An introduction to PDE-constrained optimization

Size: px
Start display at page:

Download "An introduction to PDE-constrained optimization"

Transcription

1 An introduction to PDE-constrained optimization Wolfgang Bangerth Department of Mathematics Texas A&M University 1

2 Overview Why partial differential equations? Why optimization? Examples of PDE optimization Why is this hard? Formulation of PDE-constrained problems Discretization Solvers Summary and outlook 2

3 Why partial differential equations? Partial differential equations describe almost every aspect of physics, chemistry, and engineering that can be put into a continuum framework: Elastic and inelastic deformation of bodies, for example bridges under load or cars upon impact during accidents Flow around a car, an air foil, or a space ship Reactive turbulent flow inside a combustion engine Reactive slow flow inside chemical reactors Electromagnetic waves Quantum mechanics and quantum field theory Light or X-ray intensities in biomedical imaging Behavior of bacteria in response to chemical substances (chemotaxis)... 3

4 Why partial differential equations? PDEs are typically solved by one of the three established methods: Finite element method (FEM) Finite difference method (FDM) Finite volume method (FVM) Applying these methods to an equation leads to A large linear or nonlinear system of equations: realistic, threedimensional problems often have hundreds of thousands or millions of equations A huge body of work exists on how to solve these resulting systems efficiently (e.g. by iterative linear solvers, multigrid,...) An equally large body of work exists on the analysis of such methods (e.g. for convergence, stability,...) A major development of the last 15 years are error estimates In other words, the numerical solution of PDEs is a mature field. 4

5 Why optimization? Models (e.g. PDEs) describe how a system behaves if external forcing factors are known and if the characteristics (e.g. material makeup, material properties) are known. In other words: by solving a known model we can reproduce how a system would react. On the other hand, this is rarely what we are interested in: We may wish to optimize certain parameters of a model to obtain a more desirable outcome (e.g. shape optimization, optimal control,...) We may wish to determine unknown parameters in a model by comparing the predicted reaction with actual measurements ( parameter estimation, inverse problems ) 5

6 Why optimization? Optimization also is a mature field: Many methods are available to deal with the many, often very complicated, aspects of real problems (strong nonlinearities, equality and inequality constraints,...) A large body of work exists on the analysis of these methods (convergence, stability) Many methods are tailored to the efficient solution of problems with many unknowns and many constraints A huge amount of experience exists on applying these methods to realistic problems in sciences and engineering 6

7 PDE-constrained optimization: Examples Elastic/inelastic deformation: Models the behavior of bodies subject to forces Goals of optimization: minimize production cost, maximize strength, minimize maximal stress under load Goals of inverse problem: find material parameters Forward model for 3d elasticity can easily have 1-10M unknowns but is a simple elliptic (possibly degenerate) problem. 7

8 PDE-constrained optimization: Examples Flow simulations: Models fluid or air flow around a body Optimization: maximize lift-to-drag ratio, maximize fuel efficiency, minimize production cost, optimize flight trajectory, optimize safety, extend operable flight regime Inverse problem: identify effective parameters in reduced models Credit: Charbel Farhat Nonlinear forward model for 3d can easily have M unknowns and has nasty properties. It is also time dependent. 8

9 PDE-constrained optimization: Examples Reactive flow simulations: Models flow of liquids or gases that react with each other Optimization: maximize throughput of chemical reactor, minimize harmful byproducts, optimize yield,... Inverse problem: identify reaction parameters that can't be determined directly Nonlinear forward model for 3d can easily have 100M unknowns and has nasty properties. It is also time dependent. 9

10 PDE-constrained optimization: Examples Biomedical imaging: Model describes propagation of radiation in bodies Inverse problem: to learn about the interior of the body, i.e. to find internal material parameters that hopefully represent pathologic structure ` (X ray) (Ultrasound) (MRI) (PET) Linear forward models for 3d often have 100k to 1M unknowns. Forward problem very stable (often of diffusive type), but this makes the inverse problem ill-posed. 10

11 PDE-constrained optimization So what's the problem both PDE solution and optimization are mature fields (or so you say)! From the PDE side: Many of the PDE solvers use special features of the equations under consideration, but optimization problems don't have them Optimization problems are almost always indefinite and sometimes ill-conditioned, making the analysis much more complicated Approaches to error estimation and multigrid are not available for these non-standard problems There is very little experience (in theory and practice) with inequalities in PDEs In other words, for PDE guys pretty much everything is new! 11

