Shrm M.C. Goyl i

8 CHAPTER Applictios to Ordiry Differetil Equtios.1 INTRODUCTION The quest for estlishig represettio formul to replce ordiry differetil equtio (with iitil vlue prolem or oudry vlue prolem) lwys leds to itegrl equtio ore speciclly it is foud tht iitil vlue prolem is coverted to olterr itegrl equtio while oudry vlue prolem is coverted to redholm itegrl equtio illy it eses our wor of dig the solutio of itegrl equtio thus otied ecllig oce more i iitil vlue prolem the oudry coditios re for the sme vlue of idepedet vrile while i the cse of oudry vlue prolem the oudry coditios re for differet vlues of idepedet vrile.. METHOD OF CONVERSION OF AN INITIAL VALUE PROBLEM TO A VOLTERRA INTEGRAL EQUATION Let ordiry differetil equtio of order e 1 d y d y d y 1( ) 1 ( ) ( ) ( ) y d d d φ (.1) with the iitil coditios ( 1) y( ) q, y'( ) q1,, y ( ) q 1 (.) PHI Lerig Copyrighted Mteril where 1 () ()... () f() re deed d re cotiuous i. Let u() e ukow fuctio such tht d y u ( ) d (.3) Itegrtig Eq. (.3) from to we get 1

9 Applictios to Ordiry Differetil Equtios 1 EXERCISE. 1. Covert the followig iitil vlue prolems ito itegrl equtios. () () d y y g( ), y() 1, y () d d y y, y(), y () d. Covert y"( ) 3 y'( ) y( ) 4si with iitil coditios y() 1, y () ito olterr itegrl equtio. lso d the origil iitil vlue prolem from the otied itegrl equtio. 3. Trsform y y 1, y(), y(1) 1 ito itegrl equtio. 4. Trsform the oudry vlue prolem y y, y(), y (1) to Fredholm itegrl equtio. Aswers: 1. () () y( ) 1 ( t)[ g( t) t y( t)] dt y ( ) ( t) ytdt ( ). y() = 1 4 si {3 ( t)}y(t) dt o 1 1 (1 ), t(1 t), t t t y ( ) (1 ) K (, t) ytdtk ( ) ; (, t) 3 1 t, t y ( ) K (, t) ytdt ( ) ; 6 Kt (, ), t.4 BOUNDARY VALUE PROBLEM AND ITS CONVERSION TO FREDHOLM INTEGRAL EQUATION Whe ordiry differetil equtio is give with the coditios ivolvig depedet vrile d its derivtives t two differet vlues of idepedet vriles the prolem uder cosidertio is sid to e oudry vlue prolem. The method of coversio of oudry vlue prolem to Fredholm itegrl equtio c e mde cler y the emples give hereuder. PHI Lerig Copyrighted Mteril EXAMPLE.6: Reduce the followig oudry vlue prolem ito itegrl equtio: du lu with u(), u( l) d

10 CHAPTER 3 Solutio of Homogeeous Fredholm Itegrl Equtios of the Secod Kid 3.1 INTRODUCTION I the previous chpters, we hve lert the sic termiology d suitility of itegrl equtios over differetil equtios, d the, the clssictio of the itegrl equtios. Although, there hve ee my developmets i the theory, the sic divisio s iitil vlue prolems ito volterr itegrl equtios d oudry vlue prolems ito Fredholm itegrl equtios is must to follow. As we pproch to simplify these equtios, it is foud coveiet to focus the kerel, kid d the homogeeous ture of these equtios. I this chpter, we shll restri ourselves oly for the homogeeous Fredholm itegrl equtios of the secod kid. The chpter egis with the discussio of essetil prt clled eigevlue, eigefuctio, d the relted theorems re eplied. 3. CHARACTERISTIC VALUE * (OR EIGENVALUE) AND CHARACTERISTIC FUNCTION (OR EIGENFUNCTION) We cosider the followig homogeeous Fredholm itegrl equtio of the secod kid: u ( ) l K (, tutdt ) ( ) (3.1) It is cler tht u() = will lwys stisfy Eq. (3.1), d we cll such u() = s the trivil solutio of Eq. (3.1). The vlues of prmeter l for which the itegrl equtio [Eq. (3.1)] hs o-trivil (o-zero) solutios [u() ] re kow s eigevlues of Eq. (3.1) or chrcteristic vlues of kerel K(, t). If for u(), there eists cotiuous fuctio f() i the itervl [, ] such tht PHI Lerig Copyrighted Mteril * It is lso clled chrcteristic umer. φ( ) l K(, t) φ ( t) dt (3.) 9

