chinaxiv: v1

Size: px
Start display at page:

Download "chinaxiv: v1"

Transcription

1 Matheatcal pcple of essto etwos Zh-Zhog Ta * Zhe Ta. Depatet of physcs, Natog Uvesty, Natog, 69, ha. School of Ifoato Scece ad Techology, Natog Uvesty, Natog, 69, ha (9-3-) Abstact The ufed pocessg ad eseach of ultple etwo odels ae pleeted, ad a ew theoetcal beathough s ade, whch sets up two ew theoes o evaluatg the eact electcal chaactestcs (potetal ad esstace) of the cople essto etwos by the Recuso-Tasfo ethod wth potetal paaetes (RT-V), apples to a vaety of dffeet types of lattce stuctue wth abtay boudaes such as the oegula ectagula etwos ad the oegula cyldcal etwos. Ou eseach gves the aalytcal solutos of electcal chaactestcs of the cople etwos (fte, se-fte ad fte), whch has ot bee solved befoe. As applcatos of the theoes, a sees of aalytcal solutos of potetal ad esstace of the cople essto etwos ae dscoveed. I patcula, thee ovel atheatcal popostos ae dscoveed whe copag the esstace two essto etwos, ad ay teestg tgooetc dettes ae dscoveed as well. Key wods: cople etwo, RT-V ethod, electcal popetes, bouday codtos, tgooetc detty, Laplace equato PAS : 5.5.+q, 84.3.Bv, 89..Ff,..Y,.55.+b Subject Aeas: Itedscplay Physcs, Matheatcal Physcs, odesed Matte Physcs, ople Netwos * taz@tu.edu.c, tazzh@63.co zhzhta@hotal.co

2 Ⅰ. Itoducto May cople scetfc pobles ca be sulated by the essto etwo odel, such as ay electcal ad o-electcal pobles the feld of physcs, egeeg ad atheatcs. The pogess of ccut theoy ot oly pootes the developet of tegated ccut ad electfcato scece but also pootes the tedscplay developet of atual scece. Ressto etwo odels ae so potat that the ssues of vaous dscples ca be studed by sulatg essto etwo, such as coducto asotopc dsodeed systes [], pecolato ad coducto [], Asotopy electcal coductvty [3], Nolea localzed odes two-desoal electcal lattces [4], Electc ccut etwos equvalet to chaotc quatu bllads [5], photoc cystal ccuts [6], Mafestg the evoluto of egestates fo quatu bllads [7], dyacal sgatue of factoalzato [8], the pocessg of heagoally sapled two desoal sgals [9], topologcal sulatos ad supecoductos [], topologcal popetes of lea ccut lattces [], topologcal sp ectatos [], thee-desoal pted eshes [3], topologcal sulato suface [4], factoal-ode ccut etwo [5], the ea feld theoy [6, 7], fte-sze coectos of the de odel [8], lattce Gee s fuctos [9-], esstace dstace [3], ad so o. I patcula, two potat equatos of Posso equato ad Laplace equato [4, 5] ca be sulated by essto etwo odel [6]. I addto, a eal plae etwo of gaphee ests the eal atue. It s well ow that calculatg the equvalet esstace betwee two abtay lattce stes a essto etwo s always a potat but dffcult poble sce t eques ot oly the ccut theoy but also the ovatve algeba. Fo eaple, whe the bouday of essto etwo s abtay, t s usually vey dffcult to obta the eact potetal ad esstace of the cople etwos wth abtay boudaes. I fact, the bouday s le a wall o tap, whch affects the soluto of the poble. Theefoe, the ealty eques us to ceate ew theoes to accuately calculate the electcal chaactestcs (voltage ad esstace) of the cople ccut etwo. Let's evew the eseach hstoy of essto etwos. I 845 Kchhoff establshed the basc ccut theoy (the ode cuet law ad the ccut voltage law). Afte 5 yeas, set [7] calculated the two-pot esstace of the fte etwo by Gee s fucto techque, whch s aly focused o fte lattces, ad soe applcatos of Gee s fucto techque wee obtaed late lteatue [8, 9]. I 4 Wu [3] foulated a dffeet appoach (call the Laplaca at ethod) ad deved the eplct esstace abtay fte ad fte lattces wth oatve bouday (such as fee, peodc bouday etc.) tes of the egevalues ad egevectos of the Laplaca at, whch eles o two atces alog two vetcal dectos. Late, the Laplaca at aalyss has also bee appled to pedace etwos [3], afte soe

3 poveets, seveal ew essto etwo pobles have bee esolved [3-34]. Howeve, the Laplaca appoach caot apply to the etwo wth abtay bouday sce t s possble to gve the eplct egevalues fo the abtay at eleets (assocatg abtay boudaes). But the bouday codto s potat sce t s eal case occug eal lfe. I Ta poeeed a ew techque fo studyg cople essto etwos [35], whch ow s called Recuso-Tasfo (RT) theoy of essto etwos [6]. The RT ethod depeds o oe at cotag oe dectos, whch s obvously dffeet fo the Laplaca ethod whch depeds o two atces alog two dectos. Wth the developet of the RT techque, ay pobles of o-egula etwo wth zeo essto edges have bee esolved [36-45]. I addto, the advatage of the RT ethod s that all esstace esults ae a sgle suato dffes fo the Laplaca appoach gave esstace esults ae the fo of a double suato. Recetly, the RT ethod have bee subdvded to two fos: oe fo s the at equato epessed by cuet paaetes [38-44], whch s sply called the RT-I ethod; aothe fo s the at equato epessed by potetal paaetes [6, 45], whch s sply called the RT-V ethod. Suazg the pevous applcatos of the RT (cludg RT-I ad RT-V) ethod, t s ot had to see that the pevous eseaches of the RT ethod all ely o the zeo essto bouday, such as the globe etwo[36, 44] belogs to cyldcal etwo wth two zeo essto boudaes, the cobweb etwo[6, 4] belogs to cyldcal etwo wth oe zeo essto bouday, the fa etwo[37, 45] belogs to ectagula etwo wth oe zeo essto bouday, ad the haoc etwo[34, 43] belogs to ectagula etwo wth two zeo essto boudaes. Obvously, how to study the cople etwo wthout zeo essto bouday by the RT ethod s a questo. Y (,) (,) d d A(,) (,) X Fg.. A abtay essto etwo wth two abtay bouday esstos, whee ad ae the au coodate values of (, ). Bods the hozotal ad vetcal dectos ae esstos ad ecept fo two abtay bouday esstos of ad. Ths pape developed a ew techque ad poved the RT theoy to allow us to study abtay essto etwos wthout elyg o zeo essto bouday, whch ca deve the electcal popetes (potetal ad esstace) of the abtay cople etwos wth cople 3

4 boudaes. Hee we buld two ew theoes lead to lage pobles to be esolved. Ou study shows the uvesal RT ethod s vey teestg ad useful to solve the cople etwo. We focus o eseachg the electcal popetes (potetal ad esstace) of Fg. ad Fg. o two cople essto etwos wth two abtay boudaes by the advaced RT-V ethod, whch have ot bee esolved befoe. It s woth ephaszg that the o-egula cople etwos wth two abtay boudaes ae the ult-pupose etwo odel because t ca poduce vaous geoetcal stuctue as show Fgs.5-. Thus a lage ube of pobles of essto etwos wll be esolved by ths pape. d A (,) Fg. A oegula cyldcal essto etwo, whee ad ae the au coodate value of (, ), wth the ut esstaces ad the espectve hozotal ad vetcal (loop) dectos ecept fo two abtay bouday esstos of ad. Fo the above aalyss, pofesso Wu [3] was the fst to gve seveal accuate equvalet esstace foulas fo the egula essto etwos by the Laplaca at ethod, fo the sae of copaatve study, hee we toduce two a esults of essto etwos fo Ref.[3]. ase-. osde Fg. wth s a egula ectagle etwo, whee ad ae the au coodate values of (, ), esstos ad ae boded espectvely the hozotal ad vetcal dectos, the esstace foula fo Fg. s d (,) R d d y y (, ) [ cos( y ) cos( y ) ] ( )( ), () ( cos ) ( cos ), j, j j j (,) X whee, cos( ) j, j ( ), j j ( ), d(, y ) ad d(, y ) ae abtay two odes the etwo. ase-. osde Fg. wth s a cyldcal essto etwo, whee ad ae the au coodate values of (, ), esstos ad ae boded espectvely the hozotal ad vetcal dectos, the esstace foula fo Fg. s 4

5 R ( d, d ) y y ( y y) cos( y y ) ( )( ), () ( cos ) ( cos ), j, j, j, j j j whee, cos( ) j, j ( ), j j ( ). The above esults wee foud fo the fst te by Wu. Late Refs.[3-34] poved the Laplaca at ethod to ae t applcable to egula cobweb ad haoc etwos. Howeve, the poved Wu ethod stll caot esolve the essto etwo wth abtay bouday, such as the etwos wth two abtay boudaes of Fg. ad Fg.. I addto, the equvalet esstace Eqs.() ad () ae the double suato ot a sgle su. ( ) V V ( ) V ( ) V V ( ) V V Fg.3 The essto sub-etwo wth the potetal paaetes. Ⅱ. RT-V theoy ad Posso equato ( ) V ( ) V osde two ds of cople essto etwos of Fg. ad Fg., whee ad ae the au coodate values of (, ). Assue A (,) s the og of the ectagula coodate syste, ad deotg odes of the etwo by coodate {, y}. Assue the electc cuet J goes fo the put d(, y ) to the output d(, y ). Deote the odal potetal of the sub-etwo s show Fg.3, ad epessg the odal potetal at d(, y ) by We wll study the cople essto etwos fou steps. U y V ( y) (, ). The fst step, settg up dscete Posso equato based o the sub-etwo of Fg.3. By Kchhoff law ( V ) to set up the odal potetal equatos alog the vetcal decto, we acheve a dscete statc feld equato (o call Posso equato) fo ay etwo, 5

