The Infinite Square Well Problem in the Standard, Fractional, and Relativistic Quantum Mechanics

Size: px
Start display at page:

Download "The Infinite Square Well Problem in the Standard, Fractional, and Relativistic Quantum Mechanics"

Transcription

1 Iteatoal Joual of Theoetcal ad Mathematcal Physcs 015, 5(4): DOI: /j.jtmp The Ifte Squae Well Poblem the Stadad, Factoal, ad Relatvstc Quatum Mechacs Yuchua We 1, 1 Iteatoal Cete of Quatum Mechacs, Thee Goges Uvesty, Cha Depatmet of Radato Ocology, Wake Foest Uvesty, NC Abstact Thee has bee a cotuous agumet o the coectess of the Lask s soluto fo the fte squae well poblem the factoal quatum mechacs. I ths pape, we pove that the Lask s fuctos ae ot amathematcal soluto to the factoal Schödge equato ad the equato does ot have ay ozeo solutos at all the sese of mathematcs. As the stadad quatum mechacs, we vew the fte squae well poblem as the lmt of the fte well poblem, ad defe the soluto fo the fte squae well poblem as the lmt of the soluto fo the fte squae well poblem. Usg the smple popety of the fte opeatos, we show that Lask s fucto ca be the lmt soluto fo the fte squae well poblem. The sgle-sded well poblem ad the 3 dmesoal well poblem ae cluded. Ths opeato method woks fo the same poblems the elatvstc quatum mechacsas well. Keywods Factoal quatum mechacs, Relatvstc quatum mechacs, Factoal Schödge equato, Relatvstc Schödge equato 1. Itoducto I 000, Lask toduced the factoal quatum mechacs [1-3]. As a example he solved the fte squae well poblem a pecewse fasho [3]. Howeve, 010 Jeg, et al [4] ctczed that t was meagless to solve a olocal equato a pecewse fasho ad they demostated that t was mpossble fo the goud state fucto to satsfy the factoal Schödge equato ea the bouday sde the well. I a sees of papes [5-8], Bay ssted that he explctly completed the calculato Jeg s pape ad the wave fuctos dd satsfy the factoal Schödge equato sde the well. Hawks ad Schwaz [9] clamed that the Bay s calculato cotaed seous mstakes. Luchko [10] povded some evdece that the soluto dd ot satsfy the equato outsde the well. O the othe had, Dog [11] e-obtaed the Lask s soluto by solvg the factoal Schödge equato wth the path tegal method. It s ot easy fo eades to judge the mathematcal agumet [1, 13], but weagee wth Jeg s opo, cludg that the pecewse way to solve the equato s wog, ad that the soluto does ot satsfy the factoal Schödge equato, sce we wll aguably show that the Lask s fuctos do ot satsfy the factoal Schödge equato ( 1) aywhee o the x-axs. Howeve, fact, ths soluto does ot satsfy the * Coespodg autho: yuchuawe@gmal.com (Yuchua We) Publshed ole at Copyght 015 Scetfc & Academc Publshg. All Rghts Reseved stadad Schödge equato ethe, ad t s othg but the lmt of the soluto to the fte squae poblem. Wthout a mathematcal defto of the egevalues ad egefuctos of a Hamltoa opeato wth local fty, the agumet wll be edless. Theefoe, ths pape we mathematcally defe the fte squae well poblem as a lmt of the fte well. Ths vewpot s also useful fo othe potetals wth fty, such as the coulomb potetal the hydoge atom, the sgle-sded hamoc oscllato, etc. Sce t s dffcult to solve the factoal Schödge s equato wth a fte squae well potetal, we wsh a dect way to fd the soluto of the fte squae well poblem. Fotuately, we ca expess the factoal Hamltoa tems of the stadad Hamltoa. I the same way, we ca also solve the fte squae well poblem the elatvstc quatum mechacs, sce the factoal ad elatvstc quatum mechacs ae closely elated. We ackowledge that these solutos eed to be vefed whe the solutos to the fte squae well poblem ae epoted late. We fst ecall the fte squae well poblem stadad quatum mechacs, ad the solve the poblem the factoal quatum mechacs ad the elatvstc quatum mechacs.. Defto of the Ifte Well Poblem I ths secto we wll ecall the elato betwee the fte ad fte squae well poblems the stadad quatum mechacs, ad accodgly defe the fte squae well