11 Solutio of Homogeeous Fredholm Itegrl Equtios of the Secod Kid 31 This is the eigevlue of Eq. (i), d usig Eq. (iii), the correspodig eigefuctio is g ( ) ce e e 1 c y tkig the costt s uity. e 1 EXAMPLE 3.: Show tht the homogeeous itegrl equtio 1 f( ) l (3 ) tf( t) dt hs o chrcteristic umer d o eigefuctio. Solutio: The give itegrl equtio is Let PHI Lerig Copyrighted Mteril 1 f( ) l(3 ) tf( t) dt (i) 1 c tf() t dt (ii) so tht f( ) l(3 ) c (iii) or f() t lc(3t ) The, 1 c tlc(3t ) dt 3 c lct t c Thus, f() = is the solutio of Eq. (i) d we do ot get y chrcteristic umer or eigefuctio. We lso see tht kerel K(, t) = (3 )t is ot symmetric, d i this cse, the kerel does ot possess y chrcteristic umer ecessrily. 3.3 SOLUTION OF HOMOGENEOUS FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND WITH SEPARABLE (OR DEGENERATE) KERNEL Let the homogeeous Fredholm itegrl equtio of the secod kid e 1 u ( ) l Ktutdt (, ) ( ) (3.3) where kerel K(, t) is seprle, which mes it c e epressed s the sum of the product of terms, ech hvig fuctios of d t seprtely. Let The, Eq. (3.3) is Kt (, ) f( g ) ( t) (3.4) i i1 i u ( ) f i( g ) i( t l ) utdt ( ) (3.5) i1

12 CHAPTER 4 Fredholm Itegrl Equtios with Seprle Kerels 4.1 INTRODUCTION Like the previous chpter, this chpter is lso devoted to Fredholm itegrl equtios of the secod kid. But, ow the equtio is ot homogeeous, i.e., F() i geerl. Furthermore, the ture of kerel is seprle. This chpter shows tht the role of chrcteristic fuctio with determit D(l) is of vitl importce. All iterrelted possile cses re icluded with suitle emples. 4. SOLUTION OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND WITH SEPARABLE (OR DEGENERATE) KERNEL We cosider the followig itegrl equtio: u ( ) F ( ) l Ktutdt (, ) ( ) (4.1) where, kerel K(, t) is seprle, d therefore, we epress i i1 which o sustitutig i Eq. (4.1) provides Kt (, ) f( ). g( t) (4.) PHI Lerig Copyrighted Mteril or u ( ) F ( ) f i( ). g i( t l ) utdt ( ) i1 u ( ) F ( ) l f ( ) g ( tutdt ) ( ) i i1 i (4.3) (upo iterchgig the order of itegrtio d summtio) 41 i

13 CHAPTER 5 Itegrl Equtios with Symmetric Kerels 5.1 INTRODUCTION I the previous chpters, Fredholm itegrl equtios of the secod kid hve ee cosidered for y give kerl K(, t) y hvig the eigevlues d correspodig eigefuctios. I this chpter, the sme equtio is the mi motive, ut ow, the kerel is symmetric. 5. SYMMETRIC KERNAL A kerel K(, t) is sid to e symmetric (lso comple symmetric or Hermiti) if K(, t) K( t, ) (5.1) where, the r deotes the comple cojugte. If the kerel is rel, the symmetry reduces to equlity. K(, t) K( t, ) (5.) Theorem: symmetric. If kerel is symmetric, the ll its iterted kerels re lso Proof: Let the kerel K(, t) e symmetric. The, y detio, K(, t) K( t, ) (5.3) By deitio, the iterted kerels K (, t), I re deed s PHI Lerig Copyrighted Mteril K 1 (, t) K(, t) [5.4()] K (, t) K(, z). K ( z, t) dz, =,3,... [5.4()] 1 Also, K(, t) K1(, z). K( z, t) dz, =, 3,... [5.4(c)] 56