6 ( h ) V I, (3) ( y) ( y) y, whee h, ad I J( ) cotas the put ad output codtos of the cuet, ( y) y, y y, y ( y) ( y ) ( y) ( y ) V V V V ad V V V V deote secod ode dscete equato, ad ( y) ( y) ( y) ( y) y whe ( y), Eq.(3) educes to the dscete Laplace equato ( h ) V. Fo the y abtay etwo togethe wth the uppe ad lowe bouday codtos, by Eq.(3) we ae led to V A V V I, (4), whee V ad I ae espectvely ( ) colu ates, ad eads T V () () () V V V V, (5) ( y) ( y) ( y) ( y) T I I I I I, (6) A s the at bult alog the vetcal decto. Fo Fg. ad Fg., the A s ad h bh h bh h ( h) h A, (7) h ( h) h bh h h bh whee b 3, ad 3 s the essto betwee (,) ad (, ) Fg., whe b ( ), 3 the A belogs to Fg.; whe b ( 3 ), the A belogs to Fg.. The pupose of toducg 3 s to epess two dffeet essto etwos ufoly. The secod step, cosde the bouday codtos of the left ad ght edges the etwo of Fg. ad Fg.. Applyg Kchhoff's law ( V we obta two at equatos of bouday codtos, ) to each of the left ad ght boudaes, hv [ A ( h) E] V, (8) h V [ A ( h ) E] V, (9) whee h, h, E s the ( ) ( ) detty at, at A s gve by Eq.(7). Equatos (4)-(9) ae all the equatos we eed to copute the ode potetal. Howeve, t s possble fo us to get the soluto of the above equatos dectly. Thas to the RT theoy of Ta that gave the at tasfo ethod [6, 38-4] ad we ceate the ew techque hee. I the followg we ae gog to gve the tasfoato techology based o RT-V theoy. The thd step, ceatg at tasfo. Fstly, we wo out the egevalue t of at 6

7 A, whch s gve by solvg deteatal equato of det A t E (just b ad b ), yelds t ( h) hcos, (,,, ) () whee ( b) ( ), ad b fo Fg., b fo Fg.. Net to tasfo Eqs.(4)-(9) by the followg appoaches P A dag{ t, t,, t } P, () X P V o V ( P ) X, () () () ( ) T whee X X X X. Assug P s the ow vectos of at P+, such as P,,,,. (3) Thus, we ultply Eq.(4) fo the left-had sde by P+, we get whee Eqs.() ad () ae used. X t X X J ( ), (4) ( ) ( ) ( ), y,, y, Slaly, applyg P to Eqs.(8) ad (9), we ae led to h X ( t h ) X, (5) ( ) ( ) ( ) ( ) h X ( t h ) X. (6) The above Eqs.()-(6) ae all essetal equatos fo evaluatg the ode potetal. ( The fouth step, solvg the at equatos (3)-(6). Selectg ) V ( ) J as the efeece potetal, by Eqs.(4)-(6), we obta afte soe algeba ad educto the soluto, () X J, (7) b whee b fo Fg., b fo Fg., ad s defed Eq.(6) below, ad have X ( ) ( ) y, y, ( t ) G whee,,, G ae, espectvely, defed Eqs.(9)-(5) below. s, J, ( ) (8) The RT-V theoy. The above ethod of establshg ecusve at equatos wth voltage paaetes, pleetg at tasfo ad obtag the solutos of at equatos s called RT-V theoy. The detaled cotet of the RT-V theoy (Recuso- Tasfo theoy wth potetal paaetes) ca be foud by the above fou steps Eq.(3)-(8). Hee we gve a suay of the RT-V theoy o the cossts of fou steps: The fst step ceates a a at equato of potetal dstbutos alog the Y as (such as the buld of Eqs.(3)-(7)); The secod step bulds the 7

8 costat equatos (cludg bouday codtos) of odal potetals (such as settg up Eqs.(8) ad (9)); The thd step dagoalzes the at elato to educe the equatos fo two deso to oe deso(such as covetg Eq.(4) to Eq.(4) et al.); The fouth step fgues out the aalytc soluto of the equatos (such as the esults of Eqs.(7) ad (8)), the aes the vese at tasfo by Eq.() to deve the aalytcal solutos of odal potetal ad gves the esstace foula by oh's law. Ⅲ. Two theoes of essto etwos A. Seveal deftos I ode to facltate ad splfy the epesso of the solutos of at equatos, we defe seveal vaables of, ad, fo late uses, wth Ad defe vaables F, y, cos( ) y, y cos( ) y y y, (9), h hcos ( h hcos ). () h hcos ( h hcos ) b fo Fg. ( b) ( ), () b fo Fg., s, ad s, G fo late uses by F ( ) ( ), ( ) ( ) ( ) s, s F F F, () ( ) ( ) ( ) F ( h ) F, hs s. (3) f, (4) ( ) ( ) ( ), s,, s s s ( ) ( ) ( ),,, f s s s G F ( h h ) F ( h )( h ) F. (5) ( ) ( ) ( ) ( ) The above deftos ae applcable to the ete atcle. All of these deftos ae eat to llustate the followg two fudaetal theoes, ad we always assue that the electc cuet J goes fo the put d(, y ) to the output d(, y ) ou ete pape. Theoe-. osde the abtay B. Two fudaetal theoes essto etwos of Fg. ad Fg. whose au coodate value s (, ). The the potetal of ode d(, y ) the essto 8

9 etwo ca be wtte as V y X, (6) (, ) y, (,,, ) whee (,,, ),,, ad y, s defed Eq.(3), y, s the cojugate cople of y,, ad X s the soluto of the at equato (4) togethe wth the bouday codto equatos. Foula (6) s a geeal foula whch s sutable fo ay essto etwo odel. ( ) I patcula, whe selectg V ( ) J as the efeece potetal, the potetal of ode d(, y ) the essto etwos ca be wtte as b V y J X, (7) (, ) y, whee ( ), s the cojugate cople of y, (thee be y, y, f y, y, s just a eal ube), ad s a pecewse fucto,,, (8), ad X s gve by (8) whch s the soluto of equatos (3)-(6). Theoe-. osde the abtay essto etwos of Fg. ad Fg. whose au coodate value s (, ). The the esstace betwee ay two odes d(, y ) ad d(, y ) the etwo s gve by R ( ) ( ) X y, X y, ( d, d). (9) (, ) J y, y, whee X s the soluto of the at equato (4) togethe wth the bouday codto equatos, Foula (9) s a geeal foula whch s sutable fo ay essto etwo odel. I patcula, fo the etwos of Fg. ad Fg., the esstace betwee two odes d(, y ) ad d(, y ) ca be wtte as ( ) ( ) b y, y, R ( d, d) J 9 X X. (3) whee b s the case of Fg., ad b s the case of Fg., ad X s gve by (8) whch s the soluto of equatos (3)-(6). The above two ew theoes cota a wde vaety of geoetc stuctue of the etwo odel, whch ca poduce ay ew esults of potetal ad esstace, ad ca ceate ew

10 atheatcal detty (see the secto 6). I the followg, we ae gog to pove the coectess of two theoes.. Poof of theoes osde the essto etwo wth two abtay boudaes show Fg. ad Fg., the toducto, we have bult the ey Eqs.(4)-(9) by the RT-V theoy, ad coveted the equatos to Eqs.(4)-(6), ad deved Eqs.(7) ad (8). Now we wll wo out the eact egevalues of at A Eq.(7). Eq.() ca be deved by solvg equato det A te, ad the we eed to cosde two cases below. Oe s Fo Fg., substtutg Eq.to () wth b A, we get the egevectos cosv cosv cosv cos v cos v cos v P, (3) whee v, ad ( ). By caeful calculato, the vese at ca be easly obtaed whee [ ] T deote at taspose. T P P, (3) Thus, the te, appeaed Eq.(3) ca be specfcally ewtte as, ( y ) (33) y, y, y, y, cos( y ), ( ) (34) Aothe s Fo fg., substtutg Eq.to () wth b A, the egevecto s obtaed afte soe algeba ad devato, ep( ) ep( ) ep( ) ep( ) ep( ) ep( ) P, (35) whee ( ) (,,, ). Accodg to stct calculatos, the vese at eads ep( ) ep( ) P. (36) ep( ) ep( ) Thus, the te appeaed Eq.(3) ca be specfcally ewtte as,

11 , ( y ) (37) y, y, y, ep( y ), y, ep( y ) (38) We fd that Eq.(3) ad Eq.(36) ca be ewtte as a ufed fo below,,,,,, P, (39) (,,, ),,, whee (,,, ),,, ad s the cojugate cople of y,. y, Usg Eq.(), we have V ( P ) X, epadg ths at equato, the we get ( y) () ( ) V X y, X y, (,,, ), (4) Equato (4) agees wth the foula (6) that we eed to vefy. Futhe, we get (,,, ) by copag equato (39) wth equatos (3) ad (36). b ( Ad whe selectg ) V ( ) J, we have Eq.(7). Substtutg Eqs.(7), (33) ad (37) to Eq.(4), the Eq.(7) ca be vefed edately. Net, we vefy Eqs.(9) ad (3), by oh's law, we have R d, d [ V (, y) V (, y)]. (4) J Substtutg Eq.(6) wth {, ad y { y, y to Eq.(4), we theefoe obta Eq.(9). Substtutg Eq.(7) wth {, ad y { y, y to Eq.(4), we edately obta Eq.(3). Thus, two theoes ae vefed. I subsequet secto we cosde applcatos of theoes to abtay lattces. I all applcatos, we stpulate all paaetes Eqs.(8)-(39) apply to all essto etwos, ad deote the esstos alog the two pcpal dectos by ad ecept fo esstos o the left-ght boudaes, ad the put ad output odes of cuet ae espectvely at d(, y ) ad d(, y ). Ⅳ. Electcal popetes of cople ectagula etwo osde the o-egula A. Nodal potetal of cople ectagula etwo essto etwo show Fg., whee the au