12 PDE-constrained optimization So what's the problem both PDE solution and optimization are mature fields (or so you say)! From the optimization side: Discretized PDEs are huge problems: 100,000s or millions of unknowns Linear systems are typically very badly conditioned Model can rarely be solved to high accuracy and doesn't allow for internal differentiation Maybe most importantly, unknowns are artificial since they result from somewhat arbitrary discretization In other words, for optimization guys pretty much everything is new as well! 12

13 Formulation of PDE-constrained problems In the language of PDEs, let u be the state variable(s) q be the controls (either a set of numbers or functions themselves) f be given external forces Then PDEs are typically of the form Au = f Bq or A q u= f where A,B are in general nonlinear partial differential operators. For example, using the Laplace equation: u = f q or q u= f This equation has to hold everywhere, i.e. at all infinitely many points in the domain! 13

14 Formulation of PDE-constrained problems Instead of requiring a PDE to hold at every point, it is typically posed in weak form. For example, instead of u = f q we would require that u x v x dx = [ f x q x ] v x dx for every test function v, or shorter u, v = f q, v The general problem can then be written with semilinear forms as either A u, v = f, v B q, v v A q ;u, v = f, v v or 14

15 Formulation of PDE-constrained problems Objective functionals often have the form (linear objective functional) J u, q = j x u x dx q 2 2 or (quadratic objective functional) J u, q = [ j x u x z x ] dx q 2 2 For example: Euler flow of fluids: calculation of lift force as a function of shape parameters q J u = [ n x e z ]u p x dx u p : pressure, n : normal vector Parameter estimation: minimization of misfit between predicted and actual measurements J u, q = 2 2 [u x z x ] dx q 2 u : light intensity As a rule of thumb, objective functionals for PDEs are fairly simple. 15

16 Formulation of PDE-constrained problems The optimization problem is then written as minu, q J u, q such that A q,u, v = f, v v Sometimes, bound constraints on q are added. A Lagrangian based on functions (not vectors) then reads: L u, q, = J u, q A q, u, f, and the optimality conditions is then a set of three coupled partial differential equations: Lu u, q, v = J u u, q v Au q,u, v = 0 v, L q u, q, = J q u, q A q q, u, = 0, L u, q, v = A q,u, v f, v = 0 v. 16

17 Formulation of PDE-constrained problems Example (a QP of optimal control type): u z dx q dx 2 2 such that u = f q minu, q Then the Lagrangian is L u, q, = u z dx q dx u, f q, 2 2 and the optimality conditions read: Lu u, q, v = u z, v, v = 0 L q u, q, = q,, = 0 L u, q, v = u, v f q, v = 0 v,, v. 17

18 Questions about the optimality system The optimality conditions form a system of coupled PDEs: u z = 0, q = 0, u f q = 0 Even for this simple problem of linear PDEs, there are a number of questions: Do Lagrange multipliers exist? Does this system have a solution at all? If so, can we solve it analytically? If not, can we at least solve it approximately on a computer? Does an approximate system admit Lagrange multipliers? Does the approximate system have a stable solution? 18

19 Discretization General idea of discretization: Subdivide space (and time) into little pieces: discretization Derive equations that a numerical approximation (not the exact solution) has to satisfy on each little piece Through coupling between pieces obtain one large linear or nonlinear system of equations Solve it in an efficient way Credit: Charbel Farhat 19

20 Discretization In the finite element method, one replaces the solution u by the ansatz uh x = i U i i x Clearly, a variational statement like uh, v = f, v v can then no longer hold since it is unlikely that u h = f However, to determine the N coefficients Ui, we can consider the following N moments of the equation: uh, i = f, i i=1... N 20

21 Discretization Using the expansion uh x = i U i i x in uh, i = f, i i=1... N yields the linear system AU = F where Aij = i, j F i = f, i From this the expansion coefficients of the approximation uh can be determined. 21

22 Discretization A similar approach applied to the optimality conditions Lu u, q, v = u z, v, v = 0 L q u, q, = q,, = 0 L u, q, v = u, v f q, v = 0 v,, v. yields the variational statement uh, i h, i = z, i q h, i h, i = 0 uh, i qh, i = f, i i=1... N, i=1... N, i=1... N that then gives rise to the following linear system: M 0 AT U Z T 0 R C Q = 0 F A C 0 22

