Units S H I E L D I N H = D Q. H: Dose equivalent (Sv) D: Dose (Gy) Q: Quality Factor. 1Sv = 1 J/Kg. 1Gy = 1 J/Kg

Size: px
Start display at page:

Download "Units S H I E L D I N H = D Q. H: Dose equivalent (Sv) D: Dose (Gy) Q: Quality Factor. 1Sv = 1 J/Kg. 1Gy = 1 J/Kg"

Transcription

1 S H I E L D I N G H = D Q Units H: Dose equivalent (Sv) D: Dose (Gy) Q: Quality Factor 1Sv = 1 J/Kg 1Gy = 1 J/Kg if dose is expressed in units of cgy (rad) then dose equivalent is expressed in units of rem. Other common unit for H is msv. When solving shielding problems be consistent in using units.

2 Linac Orientation RADIATION PROTECTION AND SAFETY IN RADIOTHERAPY (a) tsec RADIATION PROTECTION AND SAFETY IN RADIOTHERAPY (a) tsec (b) t pri Linac Orientation High density concrete (b) FIG Typical floor plan for an isocentric high energy linac bunker. (a) The machine gantry rotation axis is parallel to the maze entry corridor; the primary barriers are parts of the floor and ceiling, as ell as parts of the east and est alls. (b) The machine gantry rotation axis is perpendicular to the maze entry corridor; the primary barriers are parts High density of the floor and ceiling and parts of the north and south alls. Normal density concrete concrete (2.35 g/cm3) is used in all alls except for the south all, hich is made of high density concrete (5 g/cm3). The door to the treatment room maze is a neutron shielded door. FIG Typical floor plan for an isocentric high energy linac bunker. (a) The machine gantry rotation axis is parallel to the maze entry corridor; the primary barriers are parts of the floor and ceiling, as ell as parts of the east and est alls. (b) The machine gantry 601

3 radiation scattered from or produced by interactions ith the patient and other objects as ell as the leakage radiation from the protective housing of the source. A secondary barrier is a all, ceiling floor or other structure that ill intercept the secondary radiation. It needs to attenuate the secondary radiation to the appropriate shielding design goal. A full discussion of primary and secondary barriers is given in Section 2. Barriers Fig Schematic of radiation sources (primary, leakage and patient-scattered) and the primary and secondary barriers. NCRP All rights reserved. Licensed to Mohammad Salehpour Donloaded 04/04/06 Single user license only, copying and netorking prohibited. Shielding Parameters Workload, W (cgy m2 eek-1) Use factor, U Occupancy factor, T Leakage Radiation

4 Workload W Definition Output produced by therapy unit per eek at 1 m in cgy Example: If a unit treats 25 patients per day ith an average dose of 200 cgy per fraction, then W = cgy m 2 eek -1 Use Factor U Definition Fraction of the operating time during hich the radiation is directed toard a particular barrier Typical Use Factors are: Floor: 1 Walls: 1/4 Ceiling: 1/4-1/2

5 Occupancy Factor T Definition Fraction of the operating time during hich the area of interest is occupied by the individual Typical values of T are: Full occupancy: 1 Partial occupancy: 1/4 Occasional occupancy: 1/8-1/16 Shielding Equations No. of tenth-value layers Primary Radiation Barrier WUT P d2 P= B B= d2 WUT ( ) N = log10 B 1 Barrier thickness t pri = T1 + ( N 1) Te T1: 1st TVL Te: subsequent TVL P: Permissible dose equivalent. (e.g. 5 rem/year for controlled area & 0.1 rem/year for non-controlled area NCRP91, 0.5 rem/year for controlled area NCRP151) B: Transmission factor to reduce dose to P in the area of interest

6 Example RADIATION PROTECTION AND SAFETY IN RADIOTHERAPY tsec 2 S A * d Evaluate the thickness of concrete needed for the primary shield shon here () at the point (A). This unit treats 40 patients per day ith an average dose of 250 cgy per fraction utilizing a 20 MV beam. The distance from source (S) to the point (A) is 4.4 m. a) Radiation Therapy Supervisor s office b) Hospital corridor Example High density concrete W = 40 pt/day x 250 cgy m2/pt x 5 day/eek W = cgy m2/eek U = 1/4 Typical floor plan for an isocentric high energy linac bunker. (a) The machine tion axis is parallel to the maze entry corridor; the primary barriers are parts a) T as= ell 1, aspparts = (5ofrem/year) / 50alls. (eeks/year) and ceiling, the east and est (b) The machine gantry b) T = 1/4,toPthe= maze (0.1 entry rem/year) 50 primary (eeks/year) is is perpendicular corridor;/ the barriers are parts r and ceiling and parts of the north and south alls. Normal density concrete ) is used in all alls except for the south all, hich is made B = [0.1x(4.4)2]/[50000x1x1/4] = 1.55x10of-4high density g/cm3).a) The door to the treatment room maze is a neutron shielded door. N = log10(1/b) = 3.81 = 48 + (2.81) * cm b) B = [0.002x(4.4)2]/[50000x1/4x1/4] = 1.2x10-5 N = 4.92 = 48 + (3.92) * cm Note: We used the recommendations of NCRP 91 in this example. 601 Dose-Equivalent index TVL for X-rays in concrete (NCRP report 51, 1977)