12 ( ) coodate s (, ), selectg V ( ) J as the efeece potetal, the potetal of ay ode d(, y ) the fte ad se-fte etwos ca be wtte as ( ) ( ) y, y, y, U (, y) J, (4) ( cos ) G U (, y) J h h y, y, ( cos ) y,, (43) whee ( ), ad,,, s, G ae, espectvely, defed Eqs.(9)-(5). Fo Eq.(43), thee be,, wth fte. I patcula, whe (eas the put ad output odes of cuets ae at the sae vetcal as), foulae (4) ad (43) educe to U (, y) ( ), (44) y, y, y, J ( cos ) G U (, ) ( ) y J h h y, y, y, ( cos ). (45) Poof of Eq.(4). Fo Fg., substtutg Eq.(34) wth y { y, y} to (8), we acheve X ( ) ( ) y, y, ( t ) G J, ( ) (46) Substtutg Eq.(46) ad (34) to (7) wth b, we theefoe acheve Eq.(4). Fo povg Eq.(43), whe,, wth fte, t ca be got a lt by usg Eqs.()-(5) l ( ) G t. (47) So, substtutg Eq.(47) to (4) wth, we theefoe vefed Eq.(43). Foula (4) s a eagful esult because the etwo of Fg. s vey cople ad has ot bee esolved befoe, whch cotas a lot of dffeet etwo odels sce the dffeet bouday esstos ca poduce dffeet geoetc stuctues. Hee seveal specal applcatos of foula (4) ae gve below. Applcato. Whe, Fg. degades to a egula ectagula etwo, the potetal of a ode d(, y ) the etwo s U( y, ) J ( cos ) F ( ) ( ) y, y, y,, (48)

13 whee educes to, s F F. ( ) ( ) ( ), s s I patcula, whe, potetal foula (48) educes futhe to U (, y) ( ). (49) y, y, y, J ( cos ) F Applcato. Whe h ( ), Fg. degades to a fa etwo as show Fg.4(a), whee ad ae the espectve esstos alog logtude (adus) ad lattude (ac) dectos, ad the essto eleet o the oute ac s (a abtay bouday essto). The potetal of a ode d(, y ) the fa etwo ca be wtte as U(, y) J F ( h ) F ( ) ( ) y, y, ( ) ( ) y,, (5) whee we edefe F, f ) ad ( ) ( ) ( ) s s s F, f ). ( ) ( ) ( ) s s s Please ote that a o-egula fa etwo (the oute ac essto s abtay) s a scetfc coudu, whch has ot bee solved befoe. Ref.[6] has eseached just the egula fa etwo (the oute ac essto s ), but ou foula (5) wth s dffeet fo the esult Ref.[6] because two esults depeds o the dffeet atces alog the othogoal decto. (a) Fg.4. Two essto etwo odels. (a) s a Fa etwo wth a abtay bouday essto ; (b) s a abtay haoc etwo. (b) Applcato 3. Whe, Fg. degades to a haoc etwo as show Fg.4(b), the potetal of a ode d(, y ) the U(, y) J F haoc etwo ca be wtte as ( ) ( ) y, y, y,, (5) whee we edefe ( ) ( ) ( ) F s F s s f ) ad ( ) ( ) ( ) F s F s s f ). I patcula, whe d(, y ) ad d(, y ) ae espectvely at the left ad ght poles, the potetal of Eq.(5) educes to 3

14 U(, y) J (. (5) ) Applcato 4. osde the put cuet J s at d(, y ) o the left edge, ad the output cuet J s at d(, y ) o the ght edge, the potetal of a ode d(, y ) the o-egula essto etwo of Fg. s U(, y) J ( ) ( cos ) G ( ) ( ), y,, y, y,, (53) whee s defed Eq.(3)., I patcula, whe ad h ( ), the potetal (53) educes to U(, y) F J ( ) F y, y,, (54) Applcato 5. osde a egula ectagula etwo of Fg. wth, whe d(, y ) s o the left edge, ad d(, y ) s o the ght edge, the potetal of a ode d(, y ) the ectagula etwo s F F, (55) ( ) ( ) U(, y) y, y, y, J ( ) ( cos ) F I patcula, whe y y, the potetal equato (55) educes to ( ) ( ) U(, y) F F y, y, J ( ) cos F, (56) Applcato 6. osde d(,) s at the botto edge, ad d(, ) s o the top edge, the potetal of a ode d(, y ) the o-egula essto etwo of Fg. s ( ) ( ) ( ) (),, y, (57) ( cos ) U(, y) J G whee, s defed Eq.(4), ad, cos( ). I patcula, whe, the potetal equato (57) educes to U(, y) [ ( ) ] J ( cos ) G whe ad, the potetal equato (57) educes to U(, y) [ ( ) ] F J ( cos ) F (), y,, (58) (), y,, (59) Applcato 7. osde d (,), ad d (, ) ae o two dagoal odes, the potetal of 4

15 a ode d(, y ) the o-egula essto etwo s U(, y) ( ) J ( ) ( cos ) G ( ) ( ),,, y,, (6) whee s defed Eq.(3)., I patcula, whe, the potetal of Eq.(6) educes to F ( ) F, (6) ( ) ( ) U(, y), y, J ( ) ( cos ) F Applcato 8. Assue Fg. s a se-fte etwo, ad but, ad y ae fte. osde d(, y ) s o the left edge, ad d(, y ) s o the ght edge, whe, the potetal of a ode d(, y ) the se-fte ectagula etwo s U (, y) J whee cos( y y ), F ( ) ( ) wth ( F F ) y y y d, (6) ( cos ) F h hcos ( h hcos ). Please ote that these deftos apply to all such ssues as appea below. Eq.(6) ca be deved by tag the lt of Eq.(55). Applcato 9. Assue Fg. s a se-fte etwo, whee but, ad y ae fte. Whe ad h ( ), d (, y) ad d (, y), tag the lt Eq.(54), we acheve the potetal a se-fte U (, y) F J etwo y yd, (63) F Applcato. Assue Fg. s a fte etwo, but ad y y ae fte, tag the lt Eq.(43), we have the potetal the fte ectagula etwo y y yy ( cos ) U(, y) d J, (64) h h Notce that Eqs.(6) ad (63) belog to the case of a se-fte etwo, whle Eq.(64) belogs to the case of a fte etwo. B. Resstace of cople ectagula etwo osde a ectagula etwo wth two abtay boudaes show Fg., whee the au coodate s (, ). Defg, the esstace betwee two odes d(, y ) ( ) ( ), s, s ad d(, y ) the fte ad se-fte etwos ae espectvely 5

16 ( ) ( ) ( ), y,, y, y,, y, ( cos ) G R ( d, d ), (65) R ( d, d ) y, y, y, y, ( h hcos ). (66) whee ( ), ad,, G ae, espectvely, defed Eqs.(9)-(5). Fo Eq.(66), thee be,, wth fte. Eq.(66) ca be deved by tag the lt Eq.(65). Poof of Eq.(65). Fo Fg., substtutg Eq.(4) wth, to (4), the Eq.(65) s vefed. Eq.(65) s a eact epesso whch stll cotas a vaety of esstace esults wth all ds of bouday codtos because the left ad ght boudaes ae the abtay esstos. Fo clealy udestadg foula (65), we set h ad h, o as specal values, ad gve seveal specal cases to udestad ts applcato ad eag. ase. Whe h, the etwo of Fg. degades to a ectagula etwo wth a abtay ght bouday, the foula (65) educes to whee educes to s, ( ) ( ) ( ), y,, y, y,, y, (, ) ( ) ( ) ( cos )[ F ( h ) F ] R d d ( ) ( ) ( ) ( ), s F F h s F s [ ( ) ]., (67) ase. Whe h h, the etwo of Fg. degades to a oal ectagula etwo, the foula (65) educes to ( ) ( ) ( ), y,, y, y,, y, ( cos ) F R ( d, d ), (68) whee educes to s, F F. Ths poble has bee eseached Ref.[3], ad gave ( ) ( ) ( ), s s Eq.() wth a double sus. lealy, ou esult (68) s dffeet fo Eq.(). Two dffeet esults wll be copaed the last secto. Ths also shows that the equvalet esstace ca be epessed dffeet fos. ase 3. Whe h, the etwo of Fg. degades to a o-egula fa etwo wth a abtay bouday as show Fg.4(a), by Eq.(65), we obta the esstace of a fa etwo ( ) ( ) ( ) -,,,,,,, (, ) y y y y ( ) ( ) F ( h ) F R d d, (69) whee s e-defed as s, ( ) ( ) ( ) ( ), s F F h s F s [ ( ) ]. I patcula, whe h, h, the etwo of Fg. degades to a oal fa 6

17 etwo, the foula (69) educes to ( ) ( ) ( ), y,, y, y,, y, F R ( d, d ), (7) whee s e-defed as s, F F. Ths case has bee eseached [37], but the esult ( ) ( ) ( ), s s s dffeet fo Eq.(7), howeve they ae equvalet to each othe. The easo s that they choce the dffeet at alog dffeet decto. Ths also shows that the equvalet esstace ca be epessed dffeet fos. ase 4. Whe h, h, the etwo degades to a fa etwo wth double essto edge, the foula (65) educes to ( ) ( ) ( ), y,, y, y,, y, (, ) R d d, (7) whee s e-defed as s,, F ( ). ( ) ( ) s s s ase 5. Whe h h, the etwo of Fg. degades to a haoc etwo, so, foula (65) educes to whee s, ( ) ( ) ( ), y,, y, y,, y, F R ( d, d ) s e-defed as F F ( ) ( ) ( ), s s, (7). Ths poble has bee eseached Ref.[34], but the esult s dffeet fo Eq.(7)], the easo s that they choce the dffeet at alog dffeet decto. I patcula, whe d(, y ) ad d(, y ) ae at the left ad ght poles, Eq.(7) educes to R ({, },{, }) y y ( ). (73) ase 6. Whe two odes ae o the sae vetcal as, fo (65) we have the esstace betwee two odes d(, y) ad d(, y ), ( ) R ({, y},{, y }) G cos y, y,. (74) Whee ad, G ae defed (4) ad (5). I patclla, whe, foula (74) educes to ( ) ( ) F ( ) F R ({, y},{, y }) F cos y, y,. (75) ase 7. Whe both d(, y ) ad d(, y ) ae at the left edge, foula (65) educes to ( ) ( ) F ( ( ) h ) F R ({, y},{, y }) G cos 7 y, y,. (76)

