Simultaneous estimation of wavefields & medium parameters

Size: px
Start display at page:

Download "Simultaneous estimation of wavefields & medium parameters"

Transcription

1 Simultaneous estimation of wavefields & medium parameters reduced-space versus full-space waveform inversion Bas Peters, Felix J. Herrmann Workshop W- 2, The limit of FWI in subsurface parameter recovery. SEG 85TH annual meeting, Friday, 23 October SLIM University of British Columbia

2 Motivation Full- Waveform Inversion (FWI) works well when a good start model and/or low- frequency data is available. m 2 kph(m) q dk 2 2 = 2 kd pred(m) d obs k 2 2 H(m) 2 C N N discrete PDE m 2 R N medium parameters P 2 R m N selects field at receivers 2 u 2 C N d 2 C m q 2 C N field observed data source

3 Motivation Full- Waveform Inversion (FWI) works well when a good start model and/or low- frequency data is available. m 2 kph(m) q dk 2 2 = 2 kd pred(m) d obs k 2 2 If iterative solvers in frequency domain are used, we cannot compute: H(m) q = u Instead we obtain: û = H(m) (q + r u )=H(m) r u + u 3

4 Motivation Full- Waveform Inversion (FWI) works well when a good start model and/or low- frequency data is available. m 2 kph(m) q dk 2 2 = 2 kd pred(m) d obs k 2 2 If iterative solvers in frequency domain are used, we cannot compute: H(m) q = u Instead we obtain: residual û = H(m) (q + r u )=H(m) r u + u 4 error

5 Example Illustration of what happens when PDE s are solved inaccurately 3-5Hz good start model full- offset source & receiver array noise free data 5

6 0 500 True velocity model z [m] x [m] 6

7 0 500 Initial velocity model z [m] x [m] 7

8 FWI using very accurate iterative solver & LBFGS estimated model z [m] x [m] 8

9 FWI using accurate iterative solver & LBFGS estimated model z [m] x [m] 9

10 FWI using less accurate iterative solver & LBFGS estimated model z [m] x [m] 0

11 FWI using inaccurate accurate iterative solver & LBFGS estimated model z [m] x [m]

12 FWI using very inaccurate accurate iterative solver &LBFGS estimated model z [m] x [m] 2

13 Inexact PDE solves reduced- space: (includes FWI) error in objective function value error in gradient error in Hessian [A Tarantola, 984; E Haber et al., 2000; I Epanomeritakis et al., 2008] error in medium parameter update storage as low as two fields at a time dense reduced- Hessian requires extra safeguards/accuracy control [T. van Leeuwen & F.J. Herrmann, 204] 3

14 Goal This talk is about deriving an algorithm which: allows for inexact solutions of linear systems enjoys similar parallelism and memory requirements as FWI 4

15 Data, PDE s and constraints For the true medium parameters and true fields we know that: H(m)u = q & P u = d Many ways to use these equations to form: objectives, constraints algorithms Adjoint- state based FWI is just one algorithm. 5

16 Data, PDE s and constraints objective m,u 2 kp u dk2 2 s.t. H(m)u = q constraint 6

17 Data, PDE s and constraints m,u 2 kp u dk2 2 s.t. H(m)u = q objective m,u 2 kh(m)u qk2 2 s.t. P u = d constraint 7

18 Data, PDE s and constraints m,u 2 kp u dk2 2 s.t. H(m)u = q m,u 2 kh(m)u qk2 2 s.t. P u = d m 2 kph(m) q dk 2 2 = 2 kd pred(m) d obs k 2 2 8

19 Data, PDE s and constraints m,u 2 kp u dk2 2 s.t. H(m)u = q m,u 2 kh(m)u qk2 2 s.t. P u = d m 2 kph(m) q dk 2 2 = 2 kd pred(m) d obs k 2 2 m,u kh(m)u qk2 2 s.t. kp u dk 2 2 apple 9

20 Data, PDE s and constraints m,u 2 kp u dk2 2 s.t. H(m)u = q m,u 2 kh(m)u qk2 2 s.t. P u = d m 2 kph(m) q dk 2 2 = 2 kd pred(m) d obs k 2 2 m,u kh(m)u qk2 2 s.t. kp u dk 2 2 apple 20

21 Multi-experiment structure: P u d H(m)u q 0 P P 2 Pk C A 0 u u 2 C A 0 d d 2 B. A 0 H H 2 Hk C A 0 u u 2 C A 0 q q 2 B. A u k d k u k q k k = n src n freq k N field parameters 2

22 A quadratic-penalty based full space method m,u kh(m)u qk2 2 s.t. kp u dk 2 2 apple - relation is known [W. Gander, 980; A. Bjork, 996] m,u 2 kp u dk kh(m)u qk2 2 22

