On the limiting law of the length of the longest common and increasing subsequences in random words

Size: px
Start display at page:

Download "On the limiting law of the length of the longest common and increasing subsequences in random words"

Transcription

1 O the ltg law of the legth of the logest coo ad ceasg subsequeces ado wods axv: v [ath.pr] 0 Sep 06 Jea-Chstophe Beto IRMAR, UMR 665, Uvesté de Rees, 63 Aveue du Gééal Leclec CS 7405, 3504, Rees, Face Chsta Houdé School of Matheatcs, Geoga Isttute of Techology, Atlata, GA 3033, USA À la Méoe de Mac Yo Abstact Let X = X ad Y = Y be two sequeces of depedet ad detcally dstbuted d ado vaables takg the values, ufoly, a coo totally odeed fte alphabet. Let LCI be the legth of the logest coo ad weakly ceasg subsequece of X X ad Y Y. As gows wthout boud, ad whe popely ceteed ad scaled, LCI s show to covege, dstbuto, towads a Bowa fuctoal that we detfy. Keywods: Logest Coo Subsequece, Logest Iceasg Subsequece, Rado Wods, Rado Matces, Doske s Theoe, Optal Alget, Last Passage Pecolato. Matheatcs Subect Classfcato 00: 05A05, 60C05, 60F05. Itoducto We aalyze below the asyptotc behavo of the legth of the logest coo subsequece ado wods wth a addtoal weakly ceasg equeet. Although t has bee studed fo a algothc pot of vew copute scece, bo-foatcs, o statstcal physcs see, fo stace, [CZFYZ], [DKFPWS] o [Sak], to ae but a few felds, atheatcal esults fo ths hybd poble ae vey spase. To peset ou Fal veso to appea Stochastc Pocesses ad The Applcatos E-al: ea-chstophe.beto@uv-ees.f E-al: houde@ath.gatech.edu

2 faewok, let X = X ad Y = Y be two fte sequeces whose coodates take the values A = {α < α < < α }, a fte totally odeed alphabet of cadalty. Next, LCI, the legth of the logest coo ad weakly ceasg subsequeces of the wods X X ad Y Y s the axal tege k {,..., }, such that thee exst < < k ad < < k, satsfyg the followg two codtos: X s = Y s, fo all s =,,..., k, X X X k ad Y Y Y k. Asyptotcally, the stctly ceasg case s of lttle teest, havg as a potwse ltg behavo. LCI s a easue of the slaty/dsslaty of the ado wods ofte used patte atchg, ad ts asyptotc behavo s the pupose of ou study. Ths ltg behavo dffes fo the oe of aothe bette-kow, easue of slaty/dsslaty, aely, LC, the legth of the logest coo subsequeces of two o oe ado wods. Ideed, afte eoalzato, the fst esult o LC, obtaed [HI], eveals, ude a sublea vaace lowe boud assupto, a oal ltg law. I cotast, fo LCI, we have: Theoe. Let X = X ad Y = Y be two sequeces of d ado vaables ufoly dstbuted o A = {α < α < < α }, a totally odeed fte alphabet of cadalty. Let LCI be the legth of the logest coo ad ceasg subsequeces of X X ad Y Y. The, as +, LCI / = ax / 0=t 0 t t t = B + B + B t B t, B t B t,. whee B ad B ae two -desoal stadad Bowa otos o [0, ]. The a otvato fo ou wok has ts ogs the detfcato, fst obtaed by Keov [Ke], of the ltg legth popely ceteed ad scaled of the logest ceasg subsequece of a ado wod, as the axal egevalue of a ceta Gaussa ado atx. Whe cobed wth esults of Bayshkov [Ba] o Gave, Tacy ad Wdo [GTW] see also [BGH], ths ltg law has a epesetato as a Bowa fuctoal. Moeove, the logest ceasg subsequece coespods to the fst ow of the RSK Youg dagas assocated wth the ado wod ad [Ke, Chap. 3, Sec. 3.4, Theoe ] showed that the whole oalzed ltg shape of these RSK Youg dagas s the spectu of the taceless Gaussa Utay Eseble GUE. Sce the legth of the top ow of the dagas s the legth of the logest ceasg subsequece of the ado wod, the axal egevalue esult s ecoveed. The asyptotc legth

3 esult was edscoveed by Tacy ad Wdo [TW] ad the asyptotc shape oe by Johasso [Joh]. Extesos to o-ufo lettes wee also obtaed by Its, Tacy ad Wdo [ITW, ITW]. Aothe otvato fo the peset study coes fo the tepetato of the LCI fuctoal tes of last passage te dected pecolato. Ths s detalled ou cocludg eaks. The asyptotc behavo of the legth of the logest coo ad ceasg subsequeces has actually aleady bee vestgated fo bay wods = [HLM]. Howeve, the ethods used thee do ot allow to cosde a alphabet of abtay fte sze. Whe = wth lettes α ad α, t s eough to cosde coo subsequeces ade of a ado ube of coo α s detestcally copleted by the coo α s, so that a way the coespodg study s educed to deal wth oly oe type of lette. I cotast, whe 3, the stuato s uch oe coplcated sce a sla stategy educed the poble to types of lette fo whch thee s stll, oughly speakg, too uch adoess to successfully hadle, ths way, the study of LCI. A ew ethodology based o a ew epesetato of LCI s thus equed to deal wth geeal fte alphabet of sze. Ths s acheved below whee a appopate epesetato of LCI, that allows to vestgate ts asyptotc behavo fo abtay, s obtaed. Ou esults thus exted ad ecopass the bay LCI esult of [HLM]. The depedece o depedece stuctue betwee the two sequeces of lettes X ad Y s caed ove at the lt to a sla stuctue betwee the two stadad Bowa otos B ad B. Hece, whe X = Y, ou esults ecove, wth the help of [BGH], the weak lts obtaed [Ke], [Joh], [TW], [ITW], [ITW], [HL], ad [HX], whle f X ad Y ae depedet so ae B ad B. As a by-poduct of ou appoach, we futhe fx soe loose pots peset [HLM]. As suggested to us, let us futhe put ou a theoe cotext. At fst, fo =, the ght had-sde of. becoes ax B B B t B t, B B B t B t. 0 t I case the two-desoal stadad Bowa otos ae depedet, ths last expesso has the sae law as ax B t 0 t B, B t B, whee, ow, B ad B ae two depedet oe-desoal stadad Bowa otos o [0, ]. Theefoe, ou ltg esult atches the bay oe peseted [HLM]. Next, ad stll fo futhe cotext, let us copae the asyptotc behavo of LCI to the oe of, say, L, the legth of the optal algets whch alg oly oe type of lettes. I case of a sgle wod, L could coespod to, e.g, the legth of the logest costat subsequeces. Clealy, LCI L ad ude a ufo assupto, LCI l + = l L + =,. 3

4 wth pobablty oe. Moeove, t s easy to see that, as +, L / = / B, B,.3 fo, say, two oe-desoal stadad Bowa otos B ad B. Now etug to., ote that fo =,, = B + B B t B t B + B t B t B t,.4 whee the ado vaable B B / has exactly the sae law as /B. Theefoe, the pesece of the exta tes volvg the t s o the ght had-sde of. allows to dstgush the eoalzed lt of LCI fo that of L ad esues that the latte lt s stll alost suely doated by the foe. Ths obsevato should be cotasted wth the o-ufo case whee a sgle lette s attaed wth axal pobablty p ax, ad whee L algs ths lette. Ideed, vew of 5., below, whe ceteed by p ax ad scaled by p ax, both LCI ad L covege to p ax B, p ax B. A atual questo asg fo ths study s the ado atx tepetato of ou ltg dtbuto.. Aothe atual questo s to tepet LCI tes of RSK Youg dagas ad to vestgate, oe geeally, the shape of a RSK coutepat of LCI. Both questos go actually fa beyod the scope of ths pape but wll be the subect of fothcog vestgatos. As fo the cotet of the pape, the ext secto Secto establshes a pathwse epesetato fo the legth of the logest coo ad ceasg subsequece of the two wods as a ax/ fuctoal. I Secto 3, the pobablstc faewok s tated, the epesetato becoes the axu ove a ado set of the u of ado sus of adoly stopped ado vaables. The vaous ado vaables volved ae studed ad the codtoal laws foud. I Secto 4, the ltg law s obtaed. Ths s doe pat by a deadozato pocedue of the ado sus ad of the ado costats leadg to the Bowa fuctoal. of Theoe.. I the last secto Secto 5, vaous extesos ad geealzatos ae dscussed as well as soe ope questos elated to ths poble. Fally, Appedx A. copletes the poof of soe techcal esults ad whle Appedx A. gves ssg steps the poof of the a theoe [HLM] as well as coectos to aguets peseted thee; povdg, the uch sple bay case, a athe self-cotaed poof. 4

5 Cobatocs The a of ths secto s to obta a pathwse epesetato fo the legth of the logest coo ad ceasg subsequeces of two fte wods. Thoughout the pape, X = X ad Y = Y ae two fte sequeces whose coodates take the values A = {α < α < < α }, a fte totally odeed alphabet of cadalty. Recall ext that LCI s the axal tege k {,..., }, such that thee exst < < k ad < < k, satsfyg the followg two codtos: X s = Y s, fo all s =,,..., k, X X X k ad Y Y Y k. Now that LCI has bee foally defed, let us set soe stadg otato. Let N X, =,...,, be the ube of α s X, X,..., X,.e., N X = # { =,..., : X = α } = {X =α },. ad slaly let N Y, =,...,, be the ube of α s Y, Y,..., Y. Clealy, N X = = N Y =. = Let us futhe set a coveto: Thoughout the pape whe thee s o abguty o whe a popety s vald fo both sequeces X = X ad Y = Y we ofte ot the sybol X o Y ad, e.g., wte N fo ethe N X o N Y o, below, H fo ethe H X o H Y. Cotug o ou otatoal path, fo each =,...,, let N s,t X be the ube of α s X s+, X s+,..., X t,.e., N s,t X = # { = s +,..., t : X = α } = t =s+ wth a sla defto fo N s,t Y. Aga, t s tvally vefed that = N s,t X = = N s,t Y = t s, {X =α },. ad, of couse, N 0, = N. Stll cotug wth ou otatos, let T X, =,...,, be the locato of the th α the fte sequece X, X,..., X,..., wth the coveto that T 0 X = 0. The, fo =,,..., T X ca be defed ecusvely va, T X = { } s N : s > T X, X s = α.3 5