18 I patclla, whe h, d (,) ad d (, ), foula (76) educes to R ( ) ( ) F ( h ) F ({,},{, }) [ ( ) ]cot ( ) ( ) ( ) F ( h ) F. (77) It ca be foud that Eq.(77) agees wth the esult Ref.[4], clealy both of these esults ae vefed dectly by each othe. ase 8. Whe both d(, y ) ad d(, y ) ae at the sae hozotal as, fo (65), we have the esstace ( ) ( ) ( ),,, R ({, y},{, y}) G cos cos [( y ) ], (78) whee ad s, G ae defed (4) ad (5). Especally, whe both d(,) ad d(,) ae at the botto edge, Eq.(78) educes to ( ) ( ) ( ),,, R ({,},{,}) cot ( ). (79) G Whe, d (,) ad d (,) ae two coe pots at the botto edge, Eq.(79) educes to a eat esult, aely R ({,},{,}) F + cot ( ) F. (8) ase 9. Whe d(, y ) s o the left edge ad d(, y ) s o the ght edge, foula (65) educes to whee h h h h ( ) ( ), y, y, y,, y, ( cos ) G R ({, y },{, y }) F ( h ) F. ( ) ( ) ( ),, (8) I patcula, whe h h, Eq.(8) educes to ( ) F ( ) y, y, y, y, ( cos ) F R ({, y },{, y }). (8) ase. Whe d(,) s at the botto edge ad d(, ) s o the top edge, the foula (65) educes to ( ) R ({,},{, }) cot ( ), (83) ( ) ( ) ( ),,, G whee ad s, G ae defed (4) ad (5). ase. Whe d (,) s at the coodate og, ad d (, ) y s a abtay pot, by Eq.(65), the equvalet esstace s 8

19 R ({,},{, y}) h h ( cos ) G ( ) ( ) ( ), y,, y, y,, y,, (84) whee ad, ae defed Eqs.(4) ad (5). s, I patcula, whe h h ad y, Eq.(84) educes to R ( ) ( ) ( ) ( ) ( ) ({,},{, }) F F F F cot ( ) F, (85) ase. Whe d (,) ad d (, ) ae two dagoal odes, by (65) we have the esstace betwee two aally sepaated odes R h ( ) h h h ( ) ( ),, ({,},{, }) cot ( ) G, (86) whee F ( h ) F, ( ). ( ) ( ) ( ), I patcula, whe, Eq.(86) educes to R ( ) ({,},{, }) F + cot ( ) F. (87) Please ote that Eq.(87) s a desed equvalet esstace betwee two au sepaated odes a abtay essto etwo. Ths s a teestg esult because t s sple ad easy to eseach the asyptotc epaso fo the au esstace. Refs.[46, 47] studed the asyptotc epaso by ag use of the esult (). Obvously, the cocse Eq.(87) s oe coducve to the study of the asyptotc epesso of the au esstace. I addto, thee ae slates betwee equatos (8) ad (87), but oly o dffeeces, whee Eq.(8) s the esstace betwee two coe pots at the botto edge, Eq.(87) s the esstace betwee two au sepaated odes o the dagoal le. ase 3. Whe, wth, ad y, y ae fte. Tag the lt of Eq.(76), we have the esstace the se-fte etwo R ({, y },{, y }) y, y, h cos 9 ( ). (88) Obvously, case 3 s a se-fte etwo poble. The easo why the equvalet esstace s depedet of the ght bouday s that the etwo s fte o the ght. ase 4. Whe,, h, ad y, y ae fte. It eas that the etwo s fte at the botto ad left but fte at the top ad ght. Tag the lt of Eq.(88), we have [cos( y ) cos( y ) ] R ({, y},{, y}) ( ) d cos, (89) whee h hcos ( h hcos ). Ths defto apples to all such ssues as appea

20 below. I patclla, whe,, ad y, y, h ( ), but y y s fte, tag the lt of Eq.(88), we have the equvalet esstace o the left edge cos( y y) R ({, y},{, y}) ( ) d. (9) cos Eqs.(89) ad (9) belog to the poble of se-fte etwo, whch has ot bee solved befoe. ase 5. Whe,, but ad y y ae fte, we have the esstace betwee two abtay odes d(, y) ad d(, y ) cos( y y) ( h hcos ) R ( d, d) d, (9) Foula (9) ca be poved by tag the lt, Eq.(66). Eq.(9) shows that the equvalet esstace of a fte etwo s depedet of the bouday codtos. Notce that Eqs.(88)-(9) belog to the case of a se-fte etwo, whle Eq.(9) belogs to the case of a fte etwo. Sce Eq.(65) s a pofoud ad vesatle foula that t cotas ultple outcoes, fo eades to bette udestad the eag of Eqs.(65) ad (9), we ae gog to aga llustate the eag ad usefuless by fou sple eaples below. B A B A Fg.5. A -step essto etwo wth two abtay boudaes, the esstos the hozotal ad vetcal dectos ae, espectvely, ad ecept fo two abtay boudaes. B A ase 6. Whe, the essto etwo of Fg. degades to a essto etwo as show Fg.5, the equvalet esstace betwee ay two odes the essto etwo ca be wtte as R A B,,, (, ) 4 G R A A,,, (, ) 4 G whee s,, G ae, espectvely, defed Eq.(4) ad (5), ad, (9), (93) h h h, h h h. (94)

21 B B B A A A Fg.6. A abtay cople etwo of esstos wth fou abtay eleets whch ae, espectvely,,, ad. ase 7. Whe, the essto etwo of Fg. degades to a abtay essto etwo as show Fg.6, whee thee be fou abtay essto eleets (,,, ), the equvalet esstace betwee ay two odes d(, y ) ad d(, y ) ca be wtte as () () () () () (),,,,,, (, ) () () 3 G 9G R A A () () () () () (),,,,,, (, ) () () 3 G 9G R A B whee, h ad (5). Ad () () () (),, 4, 4, R ( A, ) () () 3 G 9G ( =, ), ad F ( ) ( ), wth, s,. (95). (96). (97) G ae, espectvely, defed Eqs.(4) ( ) h h 4h, ( 9 3h h h). (98) Fo the above devato, we fd that foula (65) s a geealzed esult, whch s applcable to ay etwo pobles ad suazed a vaety of cople etwo odels sce t cotas s abtay eleets (,,,,, ). ase 8. osde a egula ectagula etwo, whe (the, etwo s fte at the left but fte at the botto, top ad ght.), by Eq.(9), the esstace o the left edge s R ({, y},{, y }) h ( h)acs h h h. (99) I patcula, whe h ( ), Eq.(99) educes to R y y ({, },{, }). () ase 9. osde a egula ectagula etwo, whe (the, etwo s fte at

22 the left but fte at the botto, top ad ght.), by Eq.(9) we have the esstace o the left edge R ({, y},{, y }) ( h) h h h acs ( ) h h h. () I patcula, whe h, fo Eq.() we get R ({,},{,}). () Eqs.(99)-() ae two ovel esults whch ae gve fo the fst te. Ⅴ. Electcal popetes of cople cyldcal etwo osde the o-egula A. Nodal potetal of cople cyldcal etwo cyldcal etwo show Fg., whee the au ( coodate value s (, ), selectg ) V ( ) J as the efeece potetal, defg ( ), y y cos( y y ), the potetal of ay ode d(, y ) the fte ad se-fte etwos ca be wtte as whee ad ( ) ( ) y y y y U (, y) J ( ) ( cos ) G yy yy ( ) ( cos ), (3) U (, y) J h h, (4) G ae, espectvely, defed Eqs.()-(5). Fo Eq.(96), thee be,, wth fte. Eq.(4) ca be deved by tag the lt Eq.(3). I patcula, whe, foula (3) ad (4) educe to U (, y) yy yy ( ) J ( cos ) G, (5) U (, y) J h h yy yy ( ) ( cos ), (6) Poof of Eq.(3). Fo Fg., substtutg Eq.(38) to Eq.(8), we acheve ( ) X The substtuto of (7) to Eq.(7) yelds ep( y ) ep( y ) J. (7) ( ) ( ) ( t ) G ( ) ( ) y y y y U(, y) J ( cos ) G

23 s[( y y) ] s[( y y) ], (8) ( cos ) ( ) ( ) G Because the eleets the etwo s eal ube, the potetal U(, y ) ust be eal ube. Thus, etactg the eal pat of Eq.(8) to poduce Eq.(3). Foula (3) s a eagful esult because the etwo of Fg. s vey cople ad has ot bee esolved befoe, cotas a lot of essto etwo odels, whee each of the dffeet bouday essto epesets a dffeet etwo stuctue. So Foula (3) ca ceate ay teestg esults. I the followg applcatos we always assue that the cuet J goes fo d(, y ) to d(, y ) ecept fo specal stuctos. Applcato. osde a abtay cyldcal etwo of Fg. wth, by (3) we have the odal potetal whee educes to, ( ) ( ) y y y y U(, y) J ( ) ( cos ) F F F. ( ) ( ) ( ), s s I patcula, whe Eq.(9) educes to U(, y) yy yy ( ) J ( cos ) F, (9), () (a) (b) Fg.7. Two essto etwo odels. (a) s a cobweb etwo wth a abtay bouday essto ; (b) s a abtay globe etwo. Applcato. osde a cyldcal etwo of Fg.. Whe, Fg. degades to a cobweb etwo as show Fg.7(a), by (3) we have the odal potetal U(, y) J F ( h ) F ( ) ( ) y y y y ( ) ( ), () ( ) ( ) ( ) whee s edefed as F, f s) ad s s s F, f ). ( ) ( ) ( ) s s s I patcula, whe d(, y ) s at left edge, ad d(, y ) s at ght edge. Eq.() educes to 3

24 U(, y) h F cos( y y) J F h F ( ) ( ) ( ) ( ), () Please ote that the cobweb etwo wth a abtay bouday has ot bee esolved befoe, the pevous wo oly studed the oal cobweb etwo (the bouday essto s ) [6], Eq.s a ogal esult. Applcato 3. osde a abtay globe etwo show Fg.7(b). That s to say that Fg. degades to a globe etwo whe, fo (3) we have the odal potetal U y ( ) ( ) (, ) y y y y J F, (3) whee we edefe ( ) ( ) ( ) F s F s s f ) ad ( ) ( ) ( ) F s F s s f ). I patcula, whe d(, y ) s at left pole, ad d(, y ) s at ght pole, Eq.(3) educes to U(, y) J (. (4) ) Foula (4) s vey sple ad vey teestg because the potetal dstbuto s oly elated to the ad has othg to do wth y, whch shows the odal potetal s equal the sae lattude. Applcato 4. osde a o-egula cyldcal etwo of Fg.. Assue d(, y ) s o the left edge, ad d(, y ) s o the ght edge. by (3) we have the odal potetal whee ( ) ( ) ( ), U(, y) h h J G ( ) ( ), y y, yy ( ) ( ) ( cos ) F ( h ) F s defed Eq.(3), ad y y cos( y y ). I patcula, whe y y, Eq.(5) educes to h ( ) ( ) U(, y),, y ( ) ( ) y J ( cos ) G h, (5), (6) whe h h, Eq.(5) educes to U(, y) F F J F whe h h, y y, Eq.(5) educes to ( ) ( ) y y y y ( ) ( ) ( cos ) F F ( ) ( ) U(, y) () ( ) ( ) ( cos ) y J y F, (7). (8) Applcato 5. osde a o-egula cyldcal etwo of Fg.. Whe the ode d(, y) ad d(, y ) ae located o the left edge, Eq.(3) educes to 4