2 Iteatoal Joual of Theoetcal ad Mathematcal Physcs 015, 5(4): poblem the factoal quatum mechacs..1. The Fte ad Ifte Potetal Wells the Stadad Quatum Mechacs I the stadad quatum mechacs [14], the oe dmesoal tme-depedet Schödge equatos H x E x, (1) whee x s a wave fucto defed o the x-axs, ad E s a eegy. The Hamltoa opeato H T V x () s the summato of the ketc eegy ad the potetaleegy of a patcle. The stadad ketc eegy opeato s p d T m m, (3) whee p s the oe dmesoal mometum opeato d p. (4) As usual, m s the mass of the patcle ad ħ s the educed Plak costat. A fte squae well [15] s defed as V f x 0 x a V0 x a whee V0 0 s the depth of the well ad a s the wdth of the well. The subscpt f meas the fte squae well. The egeequato of the fte squae well poblem s (5) d V f x x E x m. (6) Ths equato ca be solved sepaately thee egos fst ad the the pecewse solutos ae coected by the cotuty codto that the wave fucto ad ts devatve must be cotuous. Ths pocess geeates the egevalues Ef ( x ) ad egestates f( x ), wth 1,,3. The state wth =1 s the goud state [15]. Oe ca easly vefy that the explct solutos satsfy the egeequato at evey pot o the whole x-axs d f Vf x f x E f x m, (7) whch covces us that the cotuty codto we use s sutable. I fact ths cotuty codto comes fom the Schödge equato. The fte squae well potetal s defed as V x 0 x a x a At x a, the potetal has two fte jumps. The subscpt meas the fte squae well. Obvously the potetal V s ot eal physcs ad ot well-defed mathematcs, sce we do ot kow how to deteme the value of the multplcato V x() x outsde the well, eve f the wave fucto outsde the well s zeo. (Does 0 equal 0,1, o?) I physcs ths potetal s used as a smplfed model fo a vey deep fte squae well. Covetoally the Schödge equato (8) d V x x E x m (9) s solved a pecewse way aga [15]. The wave fucto outsde the well s zeo because the potetal s fte ad the wavefucto sde the well s a se o cose fucto. The evsed cotuty codto fo ths case s that the wave fuctos must be cotuous but the devatve should ot be. The fte squae well poblem has the smple ad well-kow soluto x 1 s x a x a a a 0 x a, (10) E (11) 8ma fo 1,,3,. Howeve, we emphasze that ths soluto does ot satsfy the Schödge Equatos (9). Take the goud state as a example, we have d m 1 1 V x x E1 1 x x a x a 4ma a ( ) ( ). (1) The wave fucto satsfes the Schödge equato eveywhee except at x=a ad x=-a. Ths s ot a small flaw fo a dffeetal equato, ad we have to say that the wave fuctos (10) ae ot the soluto of the Schödge equato at all. The exta tems the above equato comes fom the dscotuty of the devatve of the wave fucto, but f we keep the devatve of the wavefucto cotuous, we ca oly get a tval soluto x 0, whch s meagless physcs. We have to say that the Schödge equato wth the fte squae well potetal does ot have solutos mathematcs. (See the appedx f oe feels