6 whee as usual N = {0,,,...}. Aga eplacg X by Y gves the coespodg oto fo the sequece Y = Y. Next, let us beg ou fdg of a epesetato fo LCI va the ado vaables defed to date. Fst, let H X k, k,..., k be the axal ube of α s cotaed a ceasg subsequece, of X X X, cotag k α s, k α s,..., k α s pcked that ode. Replacg X = X by Y = Y, t s the clea that k + + k + H X k,..., k, k + + k + H Y k,..., k,.4 s, theefoe, the legth of the logest coo ad ceasg subsequece of X X X ad Y Y Y cotag exactly k α s, fo all =,,...,, the lettes beg pcked a ceasg ode. Hece, to fd LCI, the fucto H eeds to be detfed ad.4 eeds to be axzed ove all possble choces of k, k,..., k. Let us stat wth the axzg costats. Assue, fo a whle, that a sgle wod, say, X X, s cosdeed. Fst, ad clealy, 0 k N. Next, k s the ube of α s peset the sequece afte the k th α. Ay lette α s adssble but the oes occug befoe the k th α, attaed at the locato T k. Sce thee ae lettes, cosdeed so fa, thee ae thus N 0,T k adssble α s ad the equeet o k wtes k N N 0,T k. Slaly fo each = 3,...,, k s the ube of lettes α us the adssble α s whch occu dug the ecupeato, of the k α s, followed by the k α s, followed by the k 3 α 3 s, etc that ode. Thus the equeet o k s of the fo k N Ñ, whee Ñ s the ube of α s occug befoe the k α s,, pcked the ode ust descbed. Fo =,, ad as aleady show, Ñ = 0 ad Ñ = N 0,T k. Assue ext that, fo 3, Ñ s well defed, the Ñ s the ube of α s occug befoe, that ode, the k α s,..., the k α s. A lttle oet of eflecto akes t clea that the locato of the k th such α s T k +Ñ, fo whch t ecusvely follows that: Ñ = N k +Ñ 0,T. Reak. Note that Ñ as well as N defed below.8 actually deped o k,..., k, but ode to ot oveload ou otato we wll ot ths depedecy theeafte. Retug to two sequeces X,..., X ad Y,..., Y, the codto o k,, wtes as 0 k N X Ñ X N Y Ñ Y. Fo these choces of dces ad.4, LCI = ax C k + H X k,..., k, 6 k + H Y k,..., k,.5

7 whee the oute axu s take ove k,..., k { C = k,..., k : k C,, k C, k, k 3 C,3 k, k, k C }, k,..., k,.6 whee C {, = 0 k N X Ñ X N Y Ñ Y } ad fo =,...,, C, k,..., k = { 0 k N X Ñ X N Y Ñ Y }..7 Next, obseve that f T k +Ñ >, the N Ñ = 0. Also, sce the above axu does ot chage ude vacuous costats, oe ca eplace the defg costats, Ñ by N ecusvely gve va: N = 0 ad fo =,...,, k +N 0,T The cobatoal expesso.5 the becoes LCI = ax C N = N..8 k + H X k,..., k, k + H Y k,..., k whee the oute axu s take ove k,..., k C wth C ad C,, =,...,, espectvely defed as.6 ad.7 but wth Ñ eplaced by N, =,...,. ad, of couse, N X = N Y =. Afte ths detfcato, ecall that H s the axal ube of α afte, that ode, the k α s, k α s,..., k α s. Coutg the α s peset betwee the vaous locatos of the α, =,...,, ad afte aothe oet of eflecto, t s clea that H = N R, whee R = N +k N T,T =N +,.9 ad whee the N ae gve by.8. Recall also that accodg to Reak., R depeds actually o k,..., k but that fo the sake of eadablty ths depedecy s otted fo ou otatos. Suazg ou esults leads so fa to: Theoe. Let X = X ad Y = Y be two sequeces whose coodates take the values A = {α < α < < α }, a totally odeed fte alphabet of, 7

8 cadalty. Let LCI be the legth of the logest coo ad ceasg subsequeces of X X ad Y Y. The, LCI = ax k + N X RX, k + N Y RY,.0 C whee the oute axu s take ove k,..., k { } C = k,..., k : k C,, k C, k, k 3 C,3 k, k, k C, k,..., k, {. whee C, = 0 k N X N X N Y N Y } ad fo =,...,, ad whee C, k,..., k = { 0 k N X N X N Y N Y },. R = N +k N T,T, =N + wth the vaous N s ad T s gve above by.,.,.3 ad.8. The epesetato.0 has the geat advatage of essetally oly volvg the quattes N, N, =,,..., ad T, =,,...,, =,,..., ad N. 3 Pobablty Let us ow bg ou pobablstc faewok to the pctue by fst studyg the ado vaables N T,T, =,,..., ad =,,... ad the the ado vaables N, =,,...,, appeag R.9. Poposto 3. Let Z be a sequece of d ado vaables wth PZ = α = p, =,...,. Fo each =,,...,, let T 0 = 0, ad let T, =,,... be the locato of the th α the fte sequece Z. Let, {,..., }, wth. The, fo ay =,,..., the codtoal law of N T,T gve T, T, s boal wth paaetes T T ad p / p, whch we deote by B T T, p / p. Moeove, the codtoal law of N T,T gve T =,...,,, T, s ultoal wth paaetes T T ad p / p =,...,,, whch we deote by Mul T T T, p / p =,...,,. Fally, fo each, the ado vaables N,T, ae depedet wth ea p /p ad vaace p /p + p /p ; ad, oeove, they ae detcally dstbuted case the Z, ae ufoly dstbuted. 8

9 Poof. T, T Let us deote by L N T. Recall, see.3, that T,T T ad T the codtoal law of N T, T gve ae the espectve locatos of the th α ad the th α the fte sequece Z. Thus betwee T + ad T, thee ae T T fee spots ad each oe s equally lkely cota α,, wth pobablty p / l= l p l = p / p. Theefoe, L N T,T T, T = B T T, p p,t. 3.,T, Let us ow copute the pobablty geeatg fucto of the ado vaables N T. Fst, va 3. [ E x N T ] [ [,T = E E x N T,T ]], T = = = l= T p + p l x p p l p p p p p p + p p x p p + p p x, 3. sce T s a egatve boal Pascal ado vaable wth paaetes ad p whch we shall deote BN, p the sequel ad T T s a geoetc ado vaables wth paaete p, whch we shall deote Gp. Theefoe, ] E [N T,T = p Va N T,T p, = p p + p p. 3.3 I the ufo case,.e., p = /, =,...,, the N T,T, =,...,,, =,,... ae clealy see to be detcally dstbuted, va 3.. The ultoal pat of the stateet s poved a vey sla ae. The T T fee spots ae to cota the lettes α, {,..., },, wth espectve pobabltes p / p. Theefoe, N T L,T =,..., T, T = Mul T T p,. 3.4 p =,...,, Va 3.4, the pobablty geeatg fucto of the ado vecto N T,T s =,...,, the gve by: [ ] E x N T,T = E E x N T,T T, T =, 9 =

10 p = x p = l= = As a dect cosequece of 3.5 ad fo, s, Cov N T l p p l p =, p x. 3.5,T, N T s,t = p p s. p The poof of the poposto wll be coplete oce, fo each, the ado vaables N T,T,, ae show to be depedet. Fst, ote that gve T, T, T k, T k, the ado vaables N T,T = T l=t + {X l =α } ad N T k,t k = T k l=t k + {X l =α } +, T k ] ae dsot, ad sce the X l l ae also depedet. Moeove, ecall that codtoal dstbutos ae gve by 3., ad so, fo stace, ae depedet sce the tevals [T L N T,T +, T ] ad [T k T, T, T k, T k = L N T = B,T T T T,, T p p Theefoe, fo ay easuable fuctos f, g : R + R +, ad f E B,p deotes the expectato wth espect to a boal B, p dstbuto the E [f N T,T T g N k,t ] k [ = E E [f N T,T T g N k,t ]] k T, T, T k, T k [ = E E [f N T,T ] T, T, T k, T k E [g N T k,t k [ ] = E E B T T, p [f] E p B T k k T, p [g] p [ ] [ ] = E E B T T, p [f] E E p B T k k T, p [g] p = E [f N T,T ] E [g N T k,t ] k, T, T, T k. ]], T k whee the equalty 3.6 s due to the codtoal depedece popety, whle the oe 3.7 follows fo that E B T T, p [f] = F T T ad E p B T k k T, p [g] = G T k T k, p 0

11 fo soe fuctos F, G, ad fo the depedece of T T ad T k T k. The aguet ca the be easly adapted to ustfy the utual depedece of the ado vaables N T,T. Wth the help of the pevous poposto ad ode to pepae ou fst fluctuato esult, t s elevat to ewte the epesetato.0 as LCI = ax C { k + N X G, X, k + N Y G, Y }, 3.8 whee G, = N +k =N + N T,T p p p p + p p p + p + p, 3.9 p p p ad whee p X = PX = α ad p Y = PY = α,. Recall oce oe that G, actually depeds o k,..., k but that, fo the sake of eadablty, ths depedecy s otted fo ou otatos, see Reak.. Va 3.8 ad 3.9, LCI s ow epeseted as a ax/ ove ado costats of ado sus of adoly stopped depedet ado vaables, except fo the pesece of N X ad N Y. Ou ext esult also epesets, up to a sall eo te, both N X ad N Y va the sae ado vaables. Poposto 3. Fo each =,,...,, ad, N T N = p p N + N,T p p p p + p p p + p + S, p p, 3.0 whee l + S, / = 0, pobablty. I patcula, fo each =,,...,, N = p + p + p N p p p N T,T p p p p + p p + p S,. 3. Poof. Let us stat the poof of 3.0 by detfyg the ado vaable S, ad show that, whe scaled by, they covege pobablty to zeo. Clealy, fo =,...,,, 0 S, := N N N T,T.