25 U(, y) yy yy, J ( ) cos G, (9) whee y y cos( y y ), ad (), s defed Eq.(3). Applcato 6. osde a o-egula cyldcal etwo of Fg.. Whe the ode d(, y ) ad d(, y ) ae located o the ght edge, Eq.(3) educes to U(, y) yy yy, J ( ) cos G, () Oe ow the potetal fucto have potat applcato value fo solvg the Laplace equato. I ths pape, the aalytcal solutos of ode potetal fuctos ude vaous codtos ae gve, whch povdes a ew theoy fo pactcal applcato. I patcula, these sple equatos of Eqs.(9) ad () ae vey teestg ad eagful fo applcatos. B. Resstace of cople cyldcal etwo osde a cople cyldcal etwo wth two abtay boudaes show Fg., ( ) ( ) whee the au coodate value s (, ), ad defg, s, s, The equvalet esstace betwee two odes d(, y ) ad d(, y ) the fte ad se-fte cyldcal etwos ae espectvely R ( d, d ) whee ( ), y y y, cos( y ), () ( ) ( ) ( ),,, ( ) ( cos ) G y, () cos( ) (, ) R d d ( h hcos ) ad s, G ae, espectvely, defed Eqs.(4)-(5). Fo Eq.(), thee be,, wth fte. Eq.() ca be deved by tag the lt Eq.(). Poof of Eq.(). Fo Fg., substtutg Eq.(3) wth, to Eq.(4), we theefoe acheve (). Foula s a eact ad ectg esult because the etwo of Fg. s vey cople ad has ot bee esolved befoe, ad cotas a lot of essto etwo odels, whee each of the dffeet bouday essto epesets a dffeet etwo stuctue. I patcula, whe tag soe specfc value fo ad, Eq.() gves se to a sees of specal cases below. ase. osde a o-egula cyldcal etwo of Fg.. Whe, the esstace of Eq.() educes to 5

26 cos( y ) R d d ( ), (3) ( cos )[ ( ) ] ( ) ( ) ( ),,, (, ) ( ) ( ) F h F whee educes to s, ( ) ( ) ( ) ( ), s F F h s F s [ ( ) ]. ase. osde a oal cyldcal etwo of Fg. wth, the esstace of Eq.() educes to R ( d, d ) cos( y ), (4) ( ) ( ) ( ),,, ( ) ( cos ) F whee educes to s, F F. ( ) ( ) ( ), s s ase 3. osde a o-egula cyldcal etwo of Fg., whe h, the left bouday collapses to a pole, the etwo of Fg. degades to a cobweb etwo wth a abtay bouday essto as show Fg.7(a), we have the equvalet esstace whee s e-defed as s, R d d cos( y ), (5) ( ) ( ) ( ),,, (, ) ( ) ( ) F ( h ) F ( ) ( ) ( ) ( ), s F F h s F s [ ( ) ]. I patcula, whe h, h, the etwo of Fg.7(a) degades to a egula cobweb etwo, the esstace of Eq.(5) educes to whee s, R ( d, d ) ( ) ( ) ( ) s edefed as F F. cos( y ), (6) ( ) ( ) ( ),,, F, s s Please ote that case 3 has bee eseached Ref.[37], but the esult s dffeet fo Eq.(6), howeve they ae equvalet to each othe. The easo s that they choce the dffeet at alog dffeet decto, whee Ref.[37] set up at alog the logtude, but ths pape set up at alog the lattude. ase 4. Whe h h, the left ad ght bouday collapse espectvely to two poles, the etwo of Fg. degades to a globe etwo as show Fg.7(b), we have cos( y ) R ( d, d ), (7) ( ) ( ) ( ),,, F whee s e-defed as s, F F. ( ) ( ) ( ), s s Please ote that case 4 has bee eseached Ref.[36], but the esult s dffeet fo Eq.(7), howeve they ae equvalet to each othe. The easo s that they choce the dffeet at alog dffeet aes. Ths also shows that the equvalet esstace ca be epessed dffeet fos. 6

27 ase 5. osde a o-egula cyldcal etwo of Fg., whe d (,) ad d (, ) y ae o the sae lattude, the esstace of Eq.() educes to R ({,},{, y}), cos( y ) G cos, (8) ( ) ( ) ( ) whee,,,, ad s defed Eq.(3). s, I patcula, whe h h, the etwo of Fg. degades to a egula cyldcal etwo, the esstace of Eq.(8) educes to R ({,},{, y}) F F cos( y ), (9) ( ) ( ) F cos Especally, whe d (,) ad d (, ) y ae o the left edge, Eq.(9) educes to R ({,},{, y}) F cos( y) F, (3) cos ase 6. osde a o-egula cyldcal etwo of Fg., whe both d(,) ad d(,) ae o the sae hozotal as, we have R ({,},{,}) ( ) ( ) ( ),,, ( ) ( cos ) G. (3) ase 7. Whe d (,) s at the coodate og, ad d (, ) y s a abtay pot, foula () educes to whee ad, ( ) ( ) ( ),,, cos( ) ({,},{, }) h h y R y ( ), (3) ( cos ) G ae defed Eqs.(4) ad (5). s, I patcula, whe h h ad y, Eq.(3) educes to cos( ) ({,},{, }) F F y F F R y ( ), (33) ( cos ) G ( ) ( ) ( ) ( ) ase 8. osde a o-egula cyldcal etwo of Fg., whe d (,) s o the left edge ad d (, ) y s o the ght edge, the esstace betwee two edges s ( ) ( ),, cos( ) ({,},{, }) h h h h y R y ( ), (34) ( cos ) G I patcula, whe h h, Eq.(34) educes to cos( ) ({,},{, }) F y R y. (35) ( cos ) F 7

28 Whe h, Eq. (34) educes to ({,},{, }) ( ) ( ) F ( h ) F R y h F, (36) ase 9. osde a o-egula cyldcal etwo of Fg., whe d (,) s at the botto edge, d (, ) y s a abtay ode, ad,, but y, ae fte, by(8) we have ( h hcos ) [ cos( y )]( q ) R ({,},{, y}) d, (37) whee q ( h ) ( h ), h hcos ( h hcos ). I patcula, whe h, Eq.(37) educes to [ cos( y )]( ) R ({,},{, y}) d. (38) Whe, but y s fte, Eq.(37) educes to ( h hcos ) cos( y ) R ({,},{, y}) d, (39) ( h hcos ) Notce that Eqs.(37) ad (38) belog to the case of a se-fte etwo, whle Eq.(39) belogs to the case of a fte etwo. Fo the above esults we ow foula () ad () ae two geeal esults whch, cotas ay esults a vaety of lattce stuctues, ca poduce ay ew esstace foulae, ad ca ceate ew detty (see Secto 6). It s essetal to tae to accout foula () aga ode to help the eade futhe to udestad ts eag, hee two sple eaples ae gve below. B B A A Fg.8 A 3D etwo wth esstos ad the espectve hozotal ad vetcal dectos ecept fo ad o the left ad ght edges. ase. Whe, Fg. degades to a 3D essto etwo as show Fg.8. By Eq.() we have 3 (, ), substtutg to Eq.() yelds 3 3 h ( h). (4) 8

29 () () So we have, ad 3, 4 3. By Eq.(), we have the equvalet esstace t, s t, s betwee ay two odes cos( y 3) R ( A, P ) () () (),,, () 3 9 G, (4) whee P epesets the odes of A, B,, ad, () s, () G ae, espectvely, defed Eqs.(4) ad (5). Eq.(4) s a geeal foula, whch ca poduce two specfc esult below. osde the esstace betwee two odes A ad A, thee be y, Eq.(4) educes to R ( A, A ) osde the esstace betwee two odes educes to () () (),,, () 3 9 G A ad B (o R A B R A () () (),,, (, ) (, ) () 3 9 G, (4) ), thee be y, Eq.(4), (43) Fg.8 s a sple ad coo etwo odel, but gettg the equvalet esstace has always bee a dffcult poble because of the coplety of the bouday codtos. Eq.(4) s gve fo the fst te, whch povdes a ew theoetcal bass fo pactcal applcato. B A D B A D Fg.9 A 3D etwo wth esstos ad the espectve hozotal ad vetcal dectos ecept fo ad o the left ad ght edges. ase. Whe 3, Fg. degades to a 3D essto etwo as show Fg.9. We ca get the equvalet esstace betwee ay two odes by Eq.(). By Eq.() we have, substtutg t to Eq.() yelds, 3 h ( h) 9. (44) h ( h) (3) () So we have, ad,. By Eq.(), we have t, s t, s cos( y ) cos( y ), (45) () () () () () (),,,,,, () () 4 4 G 6 G R ( A, P )

30 whee P epesets the odes of A, B,, D, ad, s, G ae, espectvely, defed Eqs.(4) ad (5). Eq.(45) s a geeal foula, whch ca poduce thee specfc esult below. osde the esstace betwee two odes A ad () () () () () (),,,,,, () () 4 4 G 6 G R ( A, A ) osde the esstace betwee two odes A ad A, thee be y, Eq.(45) educes to, (46) () () () () (),,,,, () () 4 4 G 6 G R ( A, B ) osde the esstace betwee two odes A ad B, thee be y, Eq.(45) educes to, (47), thee be y, Eq.(45) educes to. (48) () () () () () (),,,,,, () () 4 4 G 6 G R ( A, ) The case tells us aga that the geeal foula s a eagful ad ultpupose esult sce just a 3D essto etwo has ch cotets ad ay fuctos such as Eq.(45)-(48). Ⅵ. opaato ad Tgooetc Idettes A. Poposto-. A geeal tgooetc detty- Defg y, cos( ) y, ad, j j. Whe, ad, y ae atual ubes, ad,, y, y, we have the tgooetc detty cos( ) cos( ) y, j y, j j ( cos ) h ( cos j) y y, (49) ( cos ) ( ) ( ) ( ), y,, y, y,, y, F whee F F ad ( ) ( ) ( ), s s F ( ) ( ), F F F wth ( ) ( ) ( ), h hcos ( h hcos ). (5) h hcos ( h hcos ) Please ote that the detty (49) s foud fo the fst te by ths pape. Idetty (49) educes a double su to a sgle su, whch povdes a ew poposto ad eseach ethod fo atheatcas. Poof of the Poposto- 3