3 60 Yuchua We: The Ifte Squae Well Poblem the Stadad, Factoal, ad Relatvstc Quatum Mechacs supsed.) Sce the fte squae well s a lmt of the fte squae well, covetoally we call the lmt of the solutos of the fte squae well poblem lm ( x) ( x), lm E ( x) E, (13) f f V0 V0 the soluto of the fte squae well, ad symbolcally wte d V x x E x m. (14) The pecewse way to solve the Schödge equato fo the fte squae well, togethe wth the afoemetoed evsed cotuty codto, s othg but a easy ad dect way to get the lmt of the fte squae well soluto wthout solvg the fte squae well poblem. Ths defto fo the fty potetal s applcable fo seveal mpotat cases quatum mechacs. It helps us to aswe the followg questos: (1) what sese the wave fuctos of the hydoge atom [14]ca satsfy the Schödge equato at the og 0 whee the coulomb potetal V ( ) 1/ s udefed. ( s the dstace of a pot to the og.) () why the wave fuctos fo the potetal V ( ) 1/ / [14], whee 0 s much smalle tha 1, ca be dveget at the og whle we clam that the wave fuctos should be be cotuous ad dffeetable eveyday, (3) why oly the odd (athe tha eve) ege-fuctos of the smple hamoc oscllato [15] ae the solutos of the sgle-sded oscllato V( x) 1 m x x 0. (15) x 0 (4) why half-se fuctos ae the soluto of the sgle-sded fte squae well ( o fte wall) but half-cose fuctos ae ot. We wll expla ths case futhe the secto III. I oe wod, the dffeet cotuty codtos of wave fuctos quatum mechacs ae used ode that oe ca dectly fd the lmt soluto fo a potetal wth fty, stead of solvg the Schödge equato wth a coespodg fte potetal fst ad the calculatg the lmt of the solutos... The Lask s Soluto of the Ifte Squae Well I 000, Lask geealzed the classcal ketc ad mometum elato to 1 p d T D p mc D mc /, (16) whee the coeffcet D mc / ( mc) wth χ a postve eal umbe, ad c s the speed of the lght. Whe, takg 1/ ad hece D 1/ ( m), the factoal ketc eegy ecoves the stadad ketc eegy,.e. T p / ( m) T. Ogally Lask [1-3] equed the factoal paamete 1, but ths pape we allow 0. The factoal Schödge equato s x H x E (17) H T V. (18) Fo the fte squae well poblem, we have d D ( ) ( x) V x x E x. (19) Lask [3] solved the equato above a pecewse fasho, ad got the same wave fuctos ad a ew eegy level x 1 s x a x a a a 0 x a, E (0) D a. (1) Howeve, 010 Jeg, et al [4] ctczed that t was meagless to solve the olocal equato (19) a pecewse fasho ad by cotadcto they demostated that the goud state fucto dd ot satsfy the factoal Schödge equato. We beleve that Jeg et al s coect ad Bas s wog ths agumet. Thee ae two easos. (1) The aguable evdece s that the soluto does ot satsfy the factoal Schödge equato ( 1 ) aywhee o the x-axs. Takg the goud state as a example, we have the fact d 1/ d D ( ) ( x) D ( x) *(1/ x) D x x x S( ) S( ) cos a a a a a 1 D x x x C( ) C( ) s. a a a a a 1 () The above fucto s ot popotoal to 1 ( x) sde the well, t s ot zeo outsde the well, ad t s dveget at the boudaes x a. Hee S ad C ae se ad cose tegal fuctos, espectvely. () I fact, the factoal Schödge equato wth the fte squae well (19) does ot have ay

4 Iteatoal Joual of Theoetcal ad Mathematcal Physcs 015, 5(4): ozeo solutos. Sce the potetal V( x ) s fty, to avod V ( x) ( x) be fty, we have to let ( x) be zeo outsde the well, that s, ( x) s a compactly suppoted fucto. Thuswe have V ( x) ( x) 0 o the x-axs (f we take 0 0). Fo 0, the ketc eegy opeato s olocal, so the esultat fucto D p ( x) wll be exteded outsde the well. Theefoe Equato (19) eques a compacted fucto to equal a o-compacted fucto. Ths s mpossble. Theefoe thee ae o ozeo solutos to the factoal Schödge equato (0 ) wth a fte squae well potetal. By the way, Luchko [10] eve had a cojectue that the soluto fo the fte squae well poblem factoal quatum mechacs should be teated as a ew specal fucto. Now let us defe the fte squae well poblem ad ts soluto the factoal quatum mechacs mathematcally. Defto 1. The soluto of the fte squae well poblem. Suppose the factoal Schödge equato fo the fte squae well potetal d ( ) ( ) f f f f D x V x x E x has the solutos f( x ) ad E f wth 1,,3,. If the lmts exst lm ( x) ( x), lm E E, (3) f f V0 V0 we say that they ae the solutos fo the fte squae well poblem, ad symbolcally wte d ( ) ( ) D x V x x E x. Obvously t wll be dffcult ad complcated to solve the fte squae well poblem accodg to the above defto. Befoe ay stct solutos have bee epoted the publcatos, let us develop a tetatve way to solve the fte squae well poblem based o some tutve popety of the fty opeato. 3. The Ifte Squae Well Poblems Factoal Quatum Mechacs Based o the elato betwee the stadad ad factoal Hamltoas, oe ca costuct a o-pecewse method fo the fte squae well. Thee ae thee cases, (1) oe dmesoal, () thee dmesoal ad (3) oe-sded fte squae well poblems The 1D Ifte Squae Well Poblem Fo the 1D fte squae well poblem, the factoal Hamltoa H T V ( x) (4) ca be expessed tems of the stadad Hamltoa as H T V ( x). (5) / / H ( m) D H. (6) Hee s the deducto of the above opeato elatoshp / / / ( m) D H ( m) D T V x / / ( m) D T x a / / ( m) D V x x a / D ( p ) x a x a T x a x a 0 x a T T x a 0 x a T x a T V H. Theefoe we have / / / / / H ( x) ( m) D H ( x) ( m) D E ( x) D a ( x) (7). (8) We see that the wave fuctos of the factoal Hamltoa ae the same fuctos of the ogal Hamltoa, ad the ew eegy levels ae E D a. (9) That s to say, the Lask s soluto s e-obtaed a o-pecewse fasho. I the above deducto, we use some fomal opeatos of the fty opeato, such as T / T. (30)