12 I othe wods, S, s the ube of α the teval [T +, ], whee T s the locato of the last α [, ]. Theefoe, 0 S, T But, PT = k = p p k, k = 0,,..., ad PT fo all ɛ > 0, ad lage eough, P S, ɛ P T ɛ l=[ɛ ] = T N. 3. p p l p [ɛ ] = 0 = p. Hece, Let us cotue wth the poof of 3.. Sug ove =,...,,, both sdes of 3.0, we get p p N = N + + p p N N T,T p p p p p p + p S, p p. p + p p But, N =, ad so 3.4 becoes N = p + p + p p p N N T p,t p p p p + p p + p S,, 3.4 whch s pecsely 3.. Reak 3. Fo all, l + E [ S, / ] = 0. Ideed, E [ S, / ] = P S, x dx p x dx = + 0 p [ x] dx p l p. Retug to the epesetato 3.8, the pevous poposto allows us to ewte LCI as: k LCI = ax p X + k p X C, p X + H,X + p XS, X,

13 p Y + k p Y k p Y + H,Y + whee ottg the depedecy k,..., k see Reak., H, = p + p N p p p p + p p p N +k =N + N T p p,t p p + p p N T,T p p p p + p p p Y S, Y, We ow study soe of the popetes of the ado vaables N whch ae peset both the ado costats ad the ado sus. The ado vaables N ae defed ecusvely by.8 wth N = 0. We fx k = k,..., k whee k s the ube of lettes α peset the coo ceasg subsequeces. The ado vaables N,, deped o k, actually N = N k,..., k. We wte N = N, 3.7 whee N, = N,k s the ube of lettes α peset the step cosstg collectg the k lettes α,. I the sequel, ode ot to futhe bude the otatos, we shall skp the sybols k, =,...,, N ad N,. The followg daga ecapsulates the dawg of the lettes: T k T k +N T k 3 +N T k +N k α N, α k α N3, α 3 N3, α 3 k 3 α 3 k α T k +N... T k +N k α N, α N, α N,3 α... N, α... N, α T k +N I Step, thee ae T k +N T k +N lettes selected but k lettes ae α, N +, ae α +,..., N, ae α, fo =, thee ae also k lettes α but oe of the othes α +, etc. Moeove, thee ae T k +N T k +N k N +, N, possble spots T k +N T k +N k case = whch the pobablty of havg a α s p, := p / p p. Theefoe, codtoally o G, k = σ N +,,..., N,, T k +N, T k +N, 3

14 the σ-feld geeated by N+,,..., N,, T k +N, T k +N t follows that N, B T k +N T k +N k N +, N,, p,. 3.8 The two fothcog popostos espectvely chaacteze the laws of N, ad of N. Poposto 3.3 Fo each =,...,, the pobablty geeatg fucto of N,,, s gve by [ ] k E x N p, =. 3.9 p + p p x Theefoe, N, s dstbuted as k l= G l, whee G l l k ae depedet wth geoetc law G p /p + p ad so, E[N,] = p k ad VaN p, = + p p k. 3.0 p p Poof. Recall that, fo N B, p, E[x N ] = p + px whle, fo N Gp, E[x N ] = px/ px. Usg 3.8, we the have fo N = T k +N k N+, N,, [ ] E x N, settg y = p, + p, x, ad T k +N [ = E E [ x N, N ]] ] = E [ p, + p, x T k +N T k +N k N+, N, ] = E [y U V, 3. U := T k +N T k +N k BN k, p δ k 3. V := N, p B U,, 3.3 p =+ =+ whee fo =, we also set V = 0. The otato BN k, p above stads fo the egatve boal Pascal dstbuto wth paaetes k ad p. The paaetes of the boal ado vaables V 3.3 ste fo that V couts the ube of lettes α, +, betwee two lettes α, whle exactly k such lettes ae obtaed, so that each α has pobablty p / p to appea. Hece, ] E [y U V = E [E [ y U V U ]] = E [y U E [ y V U ]] 4

15 = E [y U =+ [ = E =+ p =+ + p p p y p y + p =+ U ] p p G ] k, sce, fo 3., U k l= G l, whee the G l, l k, ae d wth dstbuto Gp. Fally, ] E [y U V = = p p =+ k, p p + p p x p p y + =+ p p sce p, = p / = p. The expessos fo the expectato ad fo the vaace 3.0 follow fo staghtfowad coputatos. k Recall that by coveto, N = 0, ad fo, the followg poposto gves the law of N : Poposto 3.4 Fo each =,...,, the ado vaables N, ae depedet. Hece, the pobablty geeatg fucto of N s gve by [ ] E x N = k p, 3.4 p + p p x ad so, E[N ] = p p k ad VaN = + p p k. 3.5 p p Poof. I vew of Poposto 3.3 ad of 3.7, t s eough to pove the fst pat of the poposto,.e., to pove that the ado vaables N,,, ae depedet. I ode to splfy otatos, we oly show that N, ad N, ae depedet, but the aguet ca easly be exteded to pove the full depedece popety. Sce the T k s ae stoppg tes, by the stog Makov popety, obseve that σ X,..., X k T σ X k T k T +,..., X T k +N whee, aga σx,..., X deotes the σ- feld geeated by the ado vaables X,..., X, whle stads fo depedece codtoally o T k. Moeove, T k ad σ X T k +,..., X T k +N T k ae depedet, ad thus so 5

16 ae σ X,..., X k T ad σ XT k +,..., X T k +N. The depedece of N, ad N, becoes clea, sce N, s σ X,..., X k T -easuable whle N, s σ X k T +,..., X T k +N - easuable. The whole cocluso of the poposto the follows. 4 The Ufo Case I ths secto, we specalze ous esults to the case whee the lettes ae ufoly daw fo the alphabet,.e., p X = p Y = /, fo all. Hece, the fuctoal LCI 3.5 ewtes as LCI = ax C ad theefoe + H,X + LCI / = ax C S, X, + H,Y + H, X + S, X, S, Y, 4. H, Y + S, Y. 4. The followg sple equalty, a veso of whch s aleady peset [HLM], wll be of ultple use see Appedx A. fo a poof: Lea 4. Let a k, b k, c k, d k, k K, be eals. The, ax ak b k ax ak + c k b k + d k ax c k d k. 4.3 k=,...,k k=,...,k k=,...,k The pevous lea etals ax C H, X + S, X, H,Y + S, Y H, X ax, H,Y C S, X S, Y. But, fo Poposto 3., as +, both S, X/ P 0 ad S, Y / P 0, fo all see 3.3. Theefoe, the fluctuatos of LCI expessed 4. ae the sae as that of H, X ax, H,Y. C 6

17 Fo ufo daws, the fuctoal H, 3.6 ewtes as H, = = N N T,T B N B N +k T N,T =N + N + k N B, whee B s the Bowa appoxato defed fo the ado vaables N T,T,, whch ae d, by Poposto 3., ceteed ad scaled to have vaace oe,.e., B s the polygoal pocess o [0, ] defed by lea tepolato betwee the values k k Z B =, 4.4 whee Z = N T,T. 4.5 Next, we peset soe heustc aguets whch povde the ltg behavo of ax B,X N X N B,X X + k N B,X X C B,Y N Y N B,Y Y + k N B,Y Y, 4.6, kowg that, by Doske theoe, B,..., B C 0[0,] = B,..., B, +, whee B,..., B s a dft-less, -desoal, coelated Bowa oto o [0, ], whch s also zeo at the og. The coelato stuctue of ths ultvaate Bowa oto s gve by that of the Z,, whch tu s gve by Poposto 3.. Above, C 0[0,] = stads fo the covegece law the poduct space of cotuous fucto o [0, ] vashg at the og. Sce the ultvaate Doske theoe s cucal s ou aguet, we gve a pecse stateet: Theoe 4. Doske Let Z be d squae tegable ceteed ado vectos R,, wth covaace atx Σ. Let B t [0,] be the polygoal pocess defed, fo each, by B t = [t] Z k + k= t [t] Z [t]+, t [0, ]. C 0 [0,] The B = B whee B s a Bowa oto o [0, ] wth covaace atx tσ ad whee C 0[0,] = stads fo the covegece law the poduct space of cotuous fucto o [0, ] vashg at the og. 7

18 Poof. The ultvaate Doske theoe easly deves fo the classcal uvaate oe fo whch we efe, fo stace to [Bl, Th. 8.] ad fo the ultvaate CLT as C 0 [0,] follows. Recall that the covegece B = B s equvalet to the covegece of fte-desoal dstbutos of B to that of B ad to the tghtess of B C 0 [0, ]. Fst, the ultvaate CLT gves the covegece of the fte-desoal dstbutos of B t,..., B t 0 t wth a covaace stuctue gve by that of the Z,. Secod, the tghtess of B t,..., B t s obtaed 0 t fo that of ts coodates: sce B s tght fo each by the uvaate Doske theoe, fo all ε > 0, thee s a copact K of C 0 [0, ], the usual space of cotuous fuctos o [0, ] vashg at the og, such that sup P B K < ε ad we have sup P B,..., B K K sup P B K < ε, wth K K copact of C 0 [0, ] so that B,X,..., B,X s tght C 0 [0, ]. Heustcs Roughly speakg, thee ae thee lts to hadle 4.6:. The lt of the costats the axu ove C ;. The lt of the lea tes: B,X ; 3. The lt of the ceets: B,X N X N X+k B,X N X ad, slaly, fo X eplaced by Y. Below, the sybol dcates a heustc eplaceet o a heustc lt, as +. Fst Lt to be teated last, Secto 4.3: Sce C, k,..., k = {k = k,..., k : 0 k N X N X, N Y N Y }, ad, aga, wth vacuous costats case ethe N X > o N Y > ad fo the cocetato popety of the N, we expect wth aga k 0 = 0, ad t 0 = 0, below: { } C, k,..., k k = k,..., k : 0 k E[N X] k E[N Y ] k = { k = k,..., k : k ; } k E[N ], =,...,. 8