31 osde a egula ectagula etwo show Fg. wth, Ref.[3] gave a esstace foula () by the Laplaca at ethod, whch s the fo of double su. Howeve, ths pape gves Eq.(68) by the RT-V ethod, whee the codto ad etwo stuctue agee wth Ref.[3]. Obvously, the two esults wth dffeet fo two dffeet atcles ae ecessaly equvalece because they ae fo the sae etwo wth the sae coodates. opag foula (68) wth foula (), we edately obta detty (49). We fd Eq.(49) s a teestg detty fo splfyg the double su to be a sgle su. I patcula, whe tag patcula values of y,, ad,, we have the followg sple tgooetc dettes. Deducto. Whe y y y, Eq.(49) educes to cos( ) j cos( ) j cos ( y ) j ( cos ) h ( cos j) ( ) ( ) ( ) cos ( ),, y,. (5) cos F I patcula, whe,, Eq.(5) educes to j [ ( ) ] cos( () j)cos( y ) cos ( ) F y ( ) j ( cos ) ( cos j) h F cos. (5) Deducto. Whe y y, Eq.(49) educes to cos( ) cos( ) j j 4 j ( cos ) ( cos ) h j cos ( ) cot ( ). (53) ( ) ( ) ( ),,, F Whe, y, thee be, Eq.(53) educes to cos( () () () ) j cos( ) j,,, () j j, (54) h ( cos ) F whee F F, () () (), s s F ( ) ( ) wth h h( h). () Deducto 3. Whe, y, cos( ) y, Eq.(49) educes to ( ) cos ( ) y, y, j j ( cos ) h ( cos j) 3

32 I patcula, whe, Eq.(55) educes to ( ) y y F cos ( ) ( ) F F y, y, (55) ( (),, ) cos ( ) y y j ( ) F ( y, y, ) y y ( ) j ( cos ) ( cos ) cos h j F. (56) whee F F F F ad the followg Eq.(76) s used. ( ) ( ) ( ) ( ) Whe y, y, Eq.(55) educes to [ ( ) ] cos( )cos( ) j 4 j ( cos ) h ( cos j) whee F F [ ( ) ]cot ( ). (57) ( ) ( ) F Deducto 4. Whe, y, y, we have, Eq.(49) educes to () () () () [cos( ) j cos( ) j],,, () j h ( cos j) F, (58) F ( ) ( ) wth h h( h) ad h h( h). I patcula, whe ad, Eq.(58) educes to. (59) j ( cos ) cos ( ) ( ) ( ) j F F ( ) h j F The above dscovees ae teestg because they ae foud ot atheatcs but physcs. Obvously, accodg to the detty (49) we ca deve a sees of specal tgooetc equaltes whe the dffeet coodates (, y ) s ade. B. Poposto-. A geeal tgooetc detty- Defg, cos( ) j j, ad, j j. Whe, ad, y ae atual ubes, ad,, y, we have the tgooetc detty cos( y ) ( cos ) ( cos ), j, j, j, j j h j y cos( y ) ( ) F ( ) ( ) ( ),,, y ( ) ( cos ), (6) whee F F ad ( ) ( ) ( ), s s F ( ) ( ), F F F wth ( ) ( ) ( ) 3

33 Poof of the Poposto-, h hcos ( h hcos ). (6) h hcos ( h hcos ) osde a egula cyldcal etwo show Fg. wth, we obta a esstace foula (6) by the RT-V ethod. Howeve Ref.[3] gave aothe esstace foula () by eas of the Laplaca at ethod. opag foula (4) wth Eq.(), we edately obta detty (6). I patcula, whe settg specal ube values of y,, ad,, we have the followg dettes. Deducto. Whe y, fo (6), we have whee ( cos ) h ( cos ) ( cos ) F [cos( ( ) ( ) ( ) ) cos( ) ] j j,,, ( ) j j. (6) I patcula, whe, we have cos, the Eq.(6) educes to F F, () () (), s s cos( () () () ) j cos( ) j,,, () j j, (63) h ( cos ) 4F F ( ) ( ), wth () h h( h), h h( h). (64) Deducto. Whe, Eq. (6) educes to cos [( ) j]( cos y) j ( cos ) h ( cos j) ( ) ( ) y F F cos y y F cos. (65) Deducto 3. Whe y, we have cos, j j ( ), fo (6), we have ( ), (66) j h ( cos ) () () (), j, j,,, () j F whee F () ( ) ( ), ad ae defed Eq.(64). Please ote that Eq.(66) s dffeet fo Eq.(58) because the ae dffeet fo each othe. Deducto 4. Whe,, ( ), y, by (65), we have cos( y ) y( y). (67) cos 33

34 The above equatos ae gve fo the fst te.. Poposto-3. A geeal tgooetc detty-3 ( ) ( ) ( ) () Defg F F, F ( ) ( ),,, ad, s s ad defg ( ),, ad h h cos ( h h cos ), (68), (69) h h cos ( h h cos ) Assue atual ubes satsfy,, whe atual ube satsfes, ad the abtay eal ube h, we have Poof of the Poposto-3 [cos( ) cos( ) ] coth( l ) ( cos ) h h h. (7) F ( ) ( ) ( ),,, ( cos ) osde a oal cyldcal etwo, whee the au coodate value s (, -). Whe d(,) ad d(,) ae o the sae logtude, by Eq.(3), we have R({,},{,}) ( ) ( ) ( ),,, ( cos ) F. (7) Howeve, Ref.[48] gave aothe esstace foula (the paaetes Ref.[48] have bee coveted to be eactly the sae as those Fg.) cos( ) cos( ) R ({,},{,}) coth( l ), (7) ( h h cos ) Thus foula (7) s equal to Eq.(7) sce they have the sae paaetes the sae etwo. By Eq.(7) equals (7) to yeld Eq.(7). That eas, poposto-3 holds. Deducto. Whe,, ( ),, ad s gve by (69), Eq.(7) educes to s ( )cos coth( l ) h F ( h h cos ), (73) 4 ( cos ) F whee F ( ) ( ), ad s gve by Eq.(68). Deducto. Whe, ( ), s gve by (69), Eq.(7) educes to 34

35 cos( () () () ) cos( ) h,,, () ( h h cos ) F coth(l ) 8. (74) whee () F F, F ( ) ( ), ad s gve by Eq.(64). () () (), s s Deducto 3. Sce coth(l ) ( ) ( ), substtutg to (74) togethe wth (69), whch yelds h h h F () () () h cos,,, cos( ) cos( ) h () ( cos ) 8. (75) whee ( ), F F, ad s gve by Eq.(64). () () (), s s Deducto 4. Whe, ( ), Eq.(7) educes to whee the followg detty s used [cos( ) cos( ) ], (76) cos ( cos ) h h h ( cos ) coth(l ) 35. (77) We fd that detty (7) s teestg because the left-had sde of the detty s the su ove but the ght-had sde s the su ove, whch povdes a ew atheatcal detty fo the applcato of atheatcs. Ⅶ. ocluso ad oet Ths pape set up a uvesal RT-V theoy (Recuso-Tasfo theoy wth potetal paaetes) ad eveals the basc pcple of electcal chaactestcs of cople essto etwos fo the fst te, such as two theoes of theoe- ad theoe- ae poposed, ad the eplct electcal chaactestcs (potetal ad esstace) foulae of the cople etwos ae gve, whch cotas the esults of fte ad fte etwos. It ust be ephaszed that pevous theoes (Maly efes Gee s fucto techque ad Laplaca at ethod) caot solve essto etwos wth cople boudaes, because the Gee s fucto techque s usually used to solve fte etwo pobles, ad the Laplaca at ethod depeds o the soluto of two egevalues whch eles o two atces alog two othogoal dectos. Usg the RT-V ethod to study essto etwos just eles o oe at alog oe vetcal dectos, whch avods the cofuso of aothe at wth abtay eleets that caot be solved eplctly, ad also gves cocse esults a sgle suato, such as the all equatos gve by ths pape.

36 As applcatos of two theoes, the aalytcal solutos of the electcal chaactestcs (cludg potetal fucto ad equvalet esstace) the cople essto etwos wth abtay boudaes ae gve, ad ay teestg esults of the vaous types of essto etwos ae poduced. Please ote that a o-egula ectagula etwo (see Fg.) cotas abtay fa (see Fg.4(a)) ad haoc (see Fg.4(b)) etwos; a o-egula cyldcal etwo (see Fg.) cotas abtay cobweb (see Fg.7(a)) ad globe (see Fg.7(b)) etwos. Thus the aalytcal solutos of the electcal chaactestcs gve by ths pape have geeal sgfcace, whch apples to a wde vaety of lattce stuctues, ad eas the Laplace equato wth cople bouday codtos s esolved by odellg essto etwos. The tgooetc dettes gve show that ou eseach wo establshed ew eseach deas ad appoaches fo the study of atheatcal dettes. I addto, esstace foulae (65), (66), () ad () et al. ca be eteded to pedace etwos sce the gd eleets ca be ethe esstos o pedaces Fg. ad Fg., Fo eaple, assue Z R jl, Z j /, (78) L that we ca theefoe study the abtay RL etwo f we do a plual aalyss [3, 4] to the esstace esults obtaed ths pape. Ou esstace foulae ca also apply to factoal ccuts, fo eaple, the fequecy doa pedace of factoal capactace ad ductace ae espectvely [5] ZL Lcos( ) j Ls( ), (79) Z Whe we eplace ad wth cos( ) j s( ). (8) Z L ad Z, ad use the plual aalyss [3, 4], the equvalet pedaces of the factoal RL etwo wth abtay boudaes ca be obtaed. REFERENES [] J. Scasco, oducto asotoyc dsodeed systes: Effectve-edu theoy, Phys. Rev. B 9, (974). [] S. Kpatc, Pecolato ad oducto, Rev. Mod. Phys. 45, (973). [3] N. I. Lebova, Y. Yu. Taasevch, N. V. Vygots, A. V. Eseepov, ad R. K. Ahuzhaov, Asotopy electcal coductvty of fls of alged tesectg coductg ods, Phys. Rev. E 98, 4 (8). [4] L. Q. Eglsh, F. Paleo, J. F. Stoes, J. uevas, R. aeteo-gozález, ad P. G. Keveds, Nolea localzed odes two-desoal electcal lattces, Phys. Rev. E 88, 9 (3). [5] E. N. Bulgaov, D. N. Masov, ad A. F. Sadeev, Electc ccut etwos equvalet to chaotc quatu bllads, Phys. Rev. E 7, 465 (5). [6] A. R. McGu, Photoc cystal ccuts: A theoy fo two- ad thee-desoal etwos, Phys. Rev. B 6, 335(). 36