5 6 Yuchua We: The Ifte Squae Well Poblem the Stadad, Factoal, ad Relatvstc Quatum Mechacs 3.. The 3D Ifte Squae Well Poblem I quatum mechacs, the 3D fte squae well s defed 0 x a, y a, ad z a V() Vx, y, z (31) othewse. Hee ( x, y, z) s a pot the 3D Eucldea space. Please otce that the 3D fte squae well potetal s the summato of thee oe dmesoal fte squae wells, x y z x y V,, V V V z (3) sce 0 0 0,0, ad. By the way, a 3D fte squae well potetal does ot have such a smple elato, so t s vey dffcult ad complcated to solve. Hee we see that the use of the fty potetal ca geatly smplfy the poblem wth a vey bg fte potetal. The stadad Hamltoa s p H V ( ) V ( x, y, z) (33) m mx x x whee p s the 3D mometum opeato. The Schödge s equato has the soluto H( x, y, z) E ( x, y, z) (34) ( x, y, z) ( x) ( y) ( z) (35) m l ( Elm m l ), (36) 8ma wth, m, l 1,,3. ( x ) s defed (10) The factoal Hamlto s p / H D V () /. (37) D V() x x x Aga, we have the same elato betwee the stadad ad factoal Hamltoa / / H ( m) D H (38) Theefoe, the factoal Schödge equato has the soluto H ( x, y, z) E ( x, y, z) (39) ( x, y, z) ( x) ( y) ( z) (40) m l Eml D ( m l ) a /, (41) Wth, m, l 1,, Oe-sded Ifte Squae Well The 1D oe-sded fte squae well s defed as U x The stadad Hamlto s The Schödge equato has the soluto x 0, (4) 0 x > 0. p H U x. (43) m p H( x) ( x) U x ( x) (44) m 0 x 0 ( x) s( kx) x 0 (45) k E (46) m wth k 0. Hee we epeat that the wave fucto (45) does ot satsfy the Schödge equato (44) at x=0. The oe atual questo s why we do ot call 0 x 0 ( x) cos( kx) x 0 a soluto. I fact, fo a fte sgle sded squae well U f x the soluto to the Schödge equato s f (47) V 0 x 0, (48) 0 x>0, Aexp( x) x 0 ( x) s( kx 0) x 0 Hee the paametes k 0 ad 0 (49) mv / k. The othe paametes A ad 0 ae chose so that ths soluto s cotuous ad dffeetable at x=0. It s easy to vefy that V0 0 x 0, lm f ( x) s( kx) x 0. (50) Ths s the easo why the half-se fucto (45) s a soluto, but the half-cose fucto ( x) (47) s ot. The factoal Hamltoa s H D T U x. (51)