19 Hece, fo C defed.: C V,...,, whee Vp,..., p = { t = t,..., t : t 0, =,...,, t p, t + t p,..., t + + t p }. Secod Lt see Secto 4.: Fo each =,...,, the ado vaables N ae cocetated aoud the espectve ea E[N ] = /, ad so N E[N ] whee the lt B ad B N C 0 [0,] === B s take sultaeously. B E[N ] = B Thd Lt see Secto 4.: Fo each =,...,, the ado vaables N ae also cocetated aoud the ea E[N ] = k, ad so N k. Theefoe, B,X N X + k B,X N X B,X B,X k t B,X, B,X k t, ad slaly fo X eplaced by Y. Hece, LCI / ax B,X B,X t B,X t, V/,...,/ B,Y B,Y t B,Y t L = ax B,X B,X u B,X u, 0=u 0 u u B,Y B,Y u B,Y u, by Bowa scalg ad the epaaetzato t = u /, =,..., u 0 = t 0 = 0. I othe wods, LCI / / ax 0=u 0 u u 9 B,X B,X u B,X u,

20 B,Y B,Y u B,Y u. Fally, a lea tasfoato ad Bowa popetes allow to tasfo the paaete space to the Weyl chabe W := { t = t 0, t,..., t, t : 0 = t 0 t t t = }, ad to eplace the -desoal coelated Bowa oto B X esp. B Y, by a -desoal stadad oe B esp. B. Cobg these facts, the expesso o the ght-had sde above, becoes equal, law, to: ax t W B + B t B u, B + B t B u, whch s the fal fo of ou esult, Theoe.. I the sequel, we ake pecse the pevous heustc aguets. All alog, we use dffeet sets costats. Fo easy efeeces, we gathe hee the efeeces to these otatos: C s defed.6, C, k,..., k.7, C., C, k,..., k., C, 4., C 4.3, C, above 4.9, C #, 4.9, C± The Lea Tes Set RX = B,X N + k B,X N, whee aga the depedecy of RX k,..., k s otted see Reak., so that wth the help of 4.6, 4. ewtes as: LCI / = ax C N X RX, B,Y N Y RY + o P, 4.7 B,X whee, thoughout, o P dcates a te, whch ght be dffeet fo a expesso to aothe, covegg to zeo, pobablty, as coveges to fty. 0

21 Next, by Lea 4., ax C ax C ax C ax C ax B,X B,X N X RX, B,X B,Y N Y RY E[N X] RX, B,Y E[N Y ] RY N X RX, B,Y N Y RY B,X B,X E[N X] RX, N X B,X B,Y B,Y E[N X], N Y B,Y E[N Y ] RY E[N Y ]. 4.8 We ow wsh to show that the ght-had sde of 4.8 coveges to zeo, pobablty. Fst ote that fo each, C, k..., k { k = k,..., k : 0 k N X, N Y } { k = k,..., k : 0 k }, ad the sae holds tue fo C,, see.. But, B N / B E[N ]/, whee we have dopped X ad Y, does ot deped o k. Theefoe, the axu ca be skpped ad the poble educes to showg that, fo all : N B B E[N ] P 0, 4.9 as +. Ths follows fo the fothcog lea appled, fo each =,...,, to the ado vaables Z = N T,T /, peset both 4.4 ad 4.5 ad whch, by Poposto 3., ae d wth ea zeo ad vaace oe. Note that the lea below see Appedx A. fo a poof ca deed be bought to play sce Hoeffdg s equalty, appled to the ado vaables N, esues that fo x = l, l P N E[N ] x l + + e x / = Lea 4. Let Z be d ceteed ado vaables wth ut vaace, ad fo each N, let N be a N-valued ado vaable such that l + P N E[N ] x = 0, whee x 0 s such that l + x / = 0. The, [N,E[N ]] Z P 0, whee [N, E[N ]] s shot fo [N, E[N ], axn, E[N ]].

22 At ths stage, 4.9 s poved ad theefoe, LCI / = ax C B,Y B,X E[N X] RX, E[N Y ] RY + o P, 4. fshg the fst pat of the poof of Theoe.. Ideed, N,..., N s ultoal wth paaetes ad p,..., p. So, fo ufo daws, E[N X] = E[N Y ] = p = /. The, by the ultvaate Doske theoe, see Th. 4., ad scalg, B,X E[N X] = B,X, +, 4. whee B,X t,..., B,X t s a -desoal Bowa oto ad 0 t slaly fo Y. As show ext, the covaace atx of ths Bowa oto at te t s tσ = tσ k,l k,l, whee /... / / /. Σ =.... /. 4.3 /... / Ideed, Σ 4.3 s obtaed as follows: Fst, sce B,X,..., B,X C0 [0,] = B,X,..., B,X, whle ufo tegablty see Lea 4.3, below etals l Cov B k,x, B l,x = Cov B k,x, B l,x = σ k,l. + Next, the ufo case, Poposto 3. wtes, fo =,...,, as N = N + B,X N + o P, so that usg also Reak 3. Cov B k,x Nk, B l,x Nl = Cov N N k, N N l + o. 4.4 But N,..., N Mult,,...,, N / /, VaN = / ad whe,, CovN, N = /. Theefoe, Cov N N k, N N l = + =. 4.5

23 Sce by Lea 4.3, l + E [ B k Nk / B k ] / = 0, t follows l Cov + B k,x Nk, B l,x Nl = l Cov B k,x, B + l,x = Cov B k,x, B l,x = B Cov k,x, B l,x. 4.6 Fally, 4.4, 4.5, 4.6 esue the expesso 4.3 fo the covaace. To fsh, let us state a lea, ust used above ad, whose poof s peseted Appedx A.. Lea 4.3 The sequeces B k ufoly tegable ad 4. The Iceets [ l E + N k / ad B k B k Nk /, k =,...,, ae ] B k = I ths secto, we copae the axu of two dffeet quattes ove the sae set of costats ode to splfy the quattes to be axzed befoe splfyg the costats C theselves, the ext secto. The quattes to copae ae: ax k C ad ax k C { { B,X p X B,Y p Y B,X p X B,Y p Y B,X B,Y B,X B,Y N X + k N Y + k k k B,X B,Y B,X B,Y N X N Y k k Usg 4.3 Lea 4., the absolute dffeece s uppe-bouded by { N ax B,X X + k N B,X X k C B,X k B,X k 3 } 4.8, }.4.9

24 ax k C + ax k C N B,Y Y + k N B,Y Y B,Y k B,Y k } { N B,X X + k B,X k N B,Y Y + k B,Y k } { N B,X X B,X k N B,Y Y B,Y k }. Recall that N X = N Y = 0. Hece, fo =, N B,X X + k B,X k = B,X ax k C B,X N X B,X k = 0, wth the sae popety fo fuctoals elatve to Y. Theefoe, we ae left wth vestgatg tes of the fo { N X + k B,X k ad ax k C { B,X N X B,X B,Y k N Y + k B,Y B,Y N Y k }, 4.0 B,Y k }, 4. fo. Above, all the quattes cosdeed oly deped o a sgle sequece, say X o Y, except fo the costats C whch deped o both X ad Y. Howeve, C, k,..., k C,X := { k = k,..., k : 0 k N X N X } 4. esp. C, k,..., k C,Y, ad the sae fo C, ad so uppe-boudg, 4.0 ad 4., the e axa by sus ad the axa ove C by axa ove C X := 4 C,X, 4.3

25 esp. CY, we ae left wth vestgatg, fo, the covegece pobablty of tes of the fo { N ax X + k k C X B,X B,X k }, 4.4 ad ax k C X { B,X N X B,X k }, 4.5 ad, slaly wth X eplaced by Y. Ottg the efeece to ethe X o Y, the tes to cotol ae, fo 4.4 ad fo each,, of the fo: N +k Z ax k C, 4.6 =k + +k + ad ax k C N =k + +k + Z, 4.7 whee the Z,, ae defed 4.5 ad whee C = C,, wth C, = { k = k,..., k : 0 k N N }. I 4.6, 4.7 ad hecefoth, we wte = egadeless of the ode of ad,.e., by coveto ths su s = whe <. Sce 4.7 s sla, but ease to tackle tha 4.6, we oly deal wth 4.6. Aga, as Secto 4., let D = { N E[N ] l } fo =,,...,, ad, thus, fo ε > 0, N +k P ax k C P ax k C =k + +k + Z ε 4.8 Z ε D + P D c. N +k =k + +k + Let C C #, = C = { k E[N ] + l } ad let C #, be the set of dces k,..., k { E[N ] l = k + + k E[N ] + } l N E[N ] 4.9 5

26 whee we set l := k + + k. Sce ude D, C, { k E[N ] + l } ad sce Poposto 3.4, specalzed to the ufo case, gves E[N ] = k, t follows that C C #, ad 4.8 s thus futhe uppe-bouded by l +N k + +k P ax Z ε + P D c k C #, =l + Now, vew of 4.0, t s eough to show the covegece to zeo of the fst te o the ght-had sde of To do so, set E = Ω ad, fo, } Ek,..., k = { N k,..., k E[N k,..., k ] x, wth ad let E = x = l, 4.3 k,...,k C E k,..., k. 4.3 Ou ext goal s to show that asyptotcally, E has full pobablty. Poposto 4. Let, the l + P E c = 0. I ode to pove Poposto 4., we fst eed the followg techcal esult, poved Appedx A.: Lea 4.4 Fo x [, +, let K x = x + x+ x + x+. The, fo soe costats c, C 0, +, x K x C exp c, x We poceed ow to the poof of Poposto 4.: Poof. Pop. 4. Clealy, P E c P Ek,..., k c k,...,k C ax k,...,k C Theefoe, to pove the lea, t s eough to show that: l + ax k,...,k C P E k,..., k c. P E k,..., k c =