14 Comiig Eq. (5.) d (5.3), we d Itegrl Equtios with Symmetric Kerels 63 Sice l +1, Eq. (5.4) gives ( hh, ) f( ) y ( ) ( h, K h) (5.4) ( 1) l1 f( ) y ( ) s (5.5) Now, we use the reltio f( ) y( ) f( ) y ( ) y ( ) y( ) (5.6) where y() is the limit of the series with prtil sum y. As show ove, the rst term o the R.H.S. of (5.6) teds to zero, d to show tht the secod term of R.H.S. of (5.6) lso teds to zero, we proceed s follows: Sice Eq. (5.18) coverges uiformly, we hve, for ritrrily smll d positive qutity, y ( ) y ( ), whe is sufcietly lrge. y ( ) y ( ) ( ) d hece y ( ) y ( ) Hece, Eq. (5.6) shows tht f() = y(), d thus, the result follows. 5.8 SCHMIDT S SOLUTION OF NON-HOMOGENEOUS FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND Cosider y ( ) f( ) l K( t, ) ytdt ( ) (5.7) where K(, t) is cotiuous, rel d symmetric kerel d l is ot eigevlue. Sttemet of Hilert Schmidt theorem: Let F() e geerted from cotiuous fuctio y() y the opertor l K (, t ) y ( t ) dt, where K(, t) is cotiuous, rel d symmetric, PHI Lerig Copyrighted Mteril so tht F ( ) l Kt (, ) ytdt ( ) (5.8) The fuctio F() c e epressed over the itervl (, ) y lier comitio of the ormlised eigefuctios of homogeeous itegrl equtio y ( ) l K( t, ) ytdt ( ) (5.9) hvig K(, t) s its kerel. 1/

15 CHAPTER 6 Solutio of Itegrl Equtios of the Secod Kid y Successive Approimtio 6.1 INTRODUCTION I the previous chpters of the ook, the solutio of the itegrl equtios ws mily focused upo Fredholm itegrl equtio. I this chpter the developmet is for Volterr itegrl equtio lso. Moreover, where the solutio is ot possile i closed form, successive pproimte method is lso discussed. Aprt from the vrious theorems, the chpter icludes three prts () iterted kerels, () resolvet kerel, d (c) solutio of itegrl equtios y pplyig resolvet kerel. 6. ITERATED KERNEL OR FUNCTION 1. Let us cosider the followig Fredholm itegrl equtio of the secod kid: y ( ) f( ) l Kt (, ) ytdt ( ) (6.1) The, the iterted kerels K (, t), = 1,, 3,..., re deed s follows: K 1 (, t) K(, t) d K(, t) K(, z) K1( z, t) dz,,3,... or K(, t) K1(, z) K( z, t) dz,,3,... [6.()] PHI Lerig Copyrighted Mteril. Let the Volterr itegrl equtio of the secod kid e [6.()] y ( ) f( ) l Kt (, ) ytdt ( ) (6.3) The, the iterted kerels K (, t), = 1,, 3,..., re deed s follows: K 1 (, t) K(, t) [6.4()] 84

16 Solutio of Itegrl Equtios of the Secod Kid y Successive Approimtio 85 d or K (, t) K(, z) K ( z, t) dz,,3, t 1 1 K (, t) K (, z) K( z, t) dz,,3, t [6.4()] 6.3 RESOLVENT KERNEL OR RECIPROCAL KERNEL We cosider the solutio of Fredholm itegrl equtio of the secod kid. d let it tke the followig form y ( ) f( ) l Kt (, ) ytdt ( ) (6.5) y ( ) f( ) l Rt (, ; l) f( tdt ) [6.6()] or y ( ) f( ) l ( t, ; l) f( tdt ) [6.6()] Here, R(, t; l) or (, t; l) is kow s resolvet kerel of Eq. (6.5). Alogously, we hve the resolvet kerel for Volterr itegrl Eq. (6.3). We cosider the followig theorem without proof: Theorem: The m th iterted kerel K m (, t) stises the reltio m r mr K (, t) K (, y) K ( y, t) dy where, r is y positive iteger less th m. 6.4 SOLUTION OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND BY SUCCESSIVE SUBSTITUTION Theorem: Let y ( ) f( ) l Kt (, ) ytdt ( ) (6.7) e the give Fredholm itegrl equtio of the secod kid. Let 1. K(, t) e rel d cotiuous i the rectgle R, for which, t. Also, ssume K(, t) Mi R.. f() e rel d cotiuous i the itervl I for which. Also, ssume f() N i I. 3. l e costt such tht l < 1/M( ). The (6.5) hs uique solutio i I d this solutio is give y the solutely d uiformly coverget series * y ( ) f( ) l Kt (, ) ftdt ( ) l Kt (, ) Ktt (, ) ftdtdt ( ) PHI Lerig Copyrighted Mteril (6.8) * A coverget iite series hs sum. But, if we differetite (or itegrte) its ll the terms, the this sum my ot e equl to the derivtive (or itegrl) of sum. However, if the series is solutely d uiformly coverget, the it is possile. To check this chrcteristics, we check if the modulus of the th term is less th deite qutity.