23 Solvers What to do with M 0 AT U Z T 0 R C Q = 0 F A C 0 Problems: The system is large: if we approximate each variable with 1M unknowns, then the matrix is 3M x 3M. Gaussian elimination or LU decompositions won't work Most standard optimization software fails with systems that large The matrix A from discretizing the Laplace operator is typically illconditioned (condition number > 1e6-1e8) The condition number of the entire system is often even worse: >1e10-1e12, so iterative solvers won't readily work either The system is indefinite, so things like multigrid, AMG,... don't work Of the blocks, typically only A is invertible 23

24 Solvers What to do with M 0 AT U Z T 0 R C Q = 0 F A C 0 Answers: From years of experience in PDEs, we have very good solvers for the forward problem, i.e. for A, e.g. multigrid, CG,... We should try to reduce the matrix to a form that mostly requires us to solve forward problems rather than the awkward form above Do block elimination (= form Schur complement = form projected matrix): T T 1 T 1 [ R C A M A C ]Q = C A Z M A F A U = F CQ AT = Z MU 24

25 Solvers What to do with T T 1 T 1 [ R C A M A C ]Q = C A Z M A F A U = F CQ AT = Z MU The second and third equations only need solves with A. We know how to do this The Schur complement T T 1 S = R C A M A C is symmetric and positive definite It is also a much smaller problem, being only the size of the controls Apply Conjugate Gradient (CG) to the Schur complement equation! 25

26 Solvers Applying CG to T 1 S Q = C A Z M A F T T 1 S = R C A M A C Building up S is not usually an option Every CG iteration requires one multiplication of a vector with S Every multiplication with S requires one forward and one adjoint solve S is still an ill-conditioned matrix, so many iterations may be necessary (sometimes 1000s) Much research goes into preconditioning S 26

27 Challenges Consider solving T T 1 T 1 [ R C A M A C ]Q = C A Z M A F A U = F CQ AT = Z MU This requires 2 solves for the right hand side (2*CG iterations) solves to invert the Schur complement 2 solves for the state and adjoint equation All this times the number of Newton iterations for nonlinear problems For a nonlinear problem with a few hundred controls, we often have to do 1000s to 10,000s of solves with A! 27

28 Alternatives We could also attempt to directly solve M 0 AT U Z T 0 R C Q = 0 F A C 0 System is indefinite, so only GMRes, SymmLQ or QMR might work System is very badly conditioned so we need to expect many iterations unless we have good preconditioners Could precondition with inexact solves with the Schur complement S C M 0 0 A 0 T A 0 1 C T A T 0 C T A T MA The basic problem remains that we need to do many forward/adjoint solves 28

29 Alternatives Other alternatives include Preconditioning with accurate solves with an approximation S C M 0 0 A 0 AT 0 1 T T C A 0 1 T T 1 0 C A MA where the approximation of S is based on forward preconditioners: T T 1 S = R C A M A C Preconditioning with LM-BFGS updates of the inverse of S Direct multigrid on the KKT system Multigrid on the Schur complement... But: Nobody really knows how to do all this efficiently! 29

30 The basic problem in PDE optimization For a nonlinear problem with a few hundred controls, we often have to do 1000s to 10,000s of solves with A! For complicated 3d models with a few 100,000 or million unknowns, every forward solve can easily cost minutes, bringing the total compute time into hours/days/weeks. This gets even worse if we have time-dependent problems. And all this even though we have a fairly trivial optimization problem: Convex objective function (but possibly nonlinear constraints) No state constraints (though possibly control constraints of bounds type) No complicated other constraints. 30

31 Summary and outlook To date, PDE-constrained optimization problems are fairly trivial but huge from an optimization perspective, but moderately large and very complex from a PDE perspective Even solving the most simple problems is considered frontier research Because efficient linear solvers for the saddle point problems like the ones originating from optimization are virtually unknown, one tries to go back to forward solvers through the Schur complement Inclusion of bounds on controls allows to keep this structure Inclusion of state constraints would yield a variational inequality that requires different techniques and for which we don't have solvers yet Multiple experiment parameter estimation problems can also make the computational complexity very large 31

32 Summary and outlook PDE constrained optimization has not seen anything complex yet: No optimal experimental design No optimization under uncertainty No optimization for stability or worst case behavior Not even simple optimization for complex models like turbulent flow Credit: Charbel Farhat PDE constrained optimization is not without a reason a field with a huge amount of activity at present! 32

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Parallelizing large scale time domain electromagnetic inverse problem

Parallelizing large scale time domain electromagnetic inverse problem Parallelizing large scale time domain electromagnetic inverse problems Eldad Haber with: D. Oldenburg & R. Shekhtman + Emory University, Atlanta, GA + The University of British Columbia, Vancouver, BC,