6 Iteatoal Joual of Theoetcal ad Mathematcal Physcs 015, 5(4): Based o (6), the factoal Schödge equato has the soluto wth k 0. H ( x) D T ( x) U x ( x) (5) 0 x 0 ( x) s( kx) x 0 (53) E D k (54) 4. Ifte Squae Well Poblems Relatvstc Quatum Mechacs Accodg to specal elatvty [14], the elato betwee the ketc eegy The subscpt meas specal elatvty. The elatvstc Hamltoa [14] s 4 T ad the 3D mometum p s T p c m c. (55) 4 H p c m c V. (56) I Summefeld s quatum theoy [14], ths Hamltoa leaded to a eegy fomula fo the coulomb potetal, whch accuately matches the hydoge spectum wth the fe stuctue. Accodgly, the elatvstc Schödge equato s 4 (, t) c m c (, t) V (, t) t p. (57) The squae oot opeato above s defed by the Foue Tasfomato of the wave fucto, p c m c (, t) 3 3d exp( / ) c m c 3exp( '/ ) ( ', t) d ' ( ) p p p R p. (58) R Obvously t s dffcult to deal wth ths equato mathematcally [14], so ths equato had bee abadoed utl ecetly whe we dscoveed that ts eegy fomula 5 has a extemely valuable tems, whch s 41% of the expemetal Lamb shft [16, 17]. As the oly excepto ths pape, the otato stads fo the fe stuctue costat athe tha the factoal ode. Fo a low speed moto, the elatvstc equato (57) ecoves the Schödge equato (, t ) mc p (, ) (, ) t m t V t, whose factoal paamete. Fo a vey hgh speed moto, f the est eegy ca be eglected appoxmately, we have (, t) c (, t) V (, t) t p, (59) whch s the factoal Schödge equato wth 1. Geeally speakg, f the speed of a patcle ceases fom low to hgh, the elatvstc Schödge equato (57) wll appoxmately elate to a factoal Schödge equato, whose paametes chages fom to 1. Theefoe the factoal ad the elatvstc Schödge equato should be studed at the same tme as two sste equatos The 1D Ifte Squae Well Fo the oe-dmesoal fte squae well poblem, the elatvstc Hamltoa s 4 H p c m c V x d 4. c m c V x (60) Aga, we ca expess the elatvstc Hamltoa tems of the classcal Hamltoa as sce 4 H mc H m c, (61)

7 64 Yuchua We: The Ifte Squae Well Poblem the Stadad, Factoal, ad Relatvstc Quatum Mechacs 4 mc H m c mc V ( x) m c m d 4 d 4 c m c V ( x) H. (6) See the stepwse deducto (7) fo detals. Theefoe the Lask s wave fuctos ( ) satsfy the elatvstc Schödge equato wth a ew eegy level E x H ( x) E ( x) (63) c 4 m c (64) 4a fo 1,,3,. Fo the exteme elatvstc case, we have 4.. The 3D Ifte Squae Well Poblem E The elatvstc Hamltoa c. (65) a 4 H p c m c V (66) ca be expessed tems of the classcal Hamltoa as p H V m 4 H mc H m c. (67) Theefoe, the elatvstc Schödge equato has the soluto H ( ) E ( ) (68) ( x, y, z) ( x) ( y) ( z) (69) m l c Eml ( m l ) m c a The Oe-sded Ifte Squae Well Poblem. (70) The elatvstc Hamltoa fo the oe-sded squae well s d 4. H c m c U x (71) Based o the elato betwee the elatvstc stadad Hamltoas (61), we kow that the elatvstc Schödge equato has the soluto 5. Coclusos 0 x 0 ( x) s( kx) x 0 4 (7) E k c m c. (73) We agee wth Jeg et al that the factoal Schödge equato caot be solved a pecewse fasho, ad the Lask s fuctos ae ot a mathematcal soluto of ths equato. O the othe had, sce these fuctos ae ot the mathematcal soluto of the stadad Schödge equato ethe ad ae just the lmt of the solutos of the fte squae well, to dspove the Lask s soluto, oe eeds to solve the fte squae well poblem ad take the lmt of the solutos. Befoe the soluto of the fte squae well poblem s epoted, we develop a tetatve dect method to solve the fte squae well poblem thee cases usg the staghtfowad popety of the fty opeato. Meawhle, we pot out that the elatvstc quatum mechacs s a appoxmate ealzato of the factoal quatum mechacs ad the fte squae well poblem ca be teated a same way. Note 1. We just otced that the pape [18] epoted some tal eseach o the oe dmesoal elatvstc fte squae well, but to utlze the exstg mathematcal esults, they used a completely dffeet defto o the fte squae well, whch had o elato to the fte squae well. They defed 0 0 the multplcato V ( x ), ad atfcally demaded the esultat fucto of the Hamltoa opeato to become zeooutsde the well though they ae actually ot. Fom the vewpot of physcs, they chaged the fte squae well poblem to aothe oe. Note. I [4], thee wee two seteces that By asg that Hamltoa to the powe α/, we get a plausble factoal Laplaca ad Eq. (7) s deed a soluto. Howeve, ths s ot the Resz factoal devatve. These wods emd us that Jeg et al kew the method used ths pape but thought t dd ot wok sce the opeato ths method was ot Resz factoal devatve. I fact, ths s the Resz factoal devatve, see Equato (7) [1] fo the defto. ACKNOWLEDGEMENTS Ths wok s suppoted by the Natoal Natual Scece Foudato. The eseach o the elatvstc Schödge equato was suppoted by Gasu Idusty Uvesty dug , wth a subject ttle O the solvablty of a equato wth a squae oot opeato elatvstc quatum mechacs. Thaks fo the suppot fom my famly as well.