23 A quadratic-penalty based full space method m,u 2 kp u dk kh(m)u qk2 2 Newton s method: P P + 2 H H r 2 u,m P (P u d)+ 2 H Hu q r 2 m,u 2 G mg m u m = 2 G m Hu q updates for for working subset of fields & medium parameters 23

24 A quadratic-penalty based full space method P P + 2 H H r 2 u,m P (P u d)+ 2 H Hu q r 2 m,u 2 G mg m u m = 2 G m Hu q update fields & medium parameters simultaneously function value, gradient, Hessian evaluation is ~free & exact sparse Hessian theory allows for inexact updates computations requires storage of working subset of fields + working memory (gradients, Hessian & update) 24 update computation is challenging

25 A quadratic-penalty based full space method Approximate: block diagonal & positive (semi) definite P P + 2 H H 0 P (P u d)+ 2 H Hu q 0 2 G mg m u m = 2 G m Hu q give up some of Newton s method properties update computation intrinsically parallel per field no need to form off- diagonal blocks philosophy: more & cheaper iterations 25

26 Memory requirements save fields for the working subset of frequencies & sources can be distributed over multiple nodes feasible? need parallel computing simultaneous sources (redrawing is possible) small frequency batches 26

27 Algorithm 0. construct initial guess for medium and for each field while not converged do. form Hessian and gradient // form (~free) 2. ignore the blocks // approximate 3. find & each in parallel // solve 4. find steplength using linesearch // evaluate (~free) 5. & // update model and fields end δm 2 u,m m = m + αδm m ϕ, ϕ δu i α 2 m,u u = u + αδu u i 27 Algorithm 2 field-medium parameter uncoupled Newton for Quadratic Penalty form.

28 FWI using very inaccurate accurate iterative solver &LBFGS estimated model z [m] x [m] 28

29 Full-space method of this talk using very inaccurate accurate iterative solver estimated model z [m] x [m] 29

30 Related work [E. Haber & U.M. Ascher, 200 ; G. Biros & O. Ghattas, 2005 ; Grote et. al., 20] The presented algorithm is a quadratic- penalty version of Lagrangian- based all- at- once algorithms: m,u 2 kp u dk2 2 s.t. H(m)u = q L(m, u, v) = 2 kp u dk2 2 + v H(m)u q G solve (inexactly) at every iteration: Newton- KKT G m G P P H u A H v + P (P u d) A G H 0 v Hu q 30

31 Related work [E. Haber & U.M. Ascher, 200 ; G. Biros & O. Ghattas, 2005 ; Grote et. al., 20] Lagrangian based full- space methods also store the multipliers + corresponding gradient & Hessian blocks. no intrinsic parallel structure G m G P P H u A H v + P (P u d) A G H 0 v Hu q * higher order terms number of field variables: 2 n src n freq n grid 3

32 Inexact PDE solves full-space vs reduced-space reduced- space (FWI): error in objective function value error in gradient error in Hessian error in medium parameter update full- space (this talk): objective function value always exact gradient always exact Hessian always exact globally convergent inexact Newton methods [S.C. Eisenstat & H.F. Walker, 994] 32

33 Full vs Reduced-space Hessian, gradient & function evaluation Hessian, gradient & function evaluation Reduced-space solve PDE s inexact Full-space ~free exact Hessian dense sparse memory for fields working memory 2 fields per parallel process gradient & update direction working subset of simultaneous source fields in memory update (can be directions distributed & over gradients nodes) in memory 33 ~free = sparse matrix-vector products

34 Conclusions Constructed a quadratic- penalty based full- space method which: updates fields & medium parameters simultaneously main computations are intrinsically parallel suitable for frequency domain waveform inversion with iterative solvers con: need to store working subset of simultaneous source fields but, less storage needed compared to Lagrangian full- space methods 34

35 Acknowledgements Thanks to our sponsors This work was financially supported by SINBAD Consortium members BG Group, BGP, CGG, Chevron, ConocoPhillips, DownUnder GeoSolutions, Hess, Petrobras, PGS, Schlumberger, Statoil, Sub Salt Solutions and Woodside; and by the Natural Sciences and Engineering Research Council of Canada via NSERC Collaborative Research and Development Grant DNOISEII (CRDPJ ).