More information

7.4 The Saddle Point Stokes Problem

7.4 The Saddle Point Stokes Problem 346 CHAPTER 7. APPLIED FOURIER ANALYSIS 7.4 The Saddle Point Stokes Problem So far the matrix C has been diagonal no trouble to invert. This section jumps to a fluid flow problem that is still linear (simpler

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

MITOCW MITRES2_002S10nonlinear_lec05_300k-mp4

MITOCW MITRES2_002S10nonlinear_lec05_300k-mp4 MITOCW MITRES2_002S10nonlinear_lec05_300k-mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

A framework for the adaptive finite element solution of large inverse problems. I. Basic techniques

A framework for the adaptive finite element solution of large inverse problems. I. Basic techniques ICES Report 04-39 A framework for the adaptive finite element solution of large inverse problems. I. Basic techniques Wolfgang Bangerth Center for Subsurface Modeling, Institute for Computational Engineering

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

COURSE DESCRIPTIONS. 1 of 5 8/21/2008 3:15 PM. (S) = Spring and (F) = Fall. All courses are 3 semester hours, unless otherwise noted.

COURSE DESCRIPTIONS. 1 of 5 8/21/2008 3:15 PM. (S) = Spring and (F) = Fall. All courses are 3 semester hours, unless otherwise noted. 1 of 5 8/21/2008 3:15 PM COURSE DESCRIPTIONS (S) = Spring and (F) = Fall All courses are 3 semester hours, unless otherwise noted. INTRODUCTORY COURSES: CAAM 210 (BOTH) INTRODUCTION TO ENGINEERING COMPUTATION

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Chapter 7. Optimization and Minimum Principles. 7.1 Two Fundamental Examples. Least Squares

Chapter 7. Optimization and Minimum Principles. 7.1 Two Fundamental Examples. Least Squares Chapter 7 Optimization and Minimum Principles 7 Two Fundamental Examples Within the universe of applied mathematics, optimization is often a world of its own There are occasional expeditions to other worlds

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Alvaro F. M. Azevedo A. Adão da Fonseca

Alvaro F. M. Azevedo A. Adão da Fonseca SECOND-ORDER SHAPE OPTIMIZATION OF A STEEL BRIDGE Alvaro F. M. Azevedo A. Adão da Fonseca Faculty of Engineering University of Porto Portugal 16-18 March 1999 OPTI 99 Orlando - Florida - USA 1 PROBLEM

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

M E M O R A N D U M. Faculty Senate approved November 1, 2018

M E M O R A N D U M. Faculty Senate approved November 1, 2018 M E M O R A N D U M Faculty Senate approved November 1, 2018 TO: FROM: Deans and Chairs Becky Bitter, Sr. Assistant Registrar DATE: October 23, 2018 SUBJECT: Minor Change Bulletin No. 5 The courses listed

More information

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic Short title: Total FETI Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ-70833 Ostrava, Czech Republic mail: zdenek.dostal@vsb.cz fax +420 596 919 597 phone

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

MITOCW watch?v=0usje5vtiks

MITOCW watch?v=0usje5vtiks MITOCW watch?v=0usje5vtiks PROFESSOR: Mach-Zehnder-- interferometers. And we have a beam splitter. And the beam coming in, it splits into 2. A mirror-- another mirror. The beams are recombined into another

More information

MITOCW ocw f99-lec23_300k

MITOCW ocw f99-lec23_300k MITOCW ocw-18.06-f99-lec23_300k -- and lift-off on differential equations. So, this section is about how to solve a system of first order, first derivative, constant coefficient linear equations. And if

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems Etereldes Gonçalves 1, Tarek P. Mathew 1, Markus Sarkis 1,2, and Christian E. Schaerer 1 1 Instituto de Matemática Pura

More information

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control)

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control) PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control) Youngsoo Choi Introduction PDE-condstrained optimization has broad and important applications. It is in some sense an obvious consequence

More information

MITOCW MIT18_02SCF10Rec_50_300k

MITOCW MIT18_02SCF10Rec_50_300k MITOCW MIT18_02SCF10Rec_50_300k CHRISTINE Welcome back to recitation. In this video, I'd like us to work on the following problem. BREINER: So the problem is as follows. For which of the following vector

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva June 2015 Invents an Iterative Method in a Letter (1823), in a letter to Gerling: in order to compute a least squares solution based on angle measurements