8 Iteatoal Joual of Theoetcal ad Mathematcal Physcs 015, 5(4): Appedx 1. Patcle a box Usually quatum mechacs t s also demaded that the devatve of the wavefucto addto to the wavefucto tself be cotuous; hee ths demad would lead to the oly soluto beg the costat zeo fucto, whch s ot what we dese, so we gve up ths demad (as ths system wth fte potetal ca be egaded as a ophyscal abstact lmtg case, we ca teat t as such ad "bed the ules"). Note that gvg up ths demad meas that the wavefucto s ot a dffeetable fucto at the bouday of the box, ad thus t ca be sad that the wavefucto does ot solve the Schödge equato at the bouday pots x = 0 ad x = L (but does solve eveywhee else). a_box Appedx. A Alteatve Defto o the Ifte Squae Well Poblem Defto. The soluto of the fte squae well poblem. We defe a potetal x Vm x V0 a m wth V 0 >0 ad a>0, m=1,,3. Suppose the factoal Schödge equato fo the fte potetal V x m d ( ) ( ) m m m f D x V x x E x has the solutos m( x ) ad E m wth 1,,3,. If the lmts exst lm ( x) ( x), lm E E, m m m m we say that they ae the solutos fo the fte squae well poblem, ad symbolcally wte d ( ) ( ) D x V x x E x. REFERENCES [1] N. Lask, Factoal quatum mechacs, Physcal Revew E 6, pp (000). [3] N. Lask, Factoal ad quatum mechacs, Chaos 10, pp (000). [4] M. Jeg, S.-L.-Y. Xu, E. Hawks, ad J. M. Schwaz, O the olocalty of the factoal Schödge equato, Joual of Mathematcal Physcs 51, 0610 (010). [5] S. S. Bay, O the cosstecy of the solutos of the space factoal Schödge equato, J. Math.Phys. 53, (01). [6] S. S. Bay, Commet O the cosstecy of the solutos of the space factoal Schödge equato, Joual of Mathematcal Physcs 53, (01). [7] S. S. Bay, Commet O the cosstecy of the solutos of the space factoal Schödge equato, Joual of Mathematcal Physcs 54, (013). [8] S. S. Bay, Cosstecy poblem of the solutos of the space factoal Schödge equato, Joual of Mathematcal Physcs 54, 09101(013). [9] E. Hawks ad J. M. Schwaz, Commet O the cosstecy of the solutos of the space factoal Schödge equato, Joual of Mathematcal Physcs 54, (013). [10] Y. Luchko, Factoal Schödge equato fo a patcle movg a potetal well, Joual of Mathematcal Physcs 54, (013). [11] J. Dog, Levy path tegal appoach to the soluto of the factoal Schödge equato wth fte squae well, pept axv: v1 [math-ph] (013). [1] J. Tae ad J. Esguea, Boud states fo multple Dac-δ wells space-factoal quatum mechacs, Joual of Mathematcal Physcs 55, (014). [13] J. Tae ad J. Esguea, Tasmsso though locally peodc potetals space-factoal quatum mechacs, Physca A: Statstcal Mechacs ad ts Applcatos 407(014), pp [14] A. Messah, Quatum Mechacs Vol 1, (Noth Hollad Publshg Compay 1965). [15] M. Belloa ad R.W. Robettb, The fte well ad Dac delta fucto potetals aspedagogcal, mathematcal ad physcal models quatum mechacs, Physcs Repots 540(014), pp5-1. [16] Y. We, The Quatum Mechacs Explaato fo the Lamb Shft, SOP Tasactos o Theoetcal Physcs1 (014), o. 4, pp.1-1. [17] Y. We, O the dvegece dffculty petubato method fo elatvstc coecto of eegy levels of H atom, College Physcs14(1995), No. 9, pp5-9. [18] K. Kaleta, M. Kwasck, ad J. Maleck, Oe-dmesoal quas-elatvstc patcle a box, Revews Mathematcal Physcs5, No. 8 (013) [] N. Lask, Factoal Schödge equato, Physcal Revew E66, (00).