36 References. Eisenstat, Stanley C., and Homer F. Walker. "Globally convergent inexact Newton methods." SIAM Journal on Optimization 4.2 (994): Tristan van Leeuwen and Felix J. Herrmann, frequency- domain seismic inversion with controlled sloppiness, SIAM Journal on Scientific Computing, 36 (204), pp. S92 S B Peters, FJ Herrmann, T van Leeuwen. Wave- equation Based Inversion with the Penalty Method- Adjoint- state Versus Wavefield- reconstruction Inversion. 76th EAGE Conference, M.J. Grote, J. Huber, and O. Schenk, Interior point methods for the inverse medium problem on massively parallel architectures, Procedia Computer Science, 4 (20), pp Proceedings of the International Conference on Computational Science, {ICCS} Eldad Haber, Uri M Ascher, and Doug Oldenburg, On optimization techniques for solving nonlinear inverse problems, Inverse Problems, 6 (2000), pp E Haber and U M Ascher, Preconditioned all- at- once methods for large, sparse parameter estimation problems, Inverse Problems, 7 (200), p I Epanomeritakis, V Akcelik, O Ghattas, and J Bielak. A Newton- CG method for large- scale three- dimensional elastic full- waveform seismic inversion. Inverse Problems, 24(3):03405, June George Biros and Omar Ghattas, Parallel lagrange newton krylov schur methods for pde- constrained optimization. part i: The krylov schur solver, SIAM Journal on Scientific Computing, 27 (2005), pp R.E. Kleinman and P.M.van den Berg, A modified gradient method for two- dimensional problems in tomography, Journal of Computational and Applied Mathematics, 42 (992), pp

37 References 0. Ake Bjork, Numerical methods for least squares problems. siam, Walter Gander, Least squares with a quadratic constraint, Numerische Mathematik, 36 (980), pp

Wavefield Reconstruction Inversion (WRI) a new take on wave-equation based inversion Felix J. Herrmann

Wavefield Reconstruction Inversion (WRI) a new take on wave-equation based inversion Felix J. Herrmann Wavefield Reconstruction Inversion (WRI) a new take on wave-equation based inversion Felix J. Herrmann SLIM University of British Columbia van Leeuwen, T and Herrmann, F J (2013). Mitigating local minima

More information

Full-Waveform Inversion with Gauss- Newton-Krylov Method

Full-Waveform Inversion with Gauss- Newton-Krylov Method Full-Waveform Inversion with Gauss- Newton-Krylov Method Yogi A. Erlangga and Felix J. Herrmann {yerlangga,fherrmann}@eos.ubc.ca Seismic Laboratory for Imaging and Modeling The University of British Columbia

More information

Uncertainty quantification for Wavefield Reconstruction Inversion

Uncertainty quantification for Wavefield Reconstruction Inversion Uncertainty quantification for Wavefield Reconstruction Inversion Zhilong Fang *, Chia Ying Lee, Curt Da Silva *, Felix J. Herrmann *, and Rachel Kuske * Seismic Laboratory for Imaging and Modeling (SLIM),

More information

FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke

FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke Consortium 2010 FWI with Compressive Updates Aleksandr Aravkin, Felix Herrmann, Tristan van Leeuwen, Xiang Li, James Burke SLIM University of British Columbia Full Waveform Inversion The Full Waveform

More information

Migration with Implicit Solvers for the Time-harmonic Helmholtz

Migration with Implicit Solvers for the Time-harmonic Helmholtz Migration with Implicit Solvers for the Time-harmonic Helmholtz Yogi A. Erlangga, Felix J. Herrmann Seismic Laboratory for Imaging and Modeling, The University of British Columbia {yerlangga,fherrmann}@eos.ubc.ca

More information

Uncertainty quantification for inverse problems with a weak wave-equation constraint

Uncertainty quantification for inverse problems with a weak wave-equation constraint Uncertainty quantification for inverse problems with a weak wave-equation constraint Zhilong Fang*, Curt Da Silva*, Rachel Kuske** and Felix J. Herrmann* *Seismic Laboratory for Imaging and Modeling (SLIM),

More information

Source estimation for frequency-domain FWI with robust penalties

Source estimation for frequency-domain FWI with robust penalties Source estimation for frequency-domain FWI with robust penalties Aleksandr Y. Aravkin, Tristan van Leeuwen, Henri Calandra, and Felix J. Herrmann Dept. of Earth and Ocean sciences University of British

More information

Uncertainty quantification for Wavefield Reconstruction Inversion

Uncertainty quantification for Wavefield Reconstruction Inversion using a PDE free semidefinite Hessian and randomize-then-optimize method Zhilong Fang *, Chia Ying Lee, Curt Da Silva, Tristan van Leeuwen and Felix J. Herrmann Seismic Laboratory for Imaging and Modeling

More information

Sparsity-promoting migration with multiples

Sparsity-promoting migration with multiples Sparsity-promoting migration with multiples Tim Lin, Ning Tu and Felix Herrmann SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia Courtesy of Verschuur, 29 SLIM Motivation..