27 Now, fo each, Popostos 3.3 ad 3.4 asset that, N = N k,..., k = N,, whee the N, ae depedet ad wth pobablty geeatg fucto Next, E [ ] k x N, =. x P E k,..., k c = P N E[N ] > x = P N, k > x + P The fst te 4.35 s bouded by Θ k + +k x, whee k N, > x Θ kx := exp tx + k + k l e t t> = x + k x+k x + k x+k k, k 4.37 sce the zato 4.36 occus at t = l x + k/x + k. The secod te 4.35 s bouded by Θ l k + +k x, whee Θ l kx := exp tx k + k l e t t> = k x k x k x k x k, k 4.39 obsevg that, fo x k, the zato 4.38 occus at t = l k x/k x. Fo the pevous bouds ad 4.35, t s clea that 4.34 wll follow fo l + ax k,...,k C Θ k + +k x = 0, 4.40 fo {l, }. To obta such as lt, we ake use of Lea 4.4, wth x = x = l, otg also that C { k,..., k : k + + k E[N ] + l } { k,..., k : k + + k ax,..., p + l }. Fst, fo =, whe k + + k x, 4.33 wtes as Θ x k + +k x C exp ck + + k, k + + k 7 x k + + k

28 = C exp cx, so that ax Θ k k + +k x + +k x C e c l 0, +, whee above, ad below, C s a fte postve costat whose value ght chage fo a le to aothe. Fo x k + + k ax,..., p + l = / + l, 4.33 wtes as Θ k + +k x C exp ck + + k so that = C exp c C exp c x k + + k x / + l x k + + k,, x k + + k ax Θ k + +k x l exp c / + 0, l x k + +k /+ l +, guaateeg 4.40 wth =. Next, let = l ad cosde the followg thee cases: k + + k x /, x / k + + k x ad x k + + k ax,..., p + l = / + l. Whe k + + k x /, 4.38 esues that fo all t > 0: Θ l k + +k x exp tk + + k x k + + k l e t exp t x. 4.4 Whe x / k + + k x, 4.38 esues that fo all t > 0: Θ l k + +k x exp tk + + k x k + + k l e t exp x l e t. 4.4 Whe x k + +k /+ l, 4.39 ad 4.33 Lea 4.4 esue that: Θ l x x k + +k x C exp ck + + k, k + + k k + + k x = C exp c k + + k 8

29 C exp l c / + l Gatheg togethe the bouds 4.4, 4.4 ad 4.43 poves 4.40, fo = l. Cobg ths last fact wth the coespodg esult fo =, ad va 4.40 ad 4.34, poves Poposto 4.. Now, thaks to Poposto 4., to pove the covegece to zeo, as +, of the fst te o the ght-had sde of 4.30, t s eough to pove the sae esult fo l P ax +N k + +k Z ε E, 4.44 k C #, =l + whee the Z ae gve 4.5,.e., Z = N T,T /, =,...,,. Ou ext eleetay poposto, the ultate befoe closg ths secto, povdes tal estates o the patal sus of the Z ottg the dces fo a whle. Poposto 4. Let Z be d ado vaables as 4.5. The, fo sutable postve ad fte costats c ad C, all x > 0, ad all postve tege k, k P Z x k P Z x k P Z x k P Z x exp tx + k + k l e t =: Θ kx,4.45 t>0 x x C exp c k,, 4.46 k exp tx k + k l e t =: Θ l kx,4.47 t>0 x x C exp c k,, fo x k k Poof. Recall fo 4.5 that Z = N T,T /,, ad fo 3., Hece, usg the otato 4.36, E [x N T k [ P Z x e tx +k E exp tn T t>0,t ] = x. 4.49,T ] k = Θ kx, 9

30 ad 4.46 follows fo 4.36 ad 4.37 the poof of Poposto 4. wth ts otato ad fo 4.33 Lea 4.4. Slaly, usg the otato 4.38 k k P Z x = P N T,T x t>0 e tx k E [ exp tn T,T ] k = Θ l kx. whch s As pevously obseved va 4.39, whe x k, the zato fo Θ l k x occus at t = l k x/k x, ad, oce aga, 4.33 o Lea 4.4 esue We ae ow eady to ove towads copletg ths secto. Fo ts vey defto 4.9, C #, = C { E[N ] l = k + + k E[N ] + l N E[N ] } { k + + k E[N ] + } l { E[N ] l = k + + k E[N ] + l N E[N ] } { k + + k ax p + } l,..., { E[N ] l = k + + k E[N ] + l N E[N ] }. Theefoe, ecallg also fo 3.5 that E[N ] = k + + k, 4.44 s uppe bouded by: l +N k + +k P ax k + +k /+ Z l k + +k l E[N ]+ l N k + +k =l + ε E l + P ax k + +k /+ ax Z ε ecall 4.3 l x P 3x 3x k + +k l E[N ]+ l +x ax ax l + l E[N ]+ l +x x =l + ax P x l E[N ]+ l +x ax l E[N ]+ l +x 0 x l + =l + =l + Z ε Z ε Θ l ε + Θ ε,

31 whee, the ext to last equalty, we used the usual shap the d case boudg of the axu va the ube of tes tes the axal pobablty; whle the last oe, x was chaged to 0 x = l. Ou fal task s to show that l + x ax Θ 0 x ε = 0, 4.5 fo {l, }. Ths eles aga o Lea 4.4 ad Poposto 4.. Fo =, whe k < ε, 4.45 ad 4.46 etal that, whle, fo ε k x, they etal that, Θ kε C exp cε ; 4.5 Θ kε C exp cε /k C exp cε /x = C exp cε / l Theefoe, fo =, 4.5 follows fo 4.5 ad Let us ow tu ou atteto to = l. Whe ε k x, 4.48 etals that, Θ l kε C exp cε /k C exp cε /x = C exp cε / l Fo k ε /, 4.47 etals that, fo ay t > 0, Θ l kε exp tk ε k l e t exp εt / Fo ε / k ε, 4.47 etals that, fo ay t > 0, Θ l kε exp tk ε / k l e t exp εt / l e t Theefoe, fo = l, 4.5 follows fo 4.54, 4.55, ad Gatheg all the teedate esults, fo ay =,...,, l l P + ax +N k + +k Z ε E = 0, ad theefoe, k C #, l P ax + k C =l + N +k =k + +k + Z ε = 0. The goal of ths secto has thus bee acheved: the quattes 4.8 ad 4.9 have the sae weak lt. 3

32 4.3 The Costats To deal wth the thd heustc lt, we ow eed to obta the covegece of the ado set of costats towads a detestc set of costats. Ths fact wll follow fo the vaous eductos obtaed to date as well as ew aguets developed fo ow o. To stat wth, let us ecall two eleetay facts about covegece dstbuto. The fst fact assets that f f s a sequece of Boel fuctos such that x x ples that f x f x, ad f X s a sequece of ado vaables such that X X, the f X f X. Ideed, va the Skoohod epesetato theoe fo C 0 [0, ]-valued ado vaables, thee exsts a pobablty space ad C 0 [0, ]-valued ado vaables Y,, such that Y L = X,, ad Y Y wth pobablty oe. But, by hypothess, f Y f Y, wth pobablty oe. Theefoe f X f X. The secod eleetay fact s as follows: Let X be a sequece of ado vaables such that X ± Y, the X Y, whee x + = axx, 0 ad x = x, 0. Ideed, PX + x PX x PX x, fo all x R. Usg these two eleetay facts, let us etu to ou deadozato poble. Recallg 4.9, ad usg the polygoal stuctue of the pocesses B X ad B Y, we have M := ax F X B X, k F Y B Y, k, k C whee F X u, t = F Y u, t = u p X u p Y u u t u t, 4.57 t u t, 4.58 fo u = u,..., u C 0 [0, ] ad t = t,..., t [0, ]. Now, let C ± = { k = k : =,...,, 0 k ad wth x = l as 4.3, ad let Sce M ± = ax k C ± N X N X = p k + F X B X, k k p ± x }, 4.59 F Y B Y, k N X E[N X] N X E[N X], 3

33 wth a sla stateet eplacg X by Y, the codto k N X N X N Y N Y, the defto.. of C, wtes as k / p + RX, Y / whee N RX, Y = X E[N X] N X E[N X] N Y E[N Y ] N Y E[N Y ]. 4.6 Now let F := { N E[N ] x } E, wth E defed 4.3. Fo 4.0 ad Poposto 4., we have l + P F c = 0 ad, o F, R X, Y x, fo all. Theefoe, whe F s ealzed, C. s ecapsulated as follows: C C C +, ad Clealy, whee ow { C ± = M ± M M M = ax FX B X, t F Y B Y, t, 4.63 t C ± t = t [0, ] : =,...,, t p ± x } Next, theefoe Slaly, P M x P {M x} F + P F c P {M x} F + P F c l sup + P M x + P F c, PM x l sup PM x P M x = P {M x} F + P {M x} F c P {M + x} F 33