17 Solutio of Itegrl Equtios of the Secod Kid y Successive Approimtio 89 where, R 1 t t 1 ( ) l K(, t) K( t, t ) K( t, t ) y( t ) dt dt dt (6.3) We ow cosider the followig iite series: l t (6.31) y ( ) l Kt (, ) ftdt ( ) Kt (, ) Ktt (, ) ft ( ) dt Now, due to coditios (1) d (), ech term of Eq. (6.31) is cotiuous i I. It mkes Eq. (6.31) lso cotiuous i I, provided it coverges uiformly i I. Let V () e the geerl term of Eq. (6.31), give y t t ( ) V ( ) l NM V ( ) l K(, t) K( t, t ) K( t, t ). f( t ) dt dt dt The, (6.3)! [Here, we hve pplied coditios 1 d over mod of Eq. (6.3)] ( ) or V ( ) l NM,! or V ( ) l N[ M( )] /! (6.33) Now, from Eq. (6.3), it is cler tht Eq. (6.31) is coverget for ll l, N, M, ( ); thus, from Eq. (6.33), it is followed tht Eq. (6.31) is coverget osolutely d uiformly. So, if Eq. (6.1) hs cotiuous solutio, it must e epressed y Eq. (6.9). If y() is cotiuous i I, y() must hve mimum vlue, sy Y. or y() Y (6.34) 1 Now, from Eq. (6.3), 1 1 ( ) R1( ) l Y M ( 1)! R ( ) l Y M PHI Lerig Copyrighted Mteril 1 ( ) ( 1)! Hece, lim R1 ( ) It thus follows tht fuctio y() stisfyig Eq. (6.9) is the cotiuous fuctio give y Eq. (6.4) or Eq. (6.31). It thus proves the theorem. 6.6 SOLUTION OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND BY SUCCESSIVE APPROXIMATIONS: ITERATIVE METHOD (ITERATIVE SCHEME) NEUMANN SERIES We cosider the followig Fredholm itegrl equtio of the secod kid: y ( ) f( ) l Kt (, ) ytdt ( ) (6.35)

18 CHAPTER 7 Clssicl Fredholm Theory 7.1 INTRODUCTION The solutio of the Fredholm itegrl equtio of the secod kid, i.e., g ( ) f( ) l Ktgtdt (, ) ( ) (7.1) hs ee discussed i Chpter 6 s uiformly coverget power series i prmeter l for suitly smll vlue of l. As mtter of fct, Fredholm otied the solutio of Eq. (7.1) i geerl form, which is vlid for ll vlues of prmeter l. These solutios re cotied i three theorems, which re kow s Fredolms rst seod d tird fudmetl teorems. I this chpter, we shll study Eq. (7.1) whe the fuctios f() d kerel K(, t) re y itegrle fuctios. Moreover, the preset method eles us to get eplicit formule for the solutio i terms of certi determits. 7. FREDHOLM S FIRST THEOREM Sttemet: The o-homogeeous Fredholm itegrl equtio of the secod kid g ( ) f( ) l Ktgtdt (, ) ( ) (7.) where the fuctios f() d K(, t) re itegrle, hs uique solutio PHI Lerig Copyrighted Mteril g ( ) f( ) l Rt (, ; l) ftdt ( ) (7.3) where the resolvet kerel R(, t; l) is meromorphic fuctio of prmeter l deed y Dt (, ; l) Rt (, ; l) ; [D(l) ] (7.4) D( l) 11

19 CHAPTER 8 Itegrl Trsform Methods 8.1 INTRODUCTION The itegrl trsform methods provide useful tool for the solutio of itegrl equtios of vrious specil forms. Let the followig doule itegrl eist: g( ) F(, t ) K( t, t) g( t) dt dt (8.1) This doule itegrl c e evluted s iterted itegrl. If we tke f( ) K(, t) g( t) dt, (8.) the from Eq. (8.1), we hve g ( ) Ft (, ) ftdt ( ) (8.3) Thus, if Eq. (8.1) is regrded s itegrl equtio i g, solutio is give y Eq. (8.), wheres if Eq. (8.3) is regrded s itegl equtio i f, solutio is give y Eq. (8.). It is covetiol to refer, oe of these fuctios s the trsform of the secod fuctio, d to the secod fuctio, s iverse trsform of the rst. Some emples * re give here. 1. The most well-kow doule itegrl Eq. (8.1) is the Fourier itegrl 1 is it g() s e e g() t dt d p PHI Lerig Copyrighted Mteril which results i the reciprocl reltios s: 1 ist f() s e g() t dt p * Refer to Chpter 6 of Itegrl Trsforms pulished y RBD. 157