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Hyper-wiener index of gear fan and gear wheel related graph

Hyper-wiener index of gear fan and gear wheel related graph Iteatoal Joual of Chemcal Studes 015; (5): 5-58 P-ISSN 49 858 E-ISSN 1 490 IJCS 015; (5): 5-58 014 JEZS Receed: 1-0-015 Accepted: 15-0-015 We Gao School of Ifomato Scece ad Techology, Yua Nomal Uesty,

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

Physics 114 Exam 2 Fall Name:

Physics 114 Exam 2 Fall Name: Physcs 114 Exam Fall 015 Name: For gradg purposes (do ot wrte here): Questo 1. 1... 3. 3. Problem Aswer each of the followg questos. Pots for each questo are dcated red. Uless otherwse dcated, the amout

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS Bud Satoso ABSTRACT APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Appoxmate aalytc

More information

Council for Innovative Research

Council for Innovative Research Geometc-athmetc Idex ad Zageb Idces of Ceta Specal Molecula Gaphs efe X, e Gao School of Tousm ad Geogaphc Sceces, Yua Nomal Uesty Kumg 650500, Cha School of Ifomato Scece ad Techology, Yua Nomal Uesty

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

The Geometric Proof of the Hecke Conjecture

The Geometric Proof of the Hecke Conjecture The Geometc Poof of the Hecke Cojectue Kada Sh Depatmet of Mathematc Zhejag Ocea Uvety Zhouha Cty 6 Zhejag Povce Cha Atact Begg fom the eoluto of Dchlet fucto ug the e poduct fomula of two fte-dmeoal vecto

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation Recet Advaces Flud Mechacs, Heat & Mass asfe ad Bology Numecal Soluto of No-equlbum Hypesoc Flows of Datomc Gases Usg the Geealzed Boltzma Equato RAMESH K. AGARWAL Depatmet of Mechacal Egeeg ad Mateals

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh) Joual of Qualty Measuemet ad Aalyss JQMA 3(), 07, 5-34 Jual Pegukua Kualt da Aalss FULLY IGHT PUE GOUP INGS (Gelaggag Kumpula Tule Kaa Peuh) MIKHLED ALSAAHEAD & MOHAMED KHEI AHMAD ABSTACT I ths pape, we

More information

Generalized Delta Functions and Their Use in Quasi-Probability Distributions

Generalized Delta Functions and Their Use in Quasi-Probability Distributions Geealzed Delta Fuctos ad The Use Quas-Pobablty Dstbutos RA Bewste ad JD Faso Uvesty of Maylad at Baltmoe Couty, Baltmoe, MD 5 USA Quas-pobablty dstbutos ae a essetal tool aalyzg the popetes of quatum systems,

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

VIII Dynamics of Systems of Particles

VIII Dynamics of Systems of Particles VIII Dyacs of Systes of Patcles Cete of ass: Cete of ass Lea oetu of a Syste Agula oetu of a syste Ketc & Potetal Eegy of a Syste oto of Two Iteactg Bodes: The Reduced ass Collsos: o Elastc Collsos R whee:

More information

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables Appled Mathematc, 0,, 8-86 do:046/am095 Publhed Ole Novembe 0 (http://wwwscrpog/oual/am) Dtbuto of Geometcally Weghted Sum of Beoull Radom Vaable Abtact Deepeh Bhat, Phazamle Kgo, Ragaath Naayaachaya Ratthall