34 ad theefoe P M + x P F c, l f PM x l f P M + x Cobg 4.65 ad 4.66 wth the secod eleetay fact descbed above, ou goal s ow to show that the covegece dstbuto of both M + ad M towads M = ax FX B X, t F Y B Y, t, 4.67 t V holds tue, whee V := Vp,..., p = { t = t [0, ] : =,...,, } t p. To do so, fst ote that by Doske s theoe B X, B Y B X, B Y ad we ow wsh to apply the fst eleetay fact, ecalled above, to the fuctos f ± u, v = ax FX u, t F Y v, t, 4.68 t C ± ad f u, v = ax FX u, t F Y v, t t V Wth these otatos, M ± = f ± B X, B Y ad M = f B X, B Y. I othe wods, we wsh to show that u, v u, v C 0 [0, ] ples that f u, v f u, v. To stat wth, f ± u, v f u, v f ± u, v f ± u, v + f ± u, v f u, v, 4.70 ad we cotue by estatg f ± u, v f ± u, v. But, f ± u, v f ± u, v ax F X u, t F Y v, t F X u, t F Y v, t t C ± ax ax F X u, t F X u, t, F Y v, t F Y v, t t C ± c ax ax t C ± u t ut, v t vt 4.7, 4.7 akg use of Lea , ad by the leaty of both F X ad F Y, wth espect to the fst aguet, 4.7 ad whee, futhe, c s a fte postve costat depedg explctly o. Theefoe, f ± u, v f ± u, v c ax u u, v v, 34

35 ad so f u, v u, v, t follows that f ± u, v f ± u, v 0. I ode to coplete the poof of M ± M ad thus that of M M, let us ow estate the ght-ost expesso At fst, ote that C V C +, hece f u, v f u, v f + u, v Next, va 4.68 ad 4.69, set f + u, v = ax t C + θ u,v t, ad f u, v = ax t V θ u,v t, whee θ u,v t = F X u, t F Y v, t. Sce C C +, fo, t follows as show ext that f u, v ax t C θ u,vt. Ideed, l + f u, v ax t C θ u,vt ad f the pevous equalty wee stct, thee would ow be K 0, + such that ax θ u,v t K < ax t C t θ u,v t. C The left-had sde equalty ples that fo all, ad t C, θ u,v t K, cotadctg the ght-had sde equalty. Sce C + C + +, fo, t also follows that f + u, v ax t C+ θ u,vt. Ideed, we have l + f + u, v ax t C θ u,vt ad f the pevous equalty wee stct, thee would be K 0, + such that ax θ u,v t K > ax t C + t θ u,v t. C+ The left-had sde equalty ples that fo ay, thee exsts t C + wth θ u,v t K. Up to a subsequece t t C+ ad by the cotuty of θ u,v, θ u,v t K, whch s cosstet wth the pevous ght-had sde equalty. Fally, sce C = V, the teo of V, ad sce C+ = V = V, the closue of V, we have l f u, v = ax θ u,vt f u, v = ax θ u,vt = l f + t V + u, v t V + It eas to show that the axu of θ u,v o V s attaed o V fo P B X,B Y -alost all u, v,.e., that P ax θ t V/,...,/ B X,B Y t = ax θ B X,B Y t = t V/,...,/ Wth 4.75, 4.74 etals l + f ± u, v = f u, v fo P B X,B Y -alost all u, v,.e., the ght-ost expesso 4.70 coveges to 0 ad, as pevously explaed, ths gves M ± M ad M M. I ode to coplete 4.75 we atcpate, the secod equalty below, o the esults of Secto 4.4 whch paaetes ae chaged va: s = u, s +s = u,..., s + +s = u ad whee we pove that θb X,B Y t t V/,...,/ L = θb X,B Y s = θb s V,...,,B u, u W 35

36 whee W = {0 = u 0 u u u = }, θ B,B u = B + B u B u 4.76 B + B u B u, ad wth B ad B two depedet, stadad, -desoal Bowa o [0, ]. The popety 4.75 s thus equvalet to P ax θb u W,B u = ax θ B,B u = u W The advatage of 4.77 ove 4.75 s that the foe volves two stadad Bowa otos each oe havg depedet coodates. Roughly speakg, the popety 4.77 should be deved fo the followg obsevato: whe u W, the u k = u k+, fo soe dex k, ad fo such a u, the su tes. Lettg u ε be gve by u ε, = u, k +, ad u ε,k+ = u k + ε, B u B u cotas oly we have = B u ε, B u ε, B u B u + B k+ u k + ε B k+ u k + B k+ u k B k+ u k + ε. The tes B k+ u k + ε B k+ u k ad B k+ u k B k+ u k + ε ae depedet of B u B u ad fo stadad popetes of Bowa oto, alost suely, the su B k+ u k + ε B k+ u k + B k+ u k B k+ u k + ε takes postve value fo abtaly sall ε > 0. Sce the sae s tue fo the secod te 4.76 elatve to B, t follows that the vcty of each u W, thee s u ε W wth θ B,B u ε > θ B,B u. Theefoe, ax θ u W B,B u s attaed W, ad so both 4.77 ad 4.75 hold tue, leadg to M M. 4.4 Fal Step: A Lea Tasfoato By cobg the esults of the pevous thee subsectos, we poved that LCI / ax B,X B,X t B,X t, V/,...,/ 36

37 B,Y B,Y t B,Y t 4.78, whee the axu s take ove t = t,..., t V/,..., /. Now, va the lea tasfoatos of the paaetes gve by s = t, =,...,, s 0 = t 0 = 0, ad Bowa scalg, the ght-had sde of 4.78 becoes equal, law, to: ax B,X B,X s B,X s, 0=s 0 s s B,Y B,Y s B,Y s Next, fo all t [0, ] ad =,...,, let us toduce the followg two potwse lea tasfoatos: B,X t = B t B t, B,Y t = B t B t, whee B ad B ae two, stadad, -desoal Bowa oto o [0, ]. Clealy B,X t,..., B,X t 0 t has the coect covaace atx 4.3, ad slaly fo B, eplacg X by Y. Moeove, B,X = B B,X s B,X s + B B s B s + B s B s = B + B B s + B s B s.4.80 Fally, wth the help of 4.80 ad the coespodg detty fo Y, 4.79 becoes: ax B + B s B s, 0=s 0 s s s = B + B s B s, 4.8 ad the poof of Theoe. s ove. 37

38 5 Cocludg Reaks Let us dscuss below soe potetal extesos to Theoe. ad soe questos we beleve ae of teest. Fo the poof peseted above, the passage fo two to thee o oe sequeces s clea: the u ove two Bowa fuctoals becoes a u ove thee o oe Bowa fuctoals, ad such a passage apples to the cases touched upo below. It s also clea fo the poof developed above, that a theoe fo two sequeces of d o-ufo ado vaables s also vald. Hee s what t should look lke: Let X = X ad Y = Y be two sequeces of d ado vaables wth values A = {α < α < < α }, a totally odeed fte alphabet of cadalty ad wth a coo law,.e., X L = Y. Let p ax = of p ax. The, LCI p ax pax = ax 0=t 0 t t k t k = kpax k kpax k ax PX = α ad let k be the ultplcty,,..., k k B + B + k k B t B t, B t B t,5. whee B ad B ae two k-desoal stadad Bowa otos defed o [0, ]. So, fo stace, f p ax s uquely attaed the the ltg law 5. s the u of two ceteed Gaussa ado vaables. Usg the sadwchg techques developed [HL], a fte coutable alphabet esult ca also be obtaed wth 5.. The loss of depedece sde the sequeces, ad the loss of detcal dstbutos, both wth ad betwee the sequeces s oe challegg. Results fo these stuatos wll be peseted elsewhee. The legth of the logest ceasg subsequece of a ado wod s well kow to have a equvalet tepetato pecolato theoy: Ideed, cosde the followg dected last-passage pecolato odel Z +: let Π, be the set of dected paths Z + fo 0, 0 to, wth ut steps gog ethe Noth o East. Gve ado vaables ω,, 0,, ad tepetg each ω, as the legth of te spet by a path at the vetex,, the last-passage te to, s gve by T, = ax π Π,, π ω,. 5. See Bodeau ad Mat [BM], ad the efeeces thee, fo detals. I ou ado wod cotext, whe X = X s a sequece of d ado vaables takg the values 38

39 a totally odeed fte alphabet { } α < α < < α of sze, takg ω, = {X =α } ad ω 0, = 0,, whch fo each ae depedet ado vaables, the legth of the logest ceasg subsequece of the ado wod s equal to the last passage-te T,, see [BH]. Now LCI, the legth of the logest coo ad ceasg subsequeces, eoys a sla pecolato theoy tepetato, but Z 3 +. Let Π 3,, be the set of paths Z 3 + fo 0, 0, 0 to,, takg ethe ut steps towads the top o steps, of ay legth, the hozotal plae but ethe paallel to the x-axs o to the y-axs,.e., { Π 3,, := u, u,..., u + Z+ 3 + : u = 0, 0,, u + =,,, u + u { 0, 0,, a, b, 0 wth a, b N \ {0} } }, =,, +. Gve weghts ω,,k, 0, 0, k, o the lattce, we ca cosde a quatty aalogous to T, 5., aely, T 3,, := ω,,k. ax π Π 3,,,,k π I the ado wod cotext, takg ω,,k = {X =Y =α k } ad ω 0,0,k = 0, k, as weghts, gves LCI = T 3,,. Note that whe X = Y, T 3,, ecoves T, sce T, s uchaged f, 5., Π, s eplaced by { Π, := u, u,..., u + Z+ + : u = 0,, u + =,, u + u { 0,, a, b wth a, b N \ {0} } }, =,..., +. Moe geeally, fo p 3 sequeces of lettes X l = X l, l p, we ca slaly cosde { Π p+,..., := u, u,..., u + Z p+ +: + u = 0,..., 0,, u + =,...,, u + u { 0,,..., 0,, a,..., a p, 0 wth a N\{0} } }, =,..., +, ad T p,...,, := ax π Π p+,...,,,..., p,k π ω,..., p,k The, obseve that LCI, fo the p sequeces, s equal to T p,...,,, whee ow ω,..., p,k = {X = =X p =α k } ad ω 0,...,0,k = 0, k =,...,, ae depedet ado vaables. I vew of Theoe. ad of [BM], oe would expect that fo fxed ad fo expoetal ea oe d weghts ω.,.,., T 3,, coveges, whe popely ceteed, by, ad scaled, by, towads ax 0=t 0 t t t = B t B t, 39. B t B t,