7 Example W = 40 pt/day x 250 cgy m2/pt x 5 day/eek W = cgy m2/eek U = 1/4 a) T = 1, P = (5 rem/year) / 50 (eeks/year) b) T = 1/4, P = (0.1 rem/year) / 50 (eeks/year) a) B = [0.1x(4.4)2]/[50000x1x1/4] = 1.55x10-4 From the graph 173 cm b) B = [0.002x(4.4)2]/[50000x1/4x1/4] = 1.2x10-5 From the graph 222 cm Note: We used the recommendations of NCRP 91 in this example. Dose-Equivalent index TVL for X-rays in concrete (NCRP report 51, 1977) NCRP 151 Table B.2

8 Barrier Width 28 / 2. CALCULATIONAL METHODS Fig. 2.4a. Width of primary barrier protruding into the room. 28 / 2. CALCULATIONAL METHODS Barrier Width Fig. 2.4a. Width of primary barrier protruding into the room. Fig. 2.4b. Arrangement for the primary barrier hen the inside all is continuous. Fig. 2.4b. Arrangement for the primary barrier hen the inside all is continuous. NCRP All rights reserved. Licensed to Mohammad Salehpour

9 Secondary Barrier Scatter B s = P αwt i400 F id 2 i d 2 α: fractional 1 m for a f.s. 400cm 2 scatterer F: area of the scatterer d: distance from scatterer to area of interest d : distance from source to scatterer Scattering Angle α (6MV X-ray) 15 9x x x x x x10-3 NCRP No. 51, 1977 Secondary Barrier Leakage B L = Pid WT Workload (WL): Wpri d: distance from source to area of interest

10 look up in NCRP 151 Distances 2.3 SECONDARY BARRIERS / 33 Fig Room layout shoing distances associated ith patientscattered (dsca, dsec) and leakage radiations (dl). As noted, the scattered-radiation energy is significantly degraded (beyond 20 degree scattered radiation) from that of the primary beam and thus separate data are used to compute its transmission through the barrier. Tables B.5a and B.5b give TVL values in concrete and lead, respectively, for radiations scattered from the patient at different scattering angles and beam energies. For other materials, the TVL for the patient-scattered radiation can be estimated by using the mean energy of the scattered radiation from Table B.6 (Appendix B) and the TVL values from Figures A.1a and A.1b (Appendix A). The barrier transmission of leakage radiation alone (BL) is given by Equation 2.8. Secondary Barrier 2 P dl B L = W T Scatter Bs = (2.8) In Equation 2.8, the factor 10 3 arises from the assumption that leakage radiation from the accelerator head is 0.1 % of the useful beam. The use factor again is taken as one, and dl is measured from the isocenter if it can be assumed that the accelerator gantry angles used are, on average, symmetric. If this is not the situation, then the distance to the individual barriers should be taken from 2 2 of the 2 accelerator head to each barrier and the closest approach Leakage P 400 i id i d α WT F BL = Pid 0.001WT 1 2 NCRP All rights reserved. Licensed to Mohammad Salehpour If the thickness of the to barriers differ by For Megavoltage installations, the leakage Donloaded 04/04/06 barrier usually far exceeds that required for only, copying and at netorking least 3 HVLs (1 TVL) of primary beam, Single user license prohibited. the scattered radiation, since the leakage the thicker of the to ould be adequate. If radiation is more penetrating than the the difference is less than 3 HVLs, then 1 scattered radiation. HVL should be added to the larger one.

11 Neutrons a: transmission factor (1 for Pb) Neutron fluence Q: Neutron source strength per unit dose of x-ray Φ total = Φ dir + Φ sc + Φ th aq 5.4aQ 1.26Q Φ dir = ;Φ sc = ;Φ th = 4π d12 S S d: distance from target to point of interest S: Surface area of treatment room H0: neutron dose eq. at d0 d1: distance from isocenter to centerline of maze Neutron H d2: length of maze RADIATION PROTECTION AND SAFETY IN RADIOTHERAPY T/T0 is the ratio of outer maze area to the inner maze entrance H = (H0 )(T / T0 )(d 0 / d1 )2 10 d2 / 5 (a) D = KΦ total 10 d2 / TVD 2 K: ratio of captured gamma to total n tsec (0.77x10-10) TVD2: tenth value distance (6.2 m) Example (b) d1 d2 High density concrete FIG Typical floor plan for an isocentric high energy linac bunker. (a) The machine gantry rotation axis is parallel to the maze entry corridor; the primary barriers are parts of the floor and ceiling, as ell as parts of the east and est alls. (b) The machine gantry

A study on the cost of concrete shielding in a standard radiotherapy facility room

A study on the cost of concrete shielding in a standard radiotherapy facility room BJRS BRAZILIAN JOURNAL OF RADIATION SCIENCES 06-0 (018) 01-18 A study on the cost of concrete shielding in a standard radiotherapy facility room Eduardo de Paiva a a Instituto de Radioproteção e Dosimetria/Divisão

More information

Peter J. Biggs Ph.D. Massachusetts General Hospital Harvard Medical School Boston, MA 02114

Peter J. Biggs Ph.D. Massachusetts General Hospital Harvard Medical School Boston, MA 02114 Basic Design Principles and Latest Recommended Data, Neutrons and Structural Concerns Winter on Cape Cod Peter J. Biggs Ph.D. Massachusetts General Hospital Harvard Medical School Boston, MA 02114 Outline

More information

Chapter 4. QUANTIFYING THE HAZARD II: DATA & ANALYSIS. The dose equivalents for spheres in air with 10 cm radius centred at a point in the