More information

Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 26, 2013

Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 26, 2013 Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 6, 13 SLIM University of British Columbia Motivation 3D seismic experiments - 5D

More information

Mitigating data gaps in the estimation of primaries by sparse inversion without data reconstruction

Mitigating data gaps in the estimation of primaries by sparse inversion without data reconstruction Mitigating data gaps in the estimation of primaries by sparse inversion without data reconstruction Tim T.Y. Lin SLIM University of British Columbia Talk outline Brief review of REPSI Data reconstruction

More information

SLIM. University of British Columbia

SLIM. University of British Columbia Accelerating an Iterative Helmholtz Solver Using Reconfigurable Hardware Art Petrenko M.Sc. Defence, April 9, 2014 Seismic Laboratory for Imaging and Modelling Department of Earth, Ocean and Atmospheric

More information

Parallelizing large scale time domain electromagnetic inverse problem

Parallelizing large scale time domain electromagnetic inverse problem Parallelizing large scale time domain electromagnetic inverse problems Eldad Haber with: D. Oldenburg & R. Shekhtman + Emory University, Atlanta, GA + The University of British Columbia, Vancouver, BC,

More information

Application of matrix square root and its inverse to downward wavefield extrapolation

Application of matrix square root and its inverse to downward wavefield extrapolation Application of matrix square root and its inverse to downward wavefield extrapolation Polina Zheglova and Felix J. Herrmann Department of Earth and Ocean sciences, University of British Columbia, Vancouver,

More information

A multigrid method for large scale inverse problems

A multigrid method for large scale inverse problems A multigrid method for large scale inverse problems Eldad Haber Dept. of Computer Science, Dept. of Earth and Ocean Science University of British Columbia haber@cs.ubc.ca July 4, 2003 E.Haber: Multigrid

More information

Interior-Point Methods as Inexact Newton Methods. Silvia Bonettini Università di Modena e Reggio Emilia Italy

Interior-Point Methods as Inexact Newton Methods. Silvia Bonettini Università di Modena e Reggio Emilia Italy InteriorPoint Methods as Inexact Newton Methods Silvia Bonettini Università di Modena e Reggio Emilia Italy Valeria Ruggiero Università di Ferrara Emanuele Galligani Università di Modena e Reggio Emilia

More information

Comparison between least-squares reverse time migration and full-waveform inversion

Comparison between least-squares reverse time migration and full-waveform inversion Comparison between least-squares reverse time migration and full-waveform inversion Lei Yang, Daniel O. Trad and Wenyong Pan Summary The inverse problem in exploration geophysics usually consists of two

More information

Compressive sampling meets seismic imaging

Compressive sampling meets seismic imaging Compressive sampling meets seismic imaging Felix J. Herrmann fherrmann@eos.ubc.ca http://slim.eos.ubc.ca joint work with Tim Lin and Yogi Erlangga Seismic Laboratory for Imaging & Modeling Department of

More information

Seismic data interpolation and denoising using SVD-free low-rank matrix factorization

Seismic data interpolation and denoising using SVD-free low-rank matrix factorization Seismic data interpolation and denoising using SVD-free low-rank matrix factorization R. Kumar, A.Y. Aravkin,, H. Mansour,, B. Recht and F.J. Herrmann Dept. of Earth and Ocean sciences, University of British

More information

The truncated Newton method for Full Waveform Inversion

The truncated Newton method for Full Waveform Inversion The truncated Newton method for Full Waveform Inversion Ludovic Métivier, Romain Brossier, Jean Virieux, Stéphane Operto To cite this version: Ludovic Métivier, Romain Brossier, Jean Virieux, Stéphane

More information

Time domain sparsity promoting LSRTM with source estimation

Time domain sparsity promoting LSRTM with source estimation Time domain sparsity promoting LSRTM with source estimation Mengmeng Yang, Philipp Witte, Zhilong Fang & Felix J. Herrmann SLIM University of British Columbia Motivation Features of RTM: pros - no dip

More information

Simulation based optimization

Simulation based optimization SimBOpt p.1/52 Simulation based optimization Feb 2005 Eldad Haber haber@mathcs.emory.edu Emory University SimBOpt p.2/52 Outline Introduction A few words about discretization The unconstrained framework

More information

Compressive Sensing Applied to Full-wave Form Inversion

Compressive Sensing Applied to Full-wave Form Inversion Compressive Sensing Applied to Full-wave Form Inversion Felix J. Herrmann* fherrmann@eos.ubc.ca Joint work with Yogi Erlangga, and Tim Lin *Seismic Laboratory for Imaging & Modeling Department of Earth