37 [7] P. H. Tua, H.. Lag, J.. Tug, P. Y. hag, K. F. Huag, ad Y. F. he, Mafestg the evoluto of egestates fo quatu bllads to sgula bllads the stogly coupled lt wth a tucated bass by usg RL etwos, Phys. Rev. E 9, 696 (5). [8] N. Ma, G.-Y. Su, Y.-Z. You,. Xu, et al., Dyacal sgatue of factoalzato at a decofed quatu ctcal pot, Phys. Rev. B 98, 744 (8). [9] M. M. Russell. The pocessg of heagoally sapled two desoal sgals. P. IEEE. 7, (979). [] X.-L. Q ad S.-. Zhag, Topologcal sulatos ad supecoductos, Rev. Mod. Phys. 83, (). [] V. V. Albet, L. I. Glaza, ad L. Jag, Topologcal Popetes of Lea cut Lattces. Phys. Rev. Lett. 4, 739 (5). [] L. B. he, J. H. hug, B. Gao, T. he, et al. Topologcal Sp Ectatos Hoeycob Feoaget I3, Phys. Rev. X 8, 48 (8). [3] A. V. Melov, M. Shuba, ad P. Lab, Modelg the electcal popetes of thee-desoal pted eshes wth the theoy of essto lattces, Phys. Rev. E 97, 4337 (8). [4] F. Lupe, M. Eschbach, et al. Electcal esstace of dvdual defects at a topologcal sulato suface. Nat. ou. 8, 574 (7). [5] A. G. Radwa ad K. N. Salaa, Passve ad actve eleets usg factoal L β α ccut, IEEE Tas. cuts Syst. I, Reg. Papes, 58(), (). [6] A. L. Baabás, R. Albet, ad H. Jeog, Mea-feld theoy fo scale-fee ado etwos, Phys. A, 7, 73-87(999). [7] R. aaccolo, A. D. Pace, H. Feshbach, ad A. Mola, A Statstcal Theoy of the Mea Feld, A. Phys. 6, 5-3 (998). [8] N. Sh. Izala, V. B. Pezzhev, P. Ruelle, ad.-k. Hu, Logathc ofoal Feld Theoy ad Bouday Effects the De Model, Phys. Rev. Lett. 95, 66 (5). [9] G. S. Joyce, Eact esults fo the daod lattce Gee fucto wth applcatos to ufo ado wals a plae, J. Phys. A: Math. Theo, 5, 45 (7). [] A. Ko ad S. Heze, Aalytcal esults fo the Gee s fuctos of lattce feos, Phys. Rev. B, 96, 553 (7). []. Koutscha, Lattce Gee fuctos of the hghe-desoal face-ceteed cubc lattces, J. Phys. A: Math. Theo, 46, 55 (3). [] J. A. Yas ad D. R. Tle, Dect calculato of the lattce Gee fucto wth abtay teactos fo geeal cystals, Phys. Rev. E, 85, 6676 (). [3] D. J. Kle ad M. Rad, Resstace dstace, J. Math. he., 895 (993). [4] M.-. La ad W.-. Wag, Fast dect solves fo Posso equato o D pola ad sphecal geoetes, Nue. Methods Patal Dffe. Equ. 8, (). [5] L. Boges ad P. Dapa, A fast paallel algoth fo the Posso equato o a ds, J oput Phys. 69, 5-9 (). [6] Z.-Z. Ta, Recuso-tasfo ethod ad potetal foulae of the cobweb ad fa etwos, h. Phys. B. 6(9), 953 (7). [7] J. set, Applcato of the lattce Gee's fucto fo calculatg the esstace of a fte etwo of esstos. A. J. Phys. 68, 896 (). [8] J. H. Asad, Eact Evaluato of the Resstace a Ifte Face-eteed ubc Netwo, J Stat Phys. 5 (6): 77 8 (3). [9] M. Q. Owadat ad J. H. Asad. Resstace calculato of fte thee-desoal Tagula ad heagoal ps Lattces. Eu. Phys. J. Plus. 3(9), 39 (6). [3] F. Y. Wu, Theoy of essto etwos: the two-pot esstace. J. Phys. A: Math. Ge. 37, 6653 (4). [3] W. J. Tzeg ad F. Y. Wu, Theoy of pedace etwos: the two-pot pedace ad L esoaces. J. Phys. A: Math. Ge. 39, 8579 (6). 37

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω. Ut: Rado expeet saple space evets classcal defto of pobablty ad the theoes of total ad copoud pobablty based o ths defto axoatc appoach to the oto of pobablty potat theoes based o ths appoach codtoal pobablty

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

On Eigenvalues of Nonlinear Operator Pencils with Many Parameters

On Eigenvalues of Nonlinear Operator Pencils with Many Parameters Ope Scece Joual of Matheatc ad Applcato 5; 3(4): 96- Publhed ole Jue 5 (http://wwwopececeoleco/oual/oa) O Egevalue of Nolea Opeato Pecl wth May Paaete Rakhhada Dhabaadeh Guay Salaova Depatet of Fuctoal

More information

21(2007) Adílson J. V. Brandão 1, João L. Martins 2

21(2007) Adílson J. V. Brandão 1, João L. Martins 2 (007) 30-34 Recuece Foulas fo Fboacc Sus Adílso J. V. Badão, João L. Mats Ceto de Mateátca, Coputa cão e Cog cão, Uvesdade Fedeal do ABC, Bazl.adlso.badao@ufabc.edu.b Depataeto de Mateátca, Uvesdade Fedeal

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

VIII Dynamics of Systems of Particles

VIII Dynamics of Systems of Particles VIII Dyacs of Systes of Patcles Cete of ass: Cete of ass Lea oetu of a Syste Agula oetu of a syste Ketc & Potetal Eegy of a Syste oto of Two Iteactg Bodes: The Reduced ass Collsos: o Elastc Collsos R whee:

More information

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent Appled ad Coputatoal Matheatcs 27; 7(-): 2-7 http://www.scecepublshggoup.co//ac do:.648/.ac.s.287.2 ISSN: 2328-565 (Pt); ISSN: 2328-563 (Ole) A Covegece Aalyss of Dscotuous Collocato Method fo IAEs of

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t Lectue 8 14. MAC o MIMO Systes wth Ustuctued Ucetates We cosde ae--cotol MIMO systes the o, ABu t (14.1) whee s the syste state vecto, u s the cotol put, B s kow costat at, A ad (a dagoal at wth postve

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING TATITIC IN TRANITION-ew sees Octobe 9 83 TATITIC IN TRANITION-ew sees Octobe 9 Vol. No. pp. 83 9 A GENERAL CLA OF ETIMATOR UNDER MULTI PHAE AMPLING M.. Ahed & Atsu.. Dovlo ABTRACT Ths pape deves the geeal

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition ylcal aplace Soltos ebay 6 9 aplace Eqato Soltos ylcal Geoety ay aetto Mechacal Egeeg 5B Sea Egeeg Aalyss ebay 6 9 Ovevew evew last class Speposto soltos tocto to aal cooates Atoal soltos of aplace s eqato

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

The calculation of the characteristic and non-characteristic harmonic current of the rectifying system

The calculation of the characteristic and non-characteristic harmonic current of the rectifying system The calculato of the chaactestc a o-chaactestc hamoc cuet of the ectfyg system Zhag Ruhua, u Shagag, a Luguag, u Zhegguo The sttute of Electcal Egeeg, Chese Acaemy of Sceces, ejg, 00080, Cha. Zhag Ruhua,

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

Computational Material Chemistry. Kaito Takahashi Institute of Atomic and Molecular Sciences,

Computational Material Chemistry. Kaito Takahashi Institute of Atomic and Molecular Sciences, Coputatoal ateal Chesty Kato Takahash sttute of Atoc ad olecula Sceces kt@gate.sca.edu.tw A Udestad the basc theoy behd quatu chesty calculato Lea ug quatu chesty poga Udestad what the output s sayg Get

More information

Born-Oppenheimer Approximation. Kaito Takahashi

Born-Oppenheimer Approximation. Kaito Takahashi o-oppehee ppoato Kato Takahah toc Ut Fo quatu yte uch a ecto ad olecule t eae to ue ut that ft the=tomc UNT Ue a of ecto (ot kg) Ue chage of ecto (ot coulob) Ue hba fo agula oetu (ot kg - ) Ue 4pe 0 fo

More information

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS #A39 INTEGERS 9 (009), 497-513 GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS Mohaad Faokh D. G. Depatent of Matheatcs, Fedows Unvesty of Mashhad, Mashhad,

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

An Unconstrained Q - G Programming Problem and its Application

An Unconstrained Q - G Programming Problem and its Application Joual of Ifomato Egeeg ad Applcatos ISS 4-578 (pt) ISS 5-0506 (ole) Vol.5, o., 05 www.ste.og A Ucostaed Q - G Pogammg Poblem ad ts Applcato M. He Dosh D. Chag Tved.Assocate Pofesso, H L College of Commece,

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Iterative Optimization of Spatial Solar Cell: Performance and Technology

Iterative Optimization of Spatial Solar Cell: Performance and Technology Sold State Pheoea Vols. 97-98 (4) pp 19-114 (4) Tas Tech Publcatos, Swtzelad oual do:1.48/www.scetfc.et/ssp.97-98.19 Ctato (to be seted by the publshe) Copyght by Tas Tech Publcatos Iteatve Optzato of

More information

Coherent Potential Approximation

Coherent Potential Approximation Coheret Potetal Approxato Noveber 29, 2009 Gree-fucto atrces the TB forals I the tght bdg TB pcture the atrx of a Haltoa H s the for H = { H j}, where H j = δ j ε + γ j. 2 Sgle ad double uderles deote

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

Lecture 11: Introduction to nonlinear optics I.