Chapter 4. QUANTIFYING THE HAZARD II: DATA & ANALYSIS. The dose equivalents for spheres in air with 10 cm radius centred at a point in the Chapter 4. QUANTIFYING THE HAZARD II: DATA & ANALYSIS Neutron Dose The dose equivalents for spheres in air with 10 cm radius centred at a point in the treatment room and at 9 points along the passage of

More information

Radiation Shielding for Megavoltage Photon Therapy Machines

Radiation Shielding for Megavoltage Photon Therapy Machines Radiation Shielding for Megavoltage Photon Therapy Machines Peter J. Biggs Ph.D. Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School Boston, MA 02114 56 th Annual Meeting,

More information

Progress in Nuclear Science and Technology, Volume 6,

Progress in Nuclear Science and Technology, Volume 6, DOI: 1.15669/pnst.6 Progress in Nuclear Science and Technology Volume 6 (19) pp. 1-16 ARTICLE A study on calculation method of duct streaming from medical linac rooms Takuma Noto * Kazuaki Kosako and Takashi

More information

DESIGN OF A TREATMENT ROOM FOR AN 18-MV LINAC

DESIGN OF A TREATMENT ROOM FOR AN 18-MV LINAC DESIGN OF A TREATMENT ROOM FOR AN 18-MV LINAC LUIS HERNANDEZ-ADAME, a * HECTOR CONTRERAS-SANDOVAL, a HECTOR RENE VEGA-CARRILLO, a and LEONEL HUMBERTO PEREZ LANDEROS b ACCELERATORS KEYWORDS: Monte Carlo

More information

Peter J. Biggs Ph.D., Massachusetts General lhospital, Harvard Medical School, Boston, MA 02114

Peter J. Biggs Ph.D., Massachusetts General lhospital, Harvard Medical School, Boston, MA 02114 National Council on Radiation Protection Report #151 Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities Peter J. Biggs Ph.D., Massachusetts General lhospital,

More information

Radiation shielding for gamma stereotactic radiosurgery units

Radiation shielding for gamma stereotactic radiosurgery units JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 8, NUMBER 3, SUMMER 2007 Radiation shielding for gamma stereotactic radiosurgery units Patrick N. McDermott a Radiation Oncology Center, William Beaumont

More information

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials*

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* SLAC-PUB-70 Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* J. C. Liu, K. R. Kase, X. S. Mao, W. R. Nelson, J. H. Kleck, and S. Johnson ) Stanford Linear

More information

X- AND GAMMA RAY EXPOSURE CALCULATION OF SHIELDING

X- AND GAMMA RAY EXPOSURE CALCULATION OF SHIELDING MINT/1/1996,164 MY9700895 *»'' X- AND GAMMA RAY EXPOSURE CALCULATION OF SHIELDING T f - «MALAYSIAN INSTITUTE FOR NUCLEAR TECHNOLOGY RESEARCH 7 8HE 1 INSTITUT PENYEUDIKAN TEKNOLOG! NUKI.EAR MALAYSIA BANGI,

More information

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators

Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 4, NUMBER 3, SUMMER 2003 Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators David S. Followill,*

More information

Radiation Shielding of a 230 MeV Proton Cyclotron For Cancer Therapy

Radiation Shielding of a 230 MeV Proton Cyclotron For Cancer Therapy Radiation Shielding of a 230 MeV Proton Cyclotron For Cancer Therapy BHASKAR MUKHERJEE Joint DESY and University of Hamburg Accelerator Physics Seminar 27 August 2009 WPE is located within the Campus of

More information

Proposed Room Requirements for CT System

Proposed Room Requirements for CT System Siemens Proposed Room Requirements for CT System Semarang, 4-5 May 2017 Restricted Siemens Healthcare GmbH, 2016 Page 1 Roles of Medical Physicist CT Image Quality Radiation Protection Optimization Medical

More information

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Rationale of proton therapy Dose deposition versus depth in

More information

QUESTION 8 GIVEN. Electron beam kinetic energy = 20 MeV Peak current = 1 A Beam pulse length = 1 microsecond Beam pulse frequency = 10 Hz

QUESTION 8 GIVEN. Electron beam kinetic energy = 20 MeV Peak current = 1 A Beam pulse length = 1 microsecond Beam pulse frequency = 10 Hz Page 1 of 2 QUESTION 8 You are asked to design the shielding for an electron accelerator facility with the facility information given below. Use the figures copied from the NCRP Report No. 51 (1977), Radiation

More information

Proposed Room Requirements for CT System

Proposed Room Requirements for CT System Siemens Proposed Room Requirements for CT System Semarang, 4-5 May 2017 Restricted Siemens Healthcare GmbH, 2016 Page 1 Roles of Medical Physicist CT Image Quality Radiation Protection Optimization Medical

More information

The neutron dose equivalent evaluation and shielding at the maze entrance of a Varian Clinac 23EX treatment room

The neutron dose equivalent evaluation and shielding at the maze entrance of a Varian Clinac 23EX treatment room This partial RIAS has been downloaded on 15 Apr 2019 The neutron dose equivalent evaluation and shielding at the maze entrance of a Varian Clinac 23EX treatment room Xudong Wang, Carlos Esquivel, Elena

More information

Accelerator Facility Shielding Design

Accelerator Facility Shielding Design University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2015 Accelerator Facility Shielding