20 158 Itegrl Equtios d hs 1 ist gs () e f() t dt p The fuctio f(s) is kow s Fourier trsform of g(t) d g(s) s the iverse Fourier trsform of f(t), d vice vers.. Cosiderig the doule itegrl gs () (sis si t) gt () d p, we d tht this leds to the sie trsform f() s (si st) g() t dt p d its iverse s, gs () (si st) f() t dt p, respectively. 8. SINGULAR INTEGRAL EQUATION Sigulr itegrl equtios occur frequetly i mthemticl physics d possess very uusul properties; hece, their solutios re quite essetil. A itegrl equtio is clled sigulr if either the rge of itegrtio is iite or the kerel is discotiuous. For emple, the sigulr itegrl equtios of the rst kid re: PHI Lerig Copyrighted Mteril f( ) si( t) g( t) dt (8.4) t f( ) e g( t) dt (8.5) I Eqs. (8.4) d (8.5), the rge of itegrtio is iite, while i itegrl gt () f( ) dt t (8.6) the rge of itegrtio is ite, ut the kerel is discotiuous. The Ael s Itegrl Equtio Oe of the simplest form of sigulr itegrl equtio, which ppers i mechics, is the Ael s itegrl equtio, give s, gt () f( ) dt, 1 (8.7) ( t) where g(t) is ukow fuctio to e determied d f() is kow fuctio.

21 Itegrl Trsform Methods LAPLACE TRANSFORM * Let f() e fuctio deed for >. The, the Lplce trsform of f(), deoted y L{f(); p} or F(p), is deed with the help of the followig itegrl: p L{ f( ); p} F( p) e f( ) d (8.8) provided tht the itegrl eists. It is to e recollected tht the Lplce trsform of f() eists if the itegrl i Tle 8.1 shows Lplce trsform for sme elemetry fuctios. Eq. (8.8) is coverget for some desigted vlues of p. Tle 8.1 Lplce Trsform for Some Elemetry Fuctios S.No. f() L{(); p} F(p) /p, p >., is positive iteger!/p +1, p > 3., > 1 ( + 1)/p +1, p > 4. e 1/(p ), p > 5. si /(p + ), p > 6. cos p/(p + ), p > 7. sih /(p ), p > 8. cosh p/(p ), p > 9. J () 1/ p + 1. J () { p p} PHI Lerig Copyrighted Mteril p 11. d( ) e p 1. erf ( ) 1/{ p p+ 1} 13. (1 )p SOME IMPORTANT PROPERTIES OF LAPLACE TRANSFORM 1. If for i {1,,..., }, c i re costts d f i () re fuctios with Lplce trsforms F i (p), respectively, the L{ c f ( ) c f ( ); p} c L{ f ( ); p} c L{ f ( ); p} Lcf { ( ) c f( ); p} cf( p) cf( p) * For detils of Lplce trsform d its iverse, the reder c refer to the recet ook o Itegrl Trsforms pulished y RBD.

22 8.5 INVERSE LAPLACE TRANSFORM Itegrl Trsform Methods 161 If the Lplce trsform of fuctio f() is F(p), i.e., L{ f(); p} = F(p) the f() is clled iverse Lplce trsform of F(p), d we epress 1 f( ) L { F( p); } where L 1 is kow s the iverse Lplce trsformtio opertor. Tle 8. shows iverse Lplce trsform of some elemetry fuctios. Tle 8. Iverse Lplce Trsform * of Some Elemetry Fuctios S.No. F(p) L 1 {F(p); } f() 1. 1/p 1. 1/p +1 ( is positive iteger) /! 3. 1/p +1 {Re() > 1} /( + 1) 4. 1/(p ) e 5. 1/(p + ) si / 6. p/(p + ) cos 7. 1/(p ) (sih )/ 8. p/(p ) cos h 9. 1/ ( p ) J () 1. 1/{ p ( p 1)} erf ( ) 8.6 SOME IMPORTANT PROPERTIES OF INVERSE LAPLACE TRANSFORM If for ll i {1,,..., }, c i re costts d F i (p) re the Lplce trsforms of f i (), respectively, the L { c F ( p) c F ( p); } c L { F ( p); } c L { F ( p); } 1 L { c F ( p) c F ( p); } c f ( ) c f ( ) If L 1 {F(p); } = f(), the 1 1 L { F( p); } f ( / ),. PHI Lerig Copyrighted Mteril If L 1 {F(p); } = f(), the 1 1 L { F( p); } e f( ) e L { F( p); }. * The reder is dvised to refer to Tle 8.1 simulteously.