40 wth also the tval odfcato fo T p. Statg wth Bayshkov [Ba] ad Gave, Tacy ad Wdo [GTW] see, also [BGH], fo a futhe descpto ad up to date efeeces a stog teacto has bee show to exst betwee Bowa fuctoals, ogatg queug theoy wth Gly ad Whtt [GW] see also Seppäläe [Sep], ad axal egevalues of Gaussa ado atces. Lkewse, we hypothesze that the ax/ fuctoals obtaed hee do eoy a sla stog coecto whch ght exted to specta ad Youg dagas. Could t be that the ght-had sde of. wth o wthout the lea tes has the sae law as the axal egevalue of a ado atx odel? Eve the bay case, t would be teestg to fd the law of the pocesses ax 0 t B t B /, B t B / t 0 ad ax 0 t B t, B t t 0 whee, say, B ad B ae two depedet stadad lea Bowa otos. Vey pelay wok o these pobles was stated wth Mac Yo, befoe hs utely death, ad ths text s dedcated to hs eoy. To fsh, ote that the LCIS poble fo two o oe ufo ado peutatos of {,,..., } has ot bee studed ethe, although t cetaly deseves to be. I pot of fact, t s show [HI] that, fo ay two depedet ufo ado peutatos σ ad σ of {,,..., }, ad fo ay x R, PLC σ, σ x = PLI σ x, whee LI σ s the legth of the logest ceasg subsequeces of σ. Theefoe, ths equalty law shows the eegece of the Tacy-Wdo dstbuto, whch had soetes bee speculated, as the coespodg ltg law. Ideed, oce we ae gve the esult of Bak, Deft ad Johasso [BDJ] o the ltg law of LI σ, a coespodg esult actually equvalet to t fo LC σ, σ s edate. I fact, ay of the esults o LI σ peseted Rok [Ro], such as the law of lage ubes of Veshk ad Keov [VK] ae stataeously tasfeable to equvalet vesos fo LC σ, σ. Moeove, fo p 3 depedet ad ufo ado peutatos σ, σ,..., σ p, the ethodology developed [HI] easly shows that LC σ, σ,..., σ p d = LCI σ,..., σ p, whee d = deotes equalty dstbuto. Theefoe, the study of logest coo ad ceasg subsequeces ado wods o ado peutatos whch ght appea, at fst, qute atfcal s actually tately elated to the study of logest coo subsequeces. A Appedx A. Poofs of techcal leas Poof of Lea 4. Fst, ax k=,...,k ak b k axk=,...,k ak + c k b k + d k ax k=,...,k ak b k ak + c k b k + d k. 40

41 Next, the esult wll follows fo the eleetay equalty a b a + c b + d c d, A. whch s vald fo all a, b, c, d R. Ideed, set D = a b a + c b + d ad assue wthout loss of geealty that a b. If a + c b + d, the D = a a + c = c c. If b + d a + c, the D = a b d ad so wheeve a b + d, A. s edate, whle f a b + d, the D = a b d d = d sce a b 0 ad d b a 0. Poof of Lea 4. Let D = { N E[N ] } < x, ad fo ε > 0, let { Z A ε = [N,E[N ]] ε }. Sce P A ε P A ε D + PD c, ad sce l PD c = 0. ad t s eough to show l + P A ε D = 0. But, by Kologoov s axal equalty, P A ε D P Z ax ε k E[N ] <x x VaZ ε 0, [k,e[n ]] +. s ufoly tegable. Poposto 3. ad Re- Poof of Lea 4.3 Fst, we show that B k Nk / ak 3. gve [ B k E B k Nk Nk p] = N N k + o P / [ E p N N k p] + o p/ ] = / p/ E [ N N k p + o p/. But N N k = ɛ,k whee ɛ,k ae d wth ɛ,k = whe X = α, ɛ,k = whe X = α k ad ɛ,k = 0 othewse. Hece, by the classcal Mackewcz- Zygud equalty, so soe costat C p, ] E [ N N k p [ p] = E ɛ 4

42 Theefoe, fo ay p > ad B k ad [ B k sup E [ p/ ] C p E ɛ,k C p p/. Nk p] < + Nk / s ufoly tegable. Next, fo B k [ B k p] E B k = [/] Z k + [ [/] p p/ E / [] Z k [/]+. Z k : p] [ + p p/ Z k E [/]+ p ] [ [/] ] p/ [ C p p/ E Z k + p p/ Z k E p ], usg aga the Mackewcz-Zygud equalty. Cotug, usg covexty, [ [/] C p p/ E Hece, fo ay p >, ad B k ] [/] p/ Z k C p p/ E [[/] p/ [ B k p] sup E < +, ] Z k p C [ p E Z k p/ ]. p / s ufoly tegable ad theefoe, fo above, so s B k N k / B k /. Fally, ode to show 4.7, t s eough to pove B k Nk B k P 0, +. A. Settg A = { N k / l }, Hoeffdg s equalty esues that l + PA c = 0. Theefoe, sce B k Nk B k = N k Z k, we have B k P Nk B k ε { N k P 4 =[/]+ Z k =[/]+ ε } A + PA c,

43 ad Kologoov s axal equalty etals that P ax l [/ l,/+ l ] l Z k =[/]+ ε [ /+ l ε E ] Z k =[/]+ l E[ Z k ], fshg the poof of A. ad thus of 4.7. Poof of Lea 4.4 Cosde thee cases: x, x hee u v eas l + u /v = 0 ad x,.e., c x c, fo two fte costats c ad c, ad expad K x accodgly. Fst, let x : the, x+ + x x+ x+ + x x+ K x = = exp x + l + x x + l + x x = exp x + x x 8 + o x + = exp x 4 + 3x3 x 3 x 8 + o + o = exp x x 4 + o, whch yelds 4.33 case x. Next, let x : the, x x + o x + x+ K x = x + x+ = x + x x+ 4 x + x x+ x = 4 exp x + l + x + l + x x x x = 4 exp x + x x x + o x + x x = 4 exp + 3 x x 73 x + o x = exp + 3 x x + l x l + o 4 x x x x + o x. A.3 Sce x, the lage ode the expoetal A.3 s x l ad, ths ecove a boud of the fo 4.33 ths case. Fally, cosde the case x, say x = α wth α >. 43

44 The, K x = α + α+ α + α+ = exp cα, whch s aga of the fo 4.33, sce cα = l α + α+ /α + α+ s postve fo all α > ad s also bouded. A. O [HLM] The pupose of ths Appedx s to povde soe ssg steps the poof of the a theoe [HLM] devoted to the bay case as well as to coect the eos peset thee. The otatos ad ubeg ae as [HLM]. I patcula, ecall that N esp. N s the ube of zeos X,..., X esp. Y,..., Y. Poof of 3. Recall aga fo [HLM] that V = ax 0 k N N, Clealy, X = ax 0 t X,, B + B B B + + = B B t., k, B, A.4 ad deote by the dex fo whch the u A.4 s attaed. Next, f N N /, the V X ; ad slaly f the axu defg V s attaed at soe k /, the V X. Othewse, N N / wth, oeove, the axu defg V attaed at k [/, N N ] ad so: V =, Now, va A.4, V X B +, B + k = B B B B + B k B k 44, k. B B + + B B

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING TATITIC IN TRANITION-ew sees Octobe 9 83 TATITIC IN TRANITION-ew sees Octobe 9 Vol. No. pp. 83 9 A GENERAL CLA OF ETIMATOR UNDER MULTI PHAE AMPLING M.. Ahed & Atsu.. Dovlo ABTRACT Ths pape deves the geeal

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω. Ut: Rado expeet saple space evets classcal defto of pobablty ad the theoes of total ad copoud pobablty based o ths defto axoatc appoach to the oto of pobablty potat theoes based o ths appoach codtoal pobablty

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t Lectue 8 14. MAC o MIMO Systes wth Ustuctued Ucetates We cosde ae--cotol MIMO systes the o, ABu t (14.1) whee s the syste state vecto, u s the cotol put, B s kow costat at, A ad (a dagoal at wth postve

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

VIII Dynamics of Systems of Particles

VIII Dynamics of Systems of Particles VIII Dyacs of Systes of Patcles Cete of ass: Cete of ass Lea oetu of a Syste Agula oetu of a syste Ketc & Potetal Eegy of a Syste oto of Two Iteactg Bodes: The Reduced ass Collsos: o Elastc Collsos R whee:

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables Appled Mathematc, 0,, 8-86 do:046/am095 Publhed Ole Novembe 0 (http://wwwscrpog/oual/am) Dtbuto of Geometcally Weghted Sum of Beoull Radom Vaable Abtact Deepeh Bhat, Phazamle Kgo, Ragaath Naayaachaya Ratthall

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

On Eigenvalues of Nonlinear Operator Pencils with Many Parameters

On Eigenvalues of Nonlinear Operator Pencils with Many Parameters Ope Scece Joual of Matheatc ad Applcato 5; 3(4): 96- Publhed ole Jue 5 (http://wwwopececeoleco/oual/oa) O Egevalue of Nolea Opeato Pecl wth May Paaete Rakhhada Dhabaadeh Guay Salaova Depatet of Fuctoal

More information

21(2007) Adílson J. V. Brandão 1, João L. Martins 2

21(2007) Adílson J. V. Brandão 1, João L. Martins 2 (007) 30-34 Recuece Foulas fo Fboacc Sus Adílso J. V. Badão, João L. Mats Ceto de Mateátca, Coputa cão e Cog cão, Uvesdade Fedeal do ABC, Bazl.adlso.badao@ufabc.edu.b Depataeto de Mateátca, Uvesdade Fedeal