More information

I. INTRODUCTION EXPERIMENTAL

I. INTRODUCTION EXPERIMENTAL International Journal of Computational Engineering Research Vol, 04 Issue, 4 Simulation of Photon and Electron dose distributions by 5 code for the treatment area using the linear electron accelerator

More information

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved Assessment Of The Effectiveness Of Collimation Of Cs 137 Panoramic Beam On Tld Calibration Using A Constructed Lead Block Collimator And An ICRU Slab Phantom At SSDL In Ghana. C.C. Arwui 1, P. Deatanyah

More information

Shielding Design Considerations for Proton Therapy Facilities

Shielding Design Considerations for Proton Therapy Facilities Shielding Design Considerations for Proton Therapy Facilities p p n π ± INC π 0 Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos, CA, U.S.A. Email:

More information

Shielding Calculation Techniques

Shielding Calculation Techniques Objective Shieling Calculation Techniques Design of shiel with aequate attenuation to achieve the require (or acceptable) ose equivalent (rate) limitation (or ALARA) Calculation Methos Linac Rooms Shieling

More information

Derivation of factors for estimating the scatter of diagnostic x-rays from walls and ceiling slabs

Derivation of factors for estimating the scatter of diagnostic x-rays from walls and ceiling slabs Journal of Radiological Protection PAPER Derivation of factors for estimating the scatter of diagnostic x-rays from walls and ceiling slabs To cite this article: C J Martin et al 2012 J. Radiol. Prot.

More information

Secondary Radiation and Shielding Design for Particle Therapy Facilities

Secondary Radiation and Shielding Design for Particle Therapy Facilities Secondary Radiation and Shielding Design for Particle Therapy Facilities π± A p, n, π± A p, n A Nisy Elizabeth Ipe, Ph.D., C.H.P. Consultant, Shielding Design, Dosimetry & Radiation Protection San Carlos,

More information

ASSESSING LEAKAGE WORKLOADS OF MEDICAL LINEAR ACCELERATORS FOR IMRT AND TBI TECHNIQUES

ASSESSING LEAKAGE WORKLOADS OF MEDICAL LINEAR ACCELERATORS FOR IMRT AND TBI TECHNIQUES ASSESSING LEAKAGE WORKLOADS OF MEDICAL LINEAR ACCELERATORS FOR AND TBI TECHNIQUES A Thesis submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment

More information

Radiation Shielding. PTCOG 57 Cincinnati, USA (2018)

Radiation Shielding. PTCOG 57 Cincinnati, USA (2018) Radiation Shielding PTCOG 57 Cincinnati, USA (2018) Meissner Consulting GmbH Prof.-Messerschmitt-Str. 3 D-85579 Neubiberg (München) phone +49 89 30765220 email meissner@meissner-consulting.com PTCOG 57-2018

More information

M [scale units/s] of the system

M [scale units/s] of the system APPENDIX TO IAEA CALIBRATION CERTIFICATE RADIATION PROTECTION IONIZATION CHAMBER CALIBRATION PROCEDURES AT THE IAEA DOSIMETRY LABORATORY 1. INTRODUCTION 1.1 General Ionization chambers and electrometers

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Safety Reports Series No.47. Radiation Protection in the Design of Radiotherapy Facilities

Safety Reports Series No.47. Radiation Protection in the Design of Radiotherapy Facilities Safety Reports Series No.47 Radiation Protection in the Design of Radiotherapy Facilities RADIATION PROTECTION IN THE DESIGN OF RADIOTHERAPY FACILITIES The following States are Members of the International

More information

Neutron Fluence and Energy Spectra Around the Varian Clinac 2lOOC/23OOC Medical Accelerator

Neutron Fluence and Energy Spectra Around the Varian Clinac 2lOOC/23OOC Medical Accelerator SLAC-PUB-7 190 June 1996 Neutron Fluence and Energy Spectra Around the Varian Clinac 2lOOC/23OOC Medical Accelerator K. R. Kase, X. S. Mao, W. R. Nelson, J. C. Liu Stanford Linear Accelerator Center, Stanford

More information

Shielding Design for the Imaging and Medical Beamline at the Australian Synchrotron

Shielding Design for the Imaging and Medical Beamline at the Australian Synchrotron Shielding Design for the Imaging and Medical Beamline at the Australian Synchrotron P. Berkvens and D. Häusermann European Synchrotron Radiation Facility BP 0, Grenoble Cedex 0, France Australian Synchrotron

More information

Accelerator Facility Accident Report

Accelerator Facility Accident Report Accelerator Facility Accident Report 31 May 2013 Incorporated Administrative Agency - Japan Atomic Energy Agency Inter-University Research Institute - High Energy Accelerator Research Organization Subject:

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

Estimation of neutron and gamma radiation doses inside the concrete shield wall for 10 and 15 MV medical linear accelerators

Estimation of neutron and gamma radiation doses inside the concrete shield wall for 10 and 15 MV medical linear accelerators DOI: 10.15669/pnst.4.280 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 280-284 ARTICLE Estimation of neutron and gamma radiation doses inside the concrete shield wall for 10 and medical

More information

Shielding. Principles. Effectiveness. Materials FM Appendix B

Shielding. Principles. Effectiveness. Materials FM Appendix B Appendix B Shielding Shielding reduces the effects of gamma radiation on personnel and equipment. Metal, concrete, soil, water, and wood are good shielding materials. The denser the material, the better