More information

Computational methods for large distributed parameter estimation problems with possible discontinuities

Computational methods for large distributed parameter estimation problems with possible discontinuities Computational methods for large distributed parameter estimation problems with possible discontinuities Uri Ascher Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4,

More information

Direct Current Resistivity Inversion using Various Objective Functions

Direct Current Resistivity Inversion using Various Objective Functions Direct Current Resistivity Inversion using Various Objective Functions Rowan Cockett Department of Earth and Ocean Science University of British Columbia rcockett@eos.ubc.ca Abstract In geophysical applications

More information

A parallel method for large scale time domain electromagnetic inverse problems

A parallel method for large scale time domain electromagnetic inverse problems A parallel method for large scale time domain electromagnetic inverse problems Eldad Haber July 15, 2005 Abstract In this work we consider the solution of 3D time domain electromagnetic inverse problems

More information

A projected Hessian for full waveform inversion

A projected Hessian for full waveform inversion CWP-679 A projected Hessian for full waveform inversion Yong Ma & Dave Hale Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA (c) Figure 1. Update directions for one iteration

More information

Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization

Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization Denis Ridzal Department of Computational and Applied Mathematics Rice University, Houston, Texas dridzal@caam.rice.edu

More information

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems Etereldes Gonçalves 1, Tarek P. Mathew 1, Markus Sarkis 1,2, and Christian E. Schaerer 1 1 Instituto de Matemática Pura

More information

Optimization schemes for Full Waveform Inversion: the preconditioned truncated Newton method

Optimization schemes for Full Waveform Inversion: the preconditioned truncated Newton method Optimization schemes for Full Waveform Inversion: the preconditioned truncated Newton method Ludovic Métivier, Romain Brossier, Jean Virieux, Stéphane Operto To cite this version: Ludovic Métivier, Romain

More information

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke, University of Washington Daniel

More information

Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples

Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples Guanghui Huang Education University of Chinese Academy of Sciences, Beijing, China Ph.D. in Computational

More information

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania Fast algorithms for the inverse medium problem George Biros University of Pennsylvania Acknowledgments S. Adavani, H. Sundar, S. Rahul (grad students) C. Davatzikos, D. Shen, H. Litt (heart project) Akcelic,

More information

P016 Toward Gauss-Newton and Exact Newton Optimization for Full Waveform Inversion

P016 Toward Gauss-Newton and Exact Newton Optimization for Full Waveform Inversion P016 Toward Gauss-Newton and Exact Newton Optiization for Full Wavefor Inversion L. Métivier* ISTerre, R. Brossier ISTerre, J. Virieux ISTerre & S. Operto Géoazur SUMMARY Full Wavefor Inversion FWI applications

More information

Downloaded 05/27/14 to Redistribution subject to SIAM license or copyright; see

Downloaded 05/27/14 to Redistribution subject to SIAM license or copyright; see SIAM J. OPTIM. Vol. 22, No. 3, pp. 739 757 c 2012 Society for Industrial and Applied Mathematics AN EFFECTIVE METHOD FOR PARAMETER ESTIMATION WITH PDE CONSTRAINTS WITH MULTIPLE RIGHT-HAND SIDES ELDAD HABER,

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

SUMMARY. H (ω)u(ω,x s ;x) :=

SUMMARY. H (ω)u(ω,x s ;x) := Interpolating solutions of the Helmholtz equation with compressed sensing Tim TY Lin*, Evgeniy Lebed, Yogi A Erlangga, and Felix J Herrmann, University of British Columbia, EOS SUMMARY We present an algorithm

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

Computational methods for large distributed parameter estimation problems in 3D

Computational methods for large distributed parameter estimation problems in 3D Computational methods for large distributed parameter estimation problems in 3D U. M. Ascher E. Haber March 8, 03 Abstract This paper considers problems of distributed parameter estimation from data measurements

More information

A multilevel, level-set method for optimizing eigenvalues in shape design problems

A multilevel, level-set method for optimizing eigenvalues in shape design problems A multilevel, level-set method for optimizing eigenvalues in shape design problems E. Haber July 22, 2003 Abstract In this paper we consider optimal design problems that involve shape optimization. The

More information

1. Introduction. In this paper we discuss an algorithm for equality constrained optimization problems of the form. f(x) s.t.