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition ylcal aplace Soltos ebay 6 9 aplace Eqato Soltos ylcal Geoety ay aetto Mechacal Egeeg 5B Sea Egeeg Aalyss ebay 6 9 Ovevew evew last class Speposto soltos tocto to aal cooates Atoal soltos of aplace s eqato

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Pattern Avoiding Partitions, Sequence A and the Kernel Method

Pattern Avoiding Partitions, Sequence A and the Kernel Method Avalable at http://pvamuedu/aam Appl Appl Math ISSN: 93-9466 Vol 6 Issue (Decembe ) pp 397 4 Applcatos ad Appled Mathematcs: A Iteatoal Joual (AAM) Patte Avodg Pattos Sequece A5439 ad the Keel Method Touf

More information

Identifying Linear Combinations of Ridge Functions

Identifying Linear Combinations of Ridge Functions Advaces Appled Matheatcs 22, 103118 Ž 1999. Atcle ID aaa.1998.0623, avalable ole at http:www.dealbay.co o Idetfyg Lea Cobatos of Rdge Fuctos Mat D. Buha Matheatk, Lehstuhl 8, Uestat Dotud, 44221 Dotud,

More information

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS #A39 INTEGERS 9 (009), 497-513 GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS Mohaad Faokh D. G. Depatent of Matheatcs, Fedows Unvesty of Mashhad, Mashhad,

More information

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent Appled ad Coputatoal Matheatcs 27; 7(-): 2-7 http://www.scecepublshggoup.co//ac do:.648/.ac.s.287.2 ISSN: 2328-565 (Pt); ISSN: 2328-563 (Ole) A Covegece Aalyss of Dscotuous Collocato Method fo IAEs of

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

7. Queueing and sharing systems. ELEC-C7210 Modeling and analysis of communication networks 1

7. Queueing and sharing systems. ELEC-C7210 Modeling and analysis of communication networks 1 7. Queueg ad shag systes ELECC7 Modelg ad aalyss of coucato etwoks 7. Queueg ad shag systes Cotets Refeshe: Sle teletaffc odel Queueg dscle M/M/FIFO ( seve, watg laces, custoe laces M/M/PS ( seve, watg

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method) Ojectves 7 Statcs 7. Cete of Gavty 7. Equlum of patcles 7.3 Equlum of g oes y Lew Sau oh Leag Outcome (a) efe cete of gavty () state the coto whch the cete of mass s the cete of gavty (c) state the coto

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences Appl Math If Sc 7, No 6, 59-53 03 59 Appled Matheatcs & Iforato Sceces A Iteratoal Joural http://dxdoorg/0785/as/070647 Háje-Réy Type Iequaltes ad Strog Law of Large Nuers for NOD Sequeces Ma Sogl Departet

More information

Allocations for Heterogenous Distributed Storage

Allocations for Heterogenous Distributed Storage Allocatos fo Heteogeous Dstbuted Stoage Vasleos Ntaos taos@uscedu Guseppe Cae cae@uscedu Alexados G Dmaks dmaks@uscedu axv:0596v [csi] 8 Feb 0 Abstact We study the poblem of stog a data object a set of

More information

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as

Math 7409 Homework 2 Fall from which we can calculate the cycle index of the action of S 5 on pairs of vertices as Math 7409 Hoewok 2 Fall 2010 1. Eueate the equivalece classes of siple gaphs o 5 vetices by usig the patte ivetoy as a guide. The cycle idex of S 5 actig o 5 vetices is 1 x 5 120 1 10 x 3 1 x 2 15 x 1

More information

Spectral Problems of Two-Parameter System of Operators

Spectral Problems of Two-Parameter System of Operators Pue ad Appled Matheatc Joual 5; 4(4-: 33-37 Publhed ole Augut, 5 (http://wwwcecepublhggoupco//pa do: 648/pa5447 ISSN: 36-979 (Pt; ISSN: 36-98 (Ole Spectal Poble of Two-Paaete Syte of Opeato Rahhada Dhabaadeh

More information

An Enhanced Russell Measure of Super-Efficiency for Ranking Efficient Units in Data Envelopment Analysis

An Enhanced Russell Measure of Super-Efficiency for Ranking Efficient Units in Data Envelopment Analysis Aeca Joual of Appled Sceces 8 (): 92-96, 20 ISSN 546-9239 200 Scece Publcatos A Ehaced Russell Measue of Supe-Effcecy fo Rakg Effcet Uts Data Evelopet Aalyss,2 Al Ashaf,,3 Az B Jaafa,,4 La Soo Lee ad,4

More information

chinaxiv: v1

chinaxiv: v1 Matheatcal pcple of essto etwos Zh-Zhog Ta * Zhe Ta. Depatet of physcs, Natog Uvesty, Natog, 69, ha. School of Ifoato Scece ad Techology, Natog Uvesty, Natog, 69, ha (9-3-) Abstact The ufed pocessg ad

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, See A, OF HE ROMANIAN ACADEMY Volue 9, Nube 3/8,. NONDIFFERENIABLE MAHEMAICAL PROGRAMS. OPIMALIY AND HIGHER-ORDER DUALIY RESULS Vale PREDA Uvety

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications Iteatoal Joual of Basc & Appled Sceces IJBAS-IJENS Vol: No:6 7 A New Appoach to Momets Iequaltes fo NRBU ad RNBU Classes Wth Hypothess Testg Applcatos L S Dab Depatmet of Mathematcs aculty of Scece Al-Azha

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

5. Data Compression. Review of Last Lecture. Outline of the Lecture. Course Overview. Basics of Information Theory: Markku Juntti

5. Data Compression. Review of Last Lecture. Outline of the Lecture. Course Overview. Basics of Information Theory: Markku Juntti : Markku Jutt Overvew The deas of lossless data copresso ad source codg are troduced ad copresso lts are derved. Source The ateral s aly based o Sectos 5. 5.5 of the course book []. Teleco. Laboratory

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

Computational Material Chemistry. Kaito Takahashi Institute of Atomic and Molecular Sciences,

Computational Material Chemistry. Kaito Takahashi Institute of Atomic and Molecular Sciences, Coputatoal ateal Chesty Kato Takahash sttute of Atoc ad olecula Sceces kt@gate.sca.edu.tw A Udestad the basc theoy behd quatu chesty calculato Lea ug quatu chesty poga Udestad what the output s sayg Get

More information

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9 Lectue, Wte 9 Page 9 Combatos I ou dscusso o pemutatos wth dstgushable elemets, we aved at a geeal fomula by dvdg the total umbe of pemutatos by the umbe of ways we could pemute oly the dstgushable elemets.

More information

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS Electoc tascptos Mathematcal Isttute Slesa Uvesty Opava Czech Republc August Ths tet s a electoc tascpto of the ogal eseach pape D Kupa Some Geometc Aspects of Vaatoal Poblems Fbed Mafolds Fola Fac Sc

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

A. Proofs for learning guarantees

A. Proofs for learning guarantees Leanng Theoy and Algoths fo Revenue Optzaton n Second-Pce Auctons wth Reseve A. Poofs fo leanng guaantees A.. Revenue foula The sple expesson of the expected evenue (2) can be obtaned as follows: E b Revenue(,

More information

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM Joual o Mathematcal Sceces: Advaces ad Applcatos Volume 6 Numbe 00 Pages 77-9 PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM DAU XUAN LUONG ad TRAN VAN AN Depatmet o Natual Sceces Quag Nh

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Optimality Criteria for a Class of Multi-Objective Nonlinear Integer Programs

Optimality Criteria for a Class of Multi-Objective Nonlinear Integer Programs Coucatos Appled Sceces ISSN -77 Volue, Nube,, 7-77 Optalty Ctea o a Class o Mult-Obectve Nolea Itege Pogas Shal Bhagava Depatet o Matheatcs, Babu Shvath Agawal College, Mathua (UP) Ida Abstact hs pape

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr CE 56 Letue otes Set 3 Optmal Tmg of Ivestmet Case A- C s ost. ost st y, beefts stat at the ed of st y C b b b3 0 3 Case B- Cost. s postpoed by oe yea C b b3 0 3 (B-A C s saved st yea C C, b b 0 3 Savg

More information

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials A Algothm of a Logest of Rus Test fo Vey Log equeces of Beoull Tals Alexade I. KOZYNCHENKO Faculty of cece, Techology, ad Meda, Md wede Uvesty, E-857, udsvall, wede alexade_kozycheko@yahoo.se Abstact A

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Generalized Duality for a Nondifferentiable Control Problem

Generalized Duality for a Nondifferentiable Control Problem Aeca Joal of Appled Matheatcs ad Statstcs, 4, Vol., No. 4, 93- Avalable ole at http://pbs.scepb.co/aas//4/3 Scece ad Edcato Pblsh DO:.69/aas--4-3 Geealzed Dalty fo a Nodffeetable Cotol Poble. Hsa,*, Vkas

More information

Generalized Delta Functions and Their Use in Quasi-Probability Distributions

Generalized Delta Functions and Their Use in Quasi-Probability Distributions Geealzed Delta Fuctos ad The Use Quas-Pobablty Dstbutos RA Bewste ad JD Faso Uvesty of Maylad at Baltmoe Couty, Baltmoe, MD 5 USA Quas-pobablty dstbutos ae a essetal tool aalyzg the popetes of quatum systems,

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

3.1 Introduction to Multinomial Logit and Probit

3.1 Introduction to Multinomial Logit and Probit ES3008 Ecooetrcs Lecture 3 robt ad Logt - Multoal 3. Itroducto to Multoal Logt ad robt 3. Estato of β 3. Itroducto to Multoal Logt ad robt The ultoal Logt odel s used whe there are several optos (ad therefore

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lectue 6 Leag Bayesa belef etwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Seott Squae Admstato Mdtem: Wedesday, Mach 7, 2004 I class Closed book Mateal coveed by Spg beak, cludg ths lectue Last yea mdtem o

More information