23 Itegrl Trsform Methods 163 The covolutio theorem (or covolutio property) Let f() d g() e two fuctios of clss A d let L 1 {F(p); } = f() d L 1 {G(p); } = g(). The, i.e., 1 L { F( p) G( p); } f( u) g( u) du f * g. Oe useful form of the ove is L{f *g) = F(p) G(p) L f() u g( u) du L f( u) g() u du F() p G(). p 8.8 THE HEAVISIDE EXPANSION FORMULA Let F(p) d G(p) e polyomils i p, where F(p) hs degree less th G(p). Now, if G(p) hs distict zeros r, r = 1,...,, the 1 F ( p ) F( ) ; r r L e. Gp ( ) G'( r ) r1 8.9 THE COMPLEX INVERSION FORMULA If f() hs cotiuous derivtive d is of epoetil order g for lrge positive vlues of, where g > d if F(p) = L{f(); p}, the d f() = ; <. 1 1 g i L { F( p); } f( ) e F( p) dp, pi g i 8.1 INTEGRAL EQUATIONS IN SPECIAL FORMS 1. The itegrl equtio PHI Lerig Copyrighted Mteril p g ( ) f( ) K ( t) gtdt ( ) wherei kerel K( t) is fuctio of the differece oly, is kow s itegrl equtio of covolutio type. Applyig the deitio of covolutio, it c e epressed s g() = f() + K() * g(). A itegrl equtio i which derivtives of the ukow fuctio g() re lso preset is sid to e itegrodifferetil equtio. For emple,

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module 4 Sigl Represettio d Bsed Processig Versio ECE IIT, Khrgpur Lesso 5 Orthogolity Versio ECE IIT, Khrgpur Ater redig this lesso, you will ler out Bsic cocept o orthogolity d orthoormlity; Strum -

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2. Clculus II d Alytic Geometry Sectio 8.: Sequeces. Limit Rules Give coverget sequeces f g; fb g with lim = A; lim b = B. Sum Rule: lim( + b ) = A + B, Dierece Rule: lim( b ) = A B, roduct Rule: lim b =

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Hmid R. Riee Arm Sepehr Fll 00 Lecture 5 Chpter 0 Outlie Itroductio to the -Trsform Properties of the ROC of

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Supplemental Handout #1. Orthogonal Functions & Expansions

Supplemental Handout #1. Orthogonal Functions & Expansions UIUC Physics 435 EM Fields & Sources I Fll Semester, 27 Supp HO # 1 Prof. Steve Errede Supplemetl Hdout #1 Orthogol Fuctios & Epsios Cosider fuctio f ( ) which is defied o the itervl. The fuctio f ( )

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

A VERSION OF THE KRONECKER LEMMA

A VERSION OF THE KRONECKER LEMMA UPB Sci Bull, Series A, Vol 70, No 2, 2008 ISSN 223-7027 A VERSION OF THE KRONECKER LEMMA Gheorghe BUDIANU I lucrre se prezit o vrit lemei lui Kroecer reltiv l siruri si serii de umere rele Rezulttele

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

9.5. Alternating series. Absolute convergence and conditional convergence

9.5. Alternating series. Absolute convergence and conditional convergence Chpter 9: Ifiite Series I this Chpter we will be studyig ifiite series, which is just other me for ifiite sums. You hve studied some of these i the pst whe you looked t ifiite geometric sums of the form:

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.0 Clculus Jso Strr Due by :00pm shrp Fll 005 Fridy, Dec., 005 Solutios to Problem Set 7 Lte homework policy. Lte work will be ccepted oly with medicl ote or for other Istitute pproved reso. Coopertio

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EHU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes Ad

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS

CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS Abstrct Mirce I Cîru We preset elemetry proofs to some formuls ive without proofs by K A West d J McClell i 99 B

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information