1. Introduction. In this paper we discuss an algorithm for equality constrained optimization problems of the form. f(x) s.t. AN INEXACT SQP METHOD FOR EQUALITY CONSTRAINED OPTIMIZATION RICHARD H. BYRD, FRANK E. CURTIS, AND JORGE NOCEDAL Abstract. We present an algorithm for large-scale equality constrained optimization. The

More information

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Curt Da Silva 1 and Felix J. Herrmann 2 1 Dept. of Mathematics 2 Dept. of Earth and Ocean SciencesUniversity of British

More information

SUMMARY. The main contribution of this paper is threefold. First, we show that FWI based on the Helmholtz equation has the advantage

SUMMARY. The main contribution of this paper is threefold. First, we show that FWI based on the Helmholtz equation has the advantage Randomized full-waveform inversion: a dimenstionality-reduction approach Peyman P. Moghaddam and Felix J. Herrmann, University of British Columbia, Canada SUMMARY Full-waveform inversion relies on the

More information

Seismic wavefield inversion with curvelet-domain sparsity promotion

Seismic wavefield inversion with curvelet-domain sparsity promotion Seismic wavefield inversion with curvelet-domain sparsity promotion Felix J. Herrmann* fherrmann@eos.ubc.ca Deli Wang** wangdeli@email.jlu.edu.cn *Seismic Laboratory for Imaging & Modeling Department of

More information

IP-PCG An interior point algorithm for nonlinear constrained optimization

IP-PCG An interior point algorithm for nonlinear constrained optimization IP-PCG An interior point algorithm for nonlinear constrained optimization Silvia Bonettini (bntslv@unife.it), Valeria Ruggiero (rgv@unife.it) Dipartimento di Matematica, Università di Ferrara December

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

W011 Full Waveform Inversion for Detailed Velocity Model Building

W011 Full Waveform Inversion for Detailed Velocity Model Building W011 Full Waveform Inversion for Detailed Velocity Model Building S. Kapoor* (WesternGeco, LLC), D. Vigh (WesternGeco), H. Li (WesternGeco) & D. Derharoutian (WesternGeco) SUMMARY An accurate earth model

More information

Numerical Methods for PDE-Constrained Optimization

Numerical Methods for PDE-Constrained Optimization Numerical Methods for PDE-Constrained Optimization Richard H. Byrd 1 Frank E. Curtis 2 Jorge Nocedal 2 1 University of Colorado at Boulder 2 Northwestern University Courant Institute of Mathematical Sciences,

More information

Youzuo Lin and Lianjie Huang

Youzuo Lin and Lianjie Huang PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202 Building Subsurface Velocity Models with Sharp Interfaces

More information

The TAO Linearly-Constrained Augmented Lagrangian Method for PDE-Constrained Optimization 1

The TAO Linearly-Constrained Augmented Lagrangian Method for PDE-Constrained Optimization 1 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 The TAO Linearly-Constrained Augmented Lagrangian Method for PDE-Constrained Optimization 1 Evan Gawlik, Todd Munson, Jason Sarich,

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Microseismic Event Estimation Via Full Waveform Inversion

Microseismic Event Estimation Via Full Waveform Inversion Microseismic Event Estimation Via Full Waveform Inversion Susan E. Minkoff 1, Jordan Kaderli 1, Matt McChesney 2, and George McMechan 2 1 Department of Mathematical Sciences, University of Texas at Dallas

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

SUMMARY REVIEW OF THE FREQUENCY DOMAIN L2 FWI-HESSIAN

SUMMARY REVIEW OF THE FREQUENCY DOMAIN L2 FWI-HESSIAN Efficient stochastic Hessian estimation for full waveform inversion Lucas A. Willemsen, Alison E. Malcolm and Russell J. Hewett, Massachusetts Institute of Technology SUMMARY In this abstract we present

More information

REPORTS IN INFORMATICS

REPORTS IN INFORMATICS REPORTS IN INFORMATICS ISSN 0333-3590 A class of Methods Combining L-BFGS and Truncated Newton Lennart Frimannslund Trond Steihaug REPORT NO 319 April 2006 Department of Informatics UNIVERSITY OF BERGEN

More information

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control)

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control) PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control) Youngsoo Choi Introduction PDE-condstrained optimization has broad and important applications. It is in some sense an obvious consequence

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

Seismic imaging and optimal transport

Seismic imaging and optimal transport Seismic imaging and optimal transport Bjorn Engquist In collaboration with Brittany Froese, Sergey Fomel and Yunan Yang Brenier60, Calculus of Variations and Optimal Transportation, Paris, January 10-13,

More information

Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach

Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach GEOPHYSICS, VOL. 69, NO. 5 (SEPTEMBER-OCTOBER 2004); P. 1216 1228, 9 FIGS., 2 TABLES. 10.1190/1.1801938 Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach

More information

Inversion of 3D Electromagnetic Data in frequency and time domain using an inexact all-at-once approach