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ

WM 07 Conference, February 25 March 01, 2007, Tucson, AZ Design and Construction of a High Energy X-Ray R&D Facility, and the Development and Optimization of Real Time Radioisotopic Characterization of Remote Handled Waste at MeV Energies. S. Halliwell, V.J.Technologies

More information

Minor Change Procedure Date: 04/15/2016 Page 1 of 8 POSTING AND LABELING FOR RADIOACTIVE MATERIALS AND RADIATION MACHINES

Minor Change Procedure Date: 04/15/2016 Page 1 of 8 POSTING AND LABELING FOR RADIOACTIVE MATERIALS AND RADIATION MACHINES Date: 04/15/2016 Page 1 of 8 1.0 PURPOSE 2.0 SCOPE To describe posting and labeling requirements for areas and items containing radioactive material or a radiation machine. This procedure applies to any

More information

Radiation Safety Considerations for the TPS Accelerators

Radiation Safety Considerations for the TPS Accelerators Radiation Safety Considerations for the TPS Accelerators R.J. Sheu, J. Liu, and J.P. Wang National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, TAIWAN

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 1991-2001 -o-o-o- 3.6 Radiation 1992 Q35 A typical reaction produced in the core of a nuclear reactor can be described by the following equation: (a) State the name

More information

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators

A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators A Measuring System with Recombination Chamber for Photoneutron Dosimetry at Medical Linear Accelerators N. Golnik 1, P. Kamiński 1, M. Zielczyński 2 1 Institute of Precision and Biomedical Engineering,

More information

Hospital Cyclotrons: Radiation Safety Aspects. Matthew Griffiths

Hospital Cyclotrons: Radiation Safety Aspects. Matthew Griffiths Hospital Cyclotrons: Radiation Safety Aspects Matthew Griffiths Isotope Production. Positron decay is a way for an atom with too many protons to get to a more relaxed state. ν Fluorine 18 excess Proton

More information

Rad T 290 Worksheet 2

Rad T 290 Worksheet 2 Class: Date: Rad T 290 Worksheet 2 1. Projectile electrons travel from a. anode to cathode. c. target to patient. b. cathode to anode. d. inner shell to outer shell. 2. At the target, the projectile electrons

More information

Radiation Shielding of Extraction Absorbers for a Fermilab Photoinjector

Radiation Shielding of Extraction Absorbers for a Fermilab Photoinjector Fermilab FERMILAB-TM-2220 August 2003 Radiation Shielding of Extraction Absorbers for a Fermilab Photoinjector I.L. Rakhno Fermilab, P.O. Box 500, Batavia, IL 60510, USA August 12, 2003 Abstract Results

More information

Chapter 10 Acceptance Tests and Commissioning Measurements

Chapter 10 Acceptance Tests and Commissioning Measurements Chapter 10 Acceptance Tests and Commissioning Measurements This set of 189 slides is based on Chapter 10 authored by J. L. Horton of the IAEA publication (ISBN 92-0-107304-6): Radiation Oncology Physics:

More information

University Environmental Health & Safety

University Environmental Health & Safety University Environmental Health & Safety X-rays were discovered in 1895 when William Conrad Roentgen observed that a screen coated with a barium salt fluoresced when placed near a cathode ray tube. Roentgen

More information

Photon-beams monitor-unit calculations

Photon-beams monitor-unit calculations Photon-beams monitor-unit calculations Narayan Sahoo March 24, 2011 The materials included in this lecture notes are from previous lecture notes for this course by Karl Prado, Ph.D. Introduction Standard

More information

Shielding verification and neutron dose evaluation of the Mevion S250 proton therapy unit

Shielding verification and neutron dose evaluation of the Mevion S250 proton therapy unit Received: 12 September 2017 Revised: 14 November 2017 Accepted: 22 November 2017 DOI: 10.1002/acm2.12256 RADIATION PROTECTION & REGULATIONS Shielding verification and neutron dose evaluation of the Mevion

More information

Simulation Modeling in Dosimetry

Simulation Modeling in Dosimetry Simulation Modeling in Dosimetry Aleksei Zhdanov Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russian Federation jjj1994@yandex.ru Leonid Dorosinskiy

More information

Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 11 May 2007

Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp Advance Access publication 11 May 2007 Radiation Protection Dosimetry (2007), Vol. 126, No. 1 4, pp. 229 233 Advance Access publication 11 May 2007 doi:10.1093/rpd/ncm047 CHARACTERIZATION AND UTILIZATION OF A BONNER SPHERE SET BASED ON GOLD

More information

Radiation exposure of personnel during IORT: radiation protection aspects.

Radiation exposure of personnel during IORT: radiation protection aspects. Radiation exposure of personnel during IORT: radiation protection aspects. L. Strigari 1, V. Bruzzaniti 1, V. Landoni 1, A. Soriani 1, S.Teodoli 1, M. Benassi 1 1 Lab. Fisica Medica e Sistemi Esperti,

More information

COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES *

COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES * Romanian Reports in Physics, Vol. 66, No. 1, P. 142 147, 2014 COMPARISON OF COMPUTER CODES APPLICABILITY IN SHIELDING DESIGN FOR HADRON THERAPY FACILITIES * D. SARDARI, M. HAMEDINEJAD Islamic Azad University,