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES Jose Javer Garca Moreta Graduate Studet of Physcs ( Sold State ) at UPV/EHU Address: P.O 6 890 Portugalete, Vzcaya (Spa) Phoe: (00) 3 685 77 16

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM Joual o Mathematcal Sceces: Advaces ad Applcatos Volume 6 Numbe 00 Pages 77-9 PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM DAU XUAN LUONG ad TRAN VAN AN Depatmet o Natual Sceces Quag Nh

More information

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

arxiv:cond-mat/ v2 11 Dec 2000

arxiv:cond-mat/ v2 11 Dec 2000 arxv:cod-mat/0006 v Dec 000 THE NTURE OF THE LON TIME DECY T SECOND ORDER TRNSITION POINT Moshe Schwartz School of Physcs ad stroomy Tel vv Uversty Tel vv, Ramat vv, Israel d S. F. Edwards Cavedsh Laboratory

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials Poceedgs of The Natoa Cofeece O Udegaduate Reseach (NCUR) 00 The Uvesty of Noth Caoa at Asheve Asheve, Noth Caoa Ap -, 00 Pemutatos that Decompose Cyces of Legth ad ae Gve y Moomas Lous J Cuz Depatmet

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method) Ojectves 7 Statcs 7. Cete of Gavty 7. Equlum of patcles 7.3 Equlum of g oes y Lew Sau oh Leag Outcome (a) efe cete of gavty () state the coto whch the cete of mass s the cete of gavty (c) state the coto

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems It Joual of Math Aalyss, Vol 8, 04, o 8, 865-879 HIKARI Ltd, wwwm-hacom http://ddoog/0988/jma044368 A Epaded Method to Robustly Pactcally Output Tacg Cotol fo Uceta Nolea Systems Keyla Almha, Naohsa Otsua,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES Ezo Nakaza 1, Tsuakyo Ibe ad Muhammad Abdu Rouf 1 The pape ams to smulate Tsuam cuets aoud movg ad fxed stuctues usg the movg-patcle semmplct

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

An Unconstrained Q - G Programming Problem and its Application

An Unconstrained Q - G Programming Problem and its Application Joual of Ifomato Egeeg ad Applcatos ISS 4-578 (pt) ISS 5-0506 (ole) Vol.5, o., 05 www.ste.og A Ucostaed Q - G Pogammg Poblem ad ts Applcato M. He Dosh D. Chag Tved.Assocate Pofesso, H L College of Commece,

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Second Geometric-Arithmetic Index and General Sum Connectivity Index of Molecule Graphs with Special Structure

Second Geometric-Arithmetic Index and General Sum Connectivity Index of Molecule Graphs with Special Structure Iteatoal Joual of Cotempoay Mathematcal Sceces Vol 0 05 o 9-00 HIKARI Ltd wwwm-hacom http://dxdoog/0988/cms0556 Secod Geometc-Athmetc Idex ad Geeal Sum Coectty Idex of Molecule Gaphs wth Specal Stuctue

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS Electoc tascptos Mathematcal Isttute Slesa Uvesty Opava Czech Republc August Ths tet s a electoc tascpto of the ogal eseach pape D Kupa Some Geometc Aspects of Vaatoal Poblems Fbed Mafolds Fola Fac Sc

More information

Born-Oppenheimer Approximation. Kaito Takahashi

Born-Oppenheimer Approximation. Kaito Takahashi o-oppehee ppoato Kato Takahah toc Ut Fo quatu yte uch a ecto ad olecule t eae to ue ut that ft the=tomc UNT Ue a of ecto (ot kg) Ue chage of ecto (ot coulob) Ue hba fo agula oetu (ot kg - ) Ue 4pe 0 fo

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Lecture 12: Spiral: Domain Specific HLS. Housekeeping

Lecture 12: Spiral: Domain Specific HLS. Housekeeping 8 643 ectue : Spal: Doma Specfc HS James C. Hoe Depatmet of ECE Caege Mello Uvesty 8 643 F7 S, James C. Hoe, CMU/ECE/CACM, 7 Houseeepg You goal today: see a eample of eally hghlevel sythess (ths lectue

More information