Inversion of 3D Electromagnetic Data in frequency and time domain using an inexact all-at-once approach Inversion of 3D Electromagnetic Data in frequency and time domain using an inexact all-at-once approach Eldad Haber UBC-Geophysical Inversion Facility Department of Earth and Ocean Sciences University

More information

Parameter Identification in Partial Differential Equations

Parameter Identification in Partial Differential Equations Parameter Identification in Partial Differential Equations Differentiation of data Not strictly a parameter identification problem, but good motivation. Appears often as a subproblem. Given noisy observation

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2015 Notes 11: NPSOL and SNOPT SQP Methods 1 Overview

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Making Flippy Floppy

Making Flippy Floppy Making Flippy Floppy James V. Burke UW Mathematics jvburke@uw.edu Aleksandr Y. Aravkin IBM, T.J.Watson Research sasha.aravkin@gmail.com Michael P. Friedlander UBC Computer Science mpf@cs.ubc.ca Current

More information

Multi-source inversion of TEM data: with field applications to Mt. Milligan

Multi-source inversion of TEM data: with field applications to Mt. Milligan Multi-source inversion of TEM data: with field applications to Mt. Milligan D. Oldenburg, E. Haber, D. Yang Geophysical Inversion Facility, University of British Columbia, Vancouver, BC, Canada Summary

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Achieving depth resolution with gradient array survey data through transient electromagnetic inversion

Achieving depth resolution with gradient array survey data through transient electromagnetic inversion Achieving depth resolution with gradient array survey data through transient electromagnetic inversion Downloaded /1/17 to 128.189.118.. Redistribution subject to SEG license or copyright; see Terms of

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model

Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model Chao Yang 1 and Xiao-Chuan Cai 2 1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, P. R. China, yang@mail.rdcps.ac.cn

More information

Two-Scale Wave Equation Modeling for Seismic Inversion

Two-Scale Wave Equation Modeling for Seismic Inversion Two-Scale Wave Equation Modeling for Seismic Inversion Susan E. Minkoff Department of Mathematics and Statistics University of Maryland Baltimore County Baltimore, MD 21250, USA RICAM Workshop 3: Wave

More information

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Curt Da Silva and Felix J. Herrmann 2 Dept. of Mathematics 2 Dept. of Earth and Ocean Sciences, University

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

Reduced-Hessian Methods for Constrained Optimization

Reduced-Hessian Methods for Constrained Optimization Reduced-Hessian Methods for Constrained Optimization Philip E. Gill University of California, San Diego Joint work with: Michael Ferry & Elizabeth Wong 11th US & Mexico Workshop on Optimization and its

More information

Elastic least-squares migration with two-way wave equation forward and adjoint operators

Elastic least-squares migration with two-way wave equation forward and adjoint operators Elastic least-squares migration with two-way wave equation forward and adjoint operators Ke Chen and Mauricio D. Sacchi, Department of Physics, University of Alberta Summary Time domain elastic least-squares

More information

Newton s Method and Efficient, Robust Variants

Newton s Method and Efficient, Robust Variants Newton s Method and Efficient, Robust Variants Philipp Birken University of Kassel (SFB/TRR 30) Soon: University of Lund October 7th 2013 Efficient solution of large systems of non-linear PDEs in science

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

An introduction to PDE-constrained optimization

An introduction to PDE-constrained optimization An introduction to PDE-constrained optimization Wolfgang Bangerth Department of Mathematics Texas A&M University 1 Overview Why partial differential equations? Why optimization? Examples of PDE optimization

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

Analysis of Inexact Trust-Region Interior-Point SQP Algorithms. Matthias Heinkenschloss Luis N. Vicente. TR95-18 June 1995 (revised April 1996)

Analysis of Inexact Trust-Region Interior-Point SQP Algorithms. Matthias Heinkenschloss Luis N. Vicente. TR95-18 June 1995 (revised April 1996) Analysis of Inexact rust-region Interior-Point SQP Algorithms Matthias Heinkenschloss Luis N. Vicente R95-18 June 1995 (revised April 1996) Department of Computational and Applied Mathematics MS 134 Rice

More information

Implicitly and Explicitly Constrained Optimization Problems for Training of Recurrent Neural Networks

Implicitly and Explicitly Constrained Optimization Problems for Training of Recurrent Neural Networks Implicitly and Explicitly Constrained Optimization Problems for Training of Recurrent Neural Networks Carl-Johan Thore Linköping University - Division of Mechanics 581 83 Linköping - Sweden Abstract. Training

More information

Preconditioned all-at-once methods for large, sparse parameter estimation problems