More information

NEUTRON EXPOSURE FROM ELECTROM LINEAR ACCELERATORS AND A PROTON ACCELERATOR: MEASUREMENTS AND SIMULATIONS

NEUTRON EXPOSURE FROM ELECTROM LINEAR ACCELERATORS AND A PROTON ACCELERATOR: MEASUREMENTS AND SIMULATIONS NEUTRON EXPOSURE FROM ELECTROM LINEAR ACCELERATORS AND A PROTON ACCELERATOR: MEASUREMENTS AND SIMULATIONS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In

More information

CALCULATION OF SHIELDING AND RADIATION DOSES FOR PET/CT NUCLEAR MEDICINE FACILITY

CALCULATION OF SHIELDING AND RADIATION DOSES FOR PET/CT NUCLEAR MEDICINE FACILITY International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS)

More information

Work supported by Department of Energy contract DE-AC03-76SF00515

Work supported by Department of Energy contract DE-AC03-76SF00515 SLAC-PUB-7742 February 1998 SHIELDING OF RADIATION FIELDS GENERATED BY 252 Cf IN A CONCRETE MAZE PART II SIMULATION A. Fassò et al. Stanford Linear Accelerator Center Stanford University Stanford. CA 94309

More information

Radiation Therapy Study Guide

Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review 123 Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review Amy Heath, MS, RT(T) University

More information

PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION

PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION A.N. Dovbnya, A.V. Mazilov, M.V. Sosipatrov National Science Center Kharkov Institute of Physics and Technology,

More information

USE OF DLP FOR ESTABLISHING THE SHIELDING OF MULTI- DETECTOR COMPUTED TOMOGRAPHY ROOMS

USE OF DLP FOR ESTABLISHING THE SHIELDING OF MULTI- DETECTOR COMPUTED TOMOGRAPHY ROOMS USE OF DLP FOR ESTABLISHING THE SHIELDING OF MULTI- DETECTOR COMPUTED TOMOGRAPHY ROOMS F.R. Verdun 1, A. Aroua 1, P.R. Trueb 2, F.O. Bochud 1* 1 University Institute for Radiation Physics, Switzerland

More information

Available online at ScienceDirect. Physics Procedia 69 (2015 )

Available online at  ScienceDirect. Physics Procedia 69 (2015 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 69 (2015 ) 392 398 10 World Conference on Neutron Radiography 5-10 October 2014 Au Foil Activation Measurement and Simulation of

More information

Radiological Issues at JLab

Radiological Issues at JLab Radiological Issues at JLab Lessons Learned from the PREX-I and Preparation for PREX-II/CREX (and MOLLER) Rakitha S. Beminiwattha Louisiana Tech University College of Science and Engineering Outline Radiation

More information

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom

Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.83-87 (2) ARTICLE Estimate of Photonuclear Reaction in a Medical Linear Accelerator Using a Water-Equivalent Phantom Toshioh FUJIBUCHI,2,*, Satoshi

More information

Secondary Particles Produced by Hadron Therapy

Secondary Particles Produced by Hadron Therapy Iranian Journal of Medical Physics Vol. 12, No. 2, Spring 2015, 1-8 Received: March 10, 2015; Accepted: July 07, 2015 Original Article Secondary Particles Produced by Hadron Therapy Abdolkazem Ansarinejad

More information

Accelerator Upgrade Problem

Accelerator Upgrade Problem Accelerator Upgrade Problem You are a health physicist at a university. Physics faculty approached you with a proposal to upgrade the exis=ng 6 MeV electron accelerator to 30 MeV energy. The upgraded facility

More information

Monte Carlo Calculations Using MCNP4B for an Optimal Shielding Design. of a 14-MeV Neutron Source * James C. Liu and Tony T. Ng

Monte Carlo Calculations Using MCNP4B for an Optimal Shielding Design. of a 14-MeV Neutron Source * James C. Liu and Tony T. Ng SLAC-PUB-7785 November, 1998 Monte Carlo Calculations Using MCNP4B for an Optimal Shielding Design of a 14-MeV Neutron Source * James C. Liu and Tony T. Ng Stanford Linear Accelerator Center MS 48, P.O.

More information

Interactions with Matter Photons, Electrons and Neutrons

Interactions with Matter Photons, Electrons and Neutrons Interactions with Matter Photons, Electrons and Neutrons Ionizing Interactions Jason Matney, MS, PhD Interactions of Ionizing Radiation 1. Photon Interactions Indirectly Ionizing 2. Charge Particle Interactions

More information

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator Determination of Ambient Dose quivalent at INFLPR 7 MeV Linear Accelerator F. Scarlat, A. Scarisoreanu, M. Oane,. Badita,. Mitru National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest-Magurele,

More information

Advanced Storage Photon Ring Source Upgrade Project:

Advanced Storage Photon Ring Source Upgrade Project: Advanced Storage Photon Ring Source Upgrade Project: The Shielding World s for Leading the Hard X-ray Light Source Advanced Photon Source - Upgrade Bradley J. Micklich Radiation Physicist Argonne National

More information

Bulk shielding design for the MAX IV facility

Bulk shielding design for the MAX IV facility Bulk shielding design for the MAX IV facility Magnus Lundin 1, Lennart Isaksson 1, Bent Schröder 1 1 Lund University, MAX-lab, P.O. Box 118, SE-221 Lund, Sweden Abstract This paper reports on the design

More information

Evaluate Shielding Design of the Brachytherapy Unit by Using Monte Carlo Simulation Code