Lecture 11: Introduction to nonlinear optics I. Lectue : Itoducto to olea optcs I. Pet Kužel Fomulato of the olea optcs: olea polazato Classfcato of the olea pheomea Popagato of wea optc sgals stog quas-statc felds (descpto usg eomalzed lea paametes)!

More information

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method) Ojectves 7 Statcs 7. Cete of Gavty 7. Equlum of patcles 7.3 Equlum of g oes y Lew Sau oh Leag Outcome (a) efe cete of gavty () state the coto whch the cete of mass s the cete of gavty (c) state the coto

More information

Positive Semi-Definite Correlation Matrices: Recursive Algorithmic Generation. and Volume Measure

Positive Semi-Definite Correlation Matrices: Recursive Algorithmic Generation. and Volume Measure Pue Matheatcal Scece Vol. 0 o. 7-49 Potve Se-Defte Coelato Matce: Recuve Algothc Geeato ad Volue Meaue Wee Hüla FRSGlobal Stelad Seefeldtae 69 CH-8008 Züch Stelad ee.huela@fglobal.co hula@blue.ch Abtact

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION Bars Erkus, 4 March 007 Itroducto Ths docuet provdes a revew of fudaetal cocepts structural dyacs ad soe applcatos hua-duced vbrato aalyss ad tgato of

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Optimality Criteria for a Class of Multi-Objective Nonlinear Integer Programs

Optimality Criteria for a Class of Multi-Objective Nonlinear Integer Programs Coucatos Appled Sceces ISSN -77 Volue, Nube,, 7-77 Optalty Ctea o a Class o Mult-Obectve Nolea Itege Pogas Shal Bhagava Depatet o Matheatcs, Babu Shvath Agawal College, Mathua (UP) Ida Abstact hs pape

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9 Lectue, Wte 9 Page 9 Combatos I ou dscusso o pemutatos wth dstgushable elemets, we aved at a geeal fomula by dvdg the total umbe of pemutatos by the umbe of ways we could pemute oly the dstgushable elemets.

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Super-efficiency infeasibility and zero data in DEA: An alternative approach

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Super-efficiency infeasibility and zero data in DEA: An alternative approach [Type text] [Type text] [Type text] ISSN : 0974-7435 Volue 0 Iue 7 BoTechology 204 A Ida Joual FULL PAPER BTAIJ, 0(7), 204 [773-779] Supe-effcecy feablty ad zeo data DEA: A alteatve appoach Wag Q, Guo

More information

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES Ezo Nakaza 1, Tsuakyo Ibe ad Muhammad Abdu Rouf 1 The pape ams to smulate Tsuam cuets aoud movg ad fxed stuctues usg the movg-patcle semmplct

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations IOSR Joual of Mathematcs (IOSRJM) ISS: 78-578 Volume, Issue (July-Aug 01), PP 14-19 Legede-coeffcets Compaso Methods fo the umecal Soluto of a Class of Oday Dffeetal Equatos Olaguju, A. S. ad Olaegu, D.G.

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

An Enhanced Russell Measure of Super-Efficiency for Ranking Efficient Units in Data Envelopment Analysis

An Enhanced Russell Measure of Super-Efficiency for Ranking Efficient Units in Data Envelopment Analysis Aeca Joual of Appled Sceces 8 (): 92-96, 20 ISSN 546-9239 200 Scece Publcatos A Ehaced Russell Measue of Supe-Effcecy fo Rakg Effcet Uts Data Evelopet Aalyss,2 Al Ashaf,,3 Az B Jaafa,,4 La Soo Lee ad,4

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

Compactness in Multiset Topology

Compactness in Multiset Topology opatess ultset Topolog Sougata ahata S K Saata Depatet of atheats Vsva-haat Satketa-7335 Ida Abstat The pupose of ths pape s to todue the oept of opatess ultset topologal spae e vestgate soe bas esults

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

UvA-VU Master Course: Advanced Solid State Physics

UvA-VU Master Course: Advanced Solid State Physics UvA-U Maste ouse: Advaced Sold State Pyscs otets 005: Dffacto fo peodc stuctues wee 6, Ad lectoc bad stuctue of solds wee 7, Ad Moto of electos ad taspot peoea wee 8, Ad Supecoductvty wee 9&10, RW Magets

More information

φ (x,y,z) in the direction of a is given by

φ (x,y,z) in the direction of a is given by UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o

More information

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, See A, OF HE ROMANIAN ACADEMY Volue 9, Nube 3/8,. NONDIFFERENIABLE MAHEMAICAL PROGRAMS. OPIMALIY AND HIGHER-ORDER DUALIY RESULS Vale PREDA Uvety

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

7. Queueing and sharing systems. ELEC-C7210 Modeling and analysis of communication networks 1

7. Queueing and sharing systems. ELEC-C7210 Modeling and analysis of communication networks 1 7. Queueg ad shag systes ELECC7 Modelg ad aalyss of coucato etwoks 7. Queueg ad shag systes Cotets Refeshe: Sle teletaffc odel Queueg dscle M/M/FIFO ( seve, watg laces, custoe laces M/M/PS ( seve, watg

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

Application Of Alternating Group Explicit Method For Parabolic Equations

Application Of Alternating Group Explicit Method For Parabolic Equations WSEAS RANSACIONS o INFORMAION SCIENCE ad APPLICAIONS Qghua Feg Applcato Of Alteatg oup Explct Method Fo Paabolc Equatos Qghua Feg School of Scece Shadog uvesty of techology Zhagzhou Road # Zbo Shadog 09

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

New Vector Description of Kinetic Pressures on Shaft Bearings of a Rigid Body Nonlinear Dynamics with Coupled Rotations around No Intersecting Axes

New Vector Description of Kinetic Pressures on Shaft Bearings of a Rigid Body Nonlinear Dynamics with Coupled Rotations around No Intersecting Axes Acta Polytechca Hugaca Vol. No. 7 3 New Vecto escpto of Ketc Pessues o haft eags of a gd ody Nolea yamcs wth oupled otatos aoud No Itesectg Axes Katca. tevaovć Hedh* Ljljaa Veljovć** *Mathematcal Isttute

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

Spectral Problems of Two-Parameter System of Operators

Spectral Problems of Two-Parameter System of Operators Pue ad Appled Matheatc Joual 5; 4(4-: 33-37 Publhed ole Augut, 5 (http://wwwcecepublhggoupco//pa do: 648/pa5447 ISSN: 36-979 (Pt; ISSN: 36-98 (Ole Spectal Poble of Two-Paaete Syte of Opeato Rahhada Dhabaadeh

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Fractional Integrals Involving Generalized Polynomials And Multivariable Function

Fractional Integrals Involving Generalized Polynomials And Multivariable Function IOSR Joual of ateatcs (IOSRJ) ISSN: 78-578 Volue, Issue 5 (Jul-Aug 0), PP 05- wwwosoualsog Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto D Neela Pade ad Resa Ka Deatet of ateatcs APS uvest

More information

AIRCRAFT EQUIVALENT VULNERABLE AREA CALCULATION METHODS

AIRCRAFT EQUIVALENT VULNERABLE AREA CALCULATION METHODS 4 TH ITERATIOAL COGRESS OF THE AEROAUTICAL SCIECES AIRCRAFT EQUIVALET VULERABLE AREA CALCULATIO METHODS PEI Yag*, SOG B-Feg*, QI Yg ** *College of Aeoautcs, othweste Polytechcal Uvesty, X a, Cha, ** Depatmet

More information

Hyper-wiener index of gear fan and gear wheel related graph

Hyper-wiener index of gear fan and gear wheel related graph Iteatoal Joual of Chemcal Studes 015; (5): 5-58 P-ISSN 49 858 E-ISSN 1 490 IJCS 015; (5): 5-58 014 JEZS Receed: 1-0-015 Accepted: 15-0-015 We Gao School of Ifomato Scece ad Techology, Yua Nomal Uesty,

More information

Generalized Delta Functions and Their Use in Quasi-Probability Distributions

Generalized Delta Functions and Their Use in Quasi-Probability Distributions Geealzed Delta Fuctos ad The Use Quas-Pobablty Dstbutos RA Bewste ad JD Faso Uvesty of Maylad at Baltmoe Couty, Baltmoe, MD 5 USA Quas-pobablty dstbutos ae a essetal tool aalyzg the popetes of quatum systems,

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Noncommutative Solitons and Quasideterminants

Noncommutative Solitons and Quasideterminants Nocommutatve Soltos ad Quasdetemats asas HNK Nagoya Uvesty ept. o at. Teoetcal Pyscs Sema Haove o eb.8t ased o H ``NC ad's cojectue ad tegable systems NP74 6 368 ep-t/69 H ``Notes o eact mult-solto solutos

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS Electoc tascptos Mathematcal Isttute Slesa Uvesty Opava Czech Republc August Ths tet s a electoc tascpto of the ogal eseach pape D Kupa Some Geometc Aspects of Vaatoal Poblems Fbed Mafolds Fola Fac Sc

More information

The Infinite Square Well Problem in the Standard, Fractional, and Relativistic Quantum Mechanics

The Infinite Square Well Problem in the Standard, Fractional, and Relativistic Quantum Mechanics Iteatoal Joual of Theoetcal ad Mathematcal Physcs 015, 5(4): 58-65 DOI: 10.593/j.jtmp.0150504.0 The Ifte Squae Well Poblem the Stadad, Factoal, ad Relatvstc Quatum Mechacs Yuchua We 1, 1 Iteatoal Cete

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

HEURISTICS FOR MULTIPLE KNAPSACK PROBLEM

HEURISTICS FOR MULTIPLE KNAPSACK PROBLEM IADIS Iteatoal Cofeece o Appled Coputg 005 HEURISTICS FOR MULTIPLE KNAPSACK PROBLEM Stefa Fdaova Isttute of Paallel Pocessg Acad. G. Bochev st. bl.5a 3 Sofa Bulgaa ABSTRACT The Multple Kapsac poble (MKP)

More information