Preconditioned all-at-once methods for large, sparse parameter estimation problems INSTITUTE OF PHYSICS PUBLISHING Inverse Problems 17 (2001) 1847 1864 INVERSE PROBLEMS PII: S0266-5611(01)20474-2 Preconditioned all-at-once methods for large, sparse parameter estimation problems E Haber

More information

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments

Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Approximate- vs. full-hessian in FWI: 1D analytical and numerical experiments Raul Cova and Kris Innanen ABSTRACT Feasibility of using Full Waveform Inversion (FWI) to build velocity models has been increasing

More information

Hot-Starting NLP Solvers

Hot-Starting NLP Solvers Hot-Starting NLP Solvers Andreas Wächter Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu 204 Mixed Integer Programming Workshop Ohio

More information

1.2 Derivation. d p f = d p f(x(p)) = x fd p x (= f x x p ). (1) Second, g x x p + g p = 0. d p f = f x g 1. The expression f x gx

1.2 Derivation. d p f = d p f(x(p)) = x fd p x (= f x x p ). (1) Second, g x x p + g p = 0. d p f = f x g 1. The expression f x gx PDE-constrained optimization and the adjoint method Andrew M. Bradley November 16, 21 PDE-constrained optimization and the adjoint method for solving these and related problems appear in a wide range of

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco

Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Full-waveform inversion application in different geological settings Denes Vigh*, Jerry Kapoor and Hongyan Li, WesternGeco Summary After the synthetic data inversion examples, real 3D data sets have been

More information

PARALLEL LAGRANGE NEWTON KRYLOV SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV SCHUR SOLVER

PARALLEL LAGRANGE NEWTON KRYLOV SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV SCHUR SOLVER SIAM J. SCI. COMPUT. Vol. 27, No. 2, pp. 687 713 c 2005 Society for Industrial and Applied Mathematics PARALLEL LAGRANGE NEWTON KRYLOV SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 5, pp. -7, 23. Copyright 22,. ISSN 68-963. ETNA A MULTIGRID METHOD FOR DISTRIBUTED PARAMETER ESTIMATION PROBLEMS U. M. ASCHER AND E. HABER Abstract.

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 27, No. 2, pp. 714 739 c 2005 Society for Industrial and Applied Mathematics PARALLEL LAGRANGE NEWTON KRYLOV SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART II: THE LAGRANGE

More information

GEORGE BIROS y AND OMAR GHATTAS z

GEORGE BIROS y AND OMAR GHATTAS z PARALLEL LAGRANGE-NEWTON-KRYLOV-SCHUR ALGORITHMS FOR PDE-CONSTRAINED OPTIMIZATION PART II: THE LAGRANGE-NEWTON SOLVER AND ITS APPLICATION TO OPTIMAL CONTROL OF STEADY VISCOUS FLOWS GEORGE BIROS y AND OMAR

More information

Direct Methods. Moritz Diehl. Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U.

Direct Methods. Moritz Diehl. Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U. Direct Methods Moritz Diehl Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U. Leuven Belgium Overview Direct Single Shooting Direct Collocation Direct Multiple

More information

Nonlinear Models. Numerical Methods for Deep Learning. Lars Ruthotto. Departments of Mathematics and Computer Science, Emory University.

Nonlinear Models. Numerical Methods for Deep Learning. Lars Ruthotto. Departments of Mathematics and Computer Science, Emory University. Nonlinear Models Numerical Methods for Deep Learning Lars Ruthotto Departments of Mathematics and Computer Science, Emory University Intro 1 Course Overview Intro 2 Course Overview Lecture 1: Linear Models

More information

Making Flippy Floppy

Making Flippy Floppy Making Flippy Floppy James V. Burke UW Mathematics jvburke@uw.edu Aleksandr Y. Aravkin IBM, T.J.Watson Research sasha.aravkin@gmail.com Michael P. Friedlander UBC Computer Science mpf@cs.ubc.ca Vietnam

More information

Scalable algorithms for optimal experimental design for infinite-dimensional nonlinear Bayesian inverse problems

Scalable algorithms for optimal experimental design for infinite-dimensional nonlinear Bayesian inverse problems Scalable algorithms for optimal experimental design for infinite-dimensional nonlinear Bayesian inverse problems Alen Alexanderian (Math/NC State), Omar Ghattas (ICES/UT-Austin), Noémi Petra (Applied Math/UC

More information

Algorithmic strategies for full waveform inversion: 1D experiments

Algorithmic strategies for full waveform inversion: 1D experiments GEOPHYSICS, VOL. 74, NO. 6 NOVEMBER-DECEMBER 2009 ; P. WCC37 WCC46, 7 FIGS., 2 TABLES. 10.1190/1.3237116 Algorithmic strategies for full waveform inversion: 1D experiments Carsten Burstedde 1 and Omar

More information