Evaluate Shielding Design of the Brachytherapy Unit by Using Monte Carlo Simulation Code Journal of Modern Physics, 15, 6, 9-911 Published Online June 15 in SciRes. http://www.scirp.org/journal/jmp http://dx.doi.org/1.436/jmp.15.6794 Evaluate Shielding Design of the Brachytherapy Unit by Using

More information

NEUTRON RADIATION FROM MEDICAL ELECTRON ACCELERATORS*

NEUTRON RADIATION FROM MEDICAL ELECTRON ACCELERATORS* SLAC-PUB-2739 May 1981 (A) NUTRON RADATON FROM MDCAL LCTRON ACCLRATORS* Richard C. McCall Stanford Linear Accelerator Center Stanford University, Stanford, California 9435 ntroduction lectron accelerators

More information

SLAC-PUB Submitted to Radiation Protection and Dosimetry. Work supported by Department of Energy contract DE-AC02-76SF00515

SLAC-PUB Submitted to Radiation Protection and Dosimetry. Work supported by Department of Energy contract DE-AC02-76SF00515 SLAC-PUB-11088 CALCULATIONS OF NEUTRON AND PHOTON SOURCE TERMS AND ATTENUATION PROFILES FOR THE GENERIC DESIGN OF THE SPEAR3 STORAGE RING SHIELD S. H. Rokni, H. Khater, J. C. Liu, S. Mao and H. Vincke

More information

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Georgia Institute of Technology. Radiation Detection & Protection (Day 3) Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program Ph.D. Qualifier Exam Spring Semester 2009 Your ID Code

More information

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations.

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations. Absorbed Dose Dose is a measure of the amount of energy from an ionizing radiation deposited in a mass of some material. SI unit used to measure absorbed dose is the gray (Gy). 1J 1 Gy kg Gy can be used

More information

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz Overview and Status of the Austrian Particle Therapy Facility MedAustron Peter Urschütz MedAustron Centre for ion beam therapy and non-clinical research Treatment of 1200 patients/year in full operation

More information

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity CHAPTER 4 RADIATION UNITS RADIATION AND DOSE MEASUREMENTS 1 Units of Radioactivity 2 1 Radiation Units There are specific units for the amount of radiation you receive in a given time and for the total

More information

Storing, using and disposing of unsealed radioactive substances in a Type C Laboratory: Extract of regulatory requirements

Storing, using and disposing of unsealed radioactive substances in a Type C Laboratory: Extract of regulatory requirements Storing, using disposing of unsealed radioactive substances in a Type C Laboratory: Extract of regulatory requirements Radiation Protection Control (Ionising Radiation) Regulations 2000 Requirements for

More information

Specific Accreditation Criteria Calibration ISO/IEC Annex. Ionising radiation measurements

Specific Accreditation Criteria Calibration ISO/IEC Annex. Ionising radiation measurements Specific Accreditation Criteria Calibration ISO/IEC 17025 Annex Ionising radiation measurements January 2018 Copyright National Association of Testing Authorities, Australia 2014 This publication is protected

More information

neutron building Project Title: Moderator design of RANS2 and investigating of radiation equivalent dose for Name: Sheng Wang

neutron building Project Title: Moderator design of RANS2 and investigating of radiation equivalent dose for Name: Sheng Wang Project Title: Moderator design of RANS2 and investigating of radiation equivalent dose for Name: Sheng Wang neutron building Laboratory at RIKEN: Neutron Beam Technology Team Description of the project

More information

Shielding of Ionising Radiation with the Dosimetry & Shielding Module

Shielding of Ionising Radiation with the Dosimetry & Shielding Module Shielding of Ionising Radiation with the Dosimetry & Shielding Module J. Magill Overview Biological Effects of Ionising Radiation - Absorber dose, Quality or Weighting Factor, Equivalent Dose Attenuation

More information

Radiation Protection & Radiation Therapy

Radiation Protection & Radiation Therapy Radiation Protection & Radiation Therapy For Medical Students Professor of Medical Physics Radiation Units Activity Number disintegrations per second (Curie, Becquerel) Exposure (Roentgen, C/kg) Absorbed

More information

Shielding calculations for the design of new Beamlines at ALBA Synchrotron

Shielding calculations for the design of new Beamlines at ALBA Synchrotron Shielding calculations for the design of new Beamlines at ALBA Synchrotron A. Devienne 1, M.J. García-Fusté 1 1 Health & Safety Department, ALBA Synchrotron, Carrer de la Llum -6, 0890 Cerdanyola del Vallès,

More information

THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS

THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS Ina Pschorn Gesellschaft für Schwerionenforschung mbh, D-64291 Darmstadt, Germany 1. INTRODUCTION The GSI

More information

NEUTRON SPECTROMETRY WITH BUBBLE DETECTORS

NEUTRON SPECTROMETRY WITH BUBBLE DETECTORS 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 NEUTRON SPECTROMETRY

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

NEUTRON H*(10) INSIDE A PROTON THERAPY FACILITY: COMPARISON BETWEEN MONTE CARLO SIMULATIONS AND WENDI-2 MEASUREMENTS

NEUTRON H*(10) INSIDE A PROTON THERAPY FACILITY: COMPARISON BETWEEN MONTE CARLO SIMULATIONS AND WENDI-2 MEASUREMENTS Radiation Protection Dosimetry (year), Vol. 0, No. 0, pp. 0 0 DOI: 10.1093/rpd/nc0000 NEUTRONS AND IONS IN MEDICINE NEUTRON H*(10) INSIDE A PROTON THERAPY FACILITY: COMPARISON BETWEEN MONTE CARLO SIMULATIONS

More information

Question. 1. Which natural source of background radiation do you consider as dominant?