More information

CE-570 Advanced Structural Mechanics - Arun Prakash

CE-570 Advanced Structural Mechanics - Arun Prakash Ch1-Intro Page 1 CE-570 Advanced Structural Mechanics - Arun Prakash The BIG Picture What is Mechanics? Mechanics is study of how things work: how anything works, how the world works! People ask: "Do you

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

MITOCW watch?v=dztkqqy2jn4

MITOCW watch?v=dztkqqy2jn4 MITOCW watch?v=dztkqqy2jn4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

High Performance Nonlinear Solvers

High Performance Nonlinear Solvers What is a nonlinear system? High Performance Nonlinear Solvers Michael McCourt Division Argonne National Laboratory IIT Meshfree Seminar September 19, 2011 Every nonlinear system of equations can be described

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Various lecture notes for

Various lecture notes for Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

MITOCW ocw-18_02-f07-lec17_220k

MITOCW ocw-18_02-f07-lec17_220k MITOCW ocw-18_02-f07-lec17_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes Cauchy-Riemann Equations and Conformal Mapping 26.2 Introduction In this Section we consider two important features of complex functions. The Cauchy-Riemann equations provide a necessary and sufficient

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

MITOCW ocw-18_02-f07-lec02_220k

MITOCW ocw-18_02-f07-lec02_220k MITOCW ocw-18_02-f07-lec02_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

MITOCW watch?v=pqkyqu11eta

MITOCW watch?v=pqkyqu11eta MITOCW watch?v=pqkyqu11eta The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Iteration basics Notes for 2016-11-07 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.

More information

A multilevel, level-set method for optimizing eigenvalues in shape design problems

A multilevel, level-set method for optimizing eigenvalues in shape design problems A multilevel, level-set method for optimizing eigenvalues in shape design problems E. Haber July 22, 2003 Abstract In this paper we consider optimal design problems that involve shape optimization. The

More information

Simulation based optimization

Simulation based optimization SimBOpt p.1/52 Simulation based optimization Feb 2005 Eldad Haber haber@mathcs.emory.edu Emory University SimBOpt p.2/52 Outline Introduction A few words about discretization The unconstrained framework

More information

Constrained Nonlinear Optimization Algorithms

Constrained Nonlinear Optimization Algorithms Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu Institute for Mathematics and its Applications University of Minnesota August 4, 2016

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Solution Methods. Steady State Diffusion Equation. Lecture 04

Solution Methods. Steady State Diffusion Equation. Lecture 04 Solution Methods Steady State Diffusion Equation Lecture 04 1 Solution methods Focus on finite volume method. Background of finite volume method. Discretization example. General solution method. Convergence.

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University Final Examination CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University The exam runs for 3 hours. The exam contains eight problems. You must complete the first

More information

MITOCW watch?v=vu_of9tcjaa

MITOCW watch?v=vu_of9tcjaa MITOCW watch?v=vu_of9tcjaa The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Numerical Optimization of Partial Differential Equations

Numerical Optimization of Partial Differential Equations Numerical Optimization of Partial Differential Equations Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada URL: http://www.math.mcmaster.ca/bprotas Rencontres

More information

Chapter 9 Implicit integration, incompressible flows

Chapter 9 Implicit integration, incompressible flows Chapter 9 Implicit integration, incompressible flows The methods we discussed so far work well for problems of hydrodynamics in which the flow speeds of interest are not orders of magnitude smaller than

More information

1.2 Derivation. d p f = d p f(x(p)) = x fd p x (= f x x p ). (1) Second, g x x p + g p = 0. d p f = f x g 1. The expression f x gx

1.2 Derivation. d p f = d p f(x(p)) = x fd p x (= f x x p ). (1) Second, g x x p + g p = 0. d p f = f x g 1. The expression f x gx PDE-constrained optimization and the adjoint method Andrew M. Bradley November 16, 21 PDE-constrained optimization and the adjoint method for solving these and related problems appear in a wide range of

More information

Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras

Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras Module No. # 05 Lecture No. # 24 Gauss-Jordan method L U decomposition method

More information

Discontinuous Galerkin methods for nonlinear elasticity

Discontinuous Galerkin methods for nonlinear elasticity Discontinuous Galerkin methods for nonlinear elasticity Preprint submitted to lsevier Science 8 January 2008 The goal of this paper is to introduce Discontinuous Galerkin (DG) methods for nonlinear elasticity

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Computational methods for large distributed parameter estimation problems with possible discontinuities

Computational methods for large distributed parameter estimation problems with possible discontinuities Computational methods