Question. 1. Which natural source of background radiation do you consider as dominant? Question 1. Which natural source of background radiation do you consider as dominant? 2. Is the radiation background constant or does it change with time and location? 3. What is the level of anthropogenic

More information

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy Original Article PROGRESS in MEDICAL PHYSICS 27(3), Sept. 2016 http://dx.doi.org/10.14316/pmp.2016.27.3.162 pissn 2508-4445, eissn 2508-4453 Secondary Neutron Dose Measurement for Proton Line Scanning

More information

X-ray Interaction with Matter

X-ray Interaction with Matter X-ray Interaction with Matter 10-526-197 Rhodes Module 2 Interaction with Matter kv & mas Peak kilovoltage (kvp) controls Quality, or penetrating power, Limited effects on quantity or number of photons

More information

Neutron Shielding Properties Of Concrete With Boron And Boron Containing Mineral

Neutron Shielding Properties Of Concrete With Boron And Boron Containing Mineral 15 APJES I-I (2013) 15-19 Neutron Shielding Properties Of Concrete With Boron And Boron Containing Mineral *1 Salim Orak, 2 Derya Yilmaz Baysoy 1 Istanbul Commerce University, Faculty of Arts and Science,

More information

PERSPECTIVES OF PERSONNEL EXTERNAL DOSIMETRY AT STANFORD LINEAR ACCELERATOR CENTER

PERSPECTIVES OF PERSONNEL EXTERNAL DOSIMETRY AT STANFORD LINEAR ACCELERATOR CENTER SLAC-PUB-95-6749 (March 1995) PERSPECTIVES OF PERSONNEL EXTERNAL DOSIMETRY AT STANFORD LINEAR ACCELERATOR CENTER J. C. Liu, D. Busick 1, K. R. Kase, R. C. McCall 2, R. Sit and H. Tran 3 Stanford Linear

More information

Investigation Of The Effects Of Variation Of Neutron Source-Detector Distance On The Emitted Neutron Dose Equivalent

Investigation Of The Effects Of Variation Of Neutron Source-Detector Distance On The Emitted Neutron Dose Equivalent ISSN: 9- Vol. Issue, June - Investigation Of The Effects Of Variation Of Neutron Source-Detector Distance On The Emitted Equivalent Igwesi, D. I. Physics and Industrial Physics Department, Faculty of Physical

More information

Metrological traceability and specific needs in: - IR measurement for radiation protection (RP) - IR measurement for radiotherapy (RT)

Metrological traceability and specific needs in: - IR measurement for radiation protection (RP) - IR measurement for radiotherapy (RT) 1- Ionizing radiation metrology for radiation protection 2- Metrological requirements for ionizing radiation measurement in radiotherapy and radiodiagnostics R. F. Laitano Part 2 Metrological traceability

More information

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR ANALELE STIINTIFICE ALE UNIVERSITATII AL. I. CUZA IASI Tomul II, s. Biofizică, Fizică medicală şi Fizica mediului 2006 CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR Dan

More information

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV Nuclear Fuel Cycle 2013 Lecture 4: Interaction of Ionizing Radiation with Matter Ionizing radiation Radiation with energy > 100 ev Ionize an atom < 15eV Break a bond 1-5 ev Typical decay energies α: 4-9

More information

THE mono-energetic hadron beam such as heavy-ions or

THE mono-energetic hadron beam such as heavy-ions or Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, T.Akagi Abstract The GEANT4 based simulation of an irradiation

More information

1.1.4 What are the differences between the Varian 600C and the Siemens KD2?

1.1.4 What are the differences between the Varian 600C and the Siemens KD2? 1 Radiotherapy 1.1 Linear Accelerators 1.1.1 Sketch the main components of a linear accelerator. 1.1.2 Describe the theory of beam production and the part each component plays in the production of a clincally

More information

Current issues of radiation safety regulation for accelerator facilities in Japan

Current issues of radiation safety regulation for accelerator facilities in Japan Current issues of radiation safety regulation for accelerator facilities in Japan K. MASUMOTO Radiation Science Center, High Energy Accelerator Research Organization, Japan Introduction In Japan, the clearance

More information

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

More information

Radiological Implications of Top-up Operation at Canadian Light Source: Dose Computations and Measurements at the Vulnerable Points

Radiological Implications of Top-up Operation at Canadian Light Source: Dose Computations and Measurements at the Vulnerable Points Radiological Implications of Top-up Operation at Canadian Light Source: Dose Computations and Measurements at the Vulnerable Points P. Chowdhury 1 and G. Cubbon 1 1 Canadian Light Source Inc., 44 Inovation

More information

4.1b - Cavity Theory Lecture 2 Peter R Al mond 2011 Overview of Lecture Exposure (W/e)air Exposure Exposure and and and Air Air Kerma

4.1b - Cavity Theory Lecture 2 Peter R Al mond 2011 Overview of Lecture Exposure (W/e)air Exposure Exposure and and and Air Air Kerma 4.1b - Cavity Theory Lecture 2 Peter R Almond 2011 Overview of Lecture Exposure (W/e) air Exposure and Air Kerma Exposure Exposure is symbolized as X and defined by the ICRU as the quotient of dq by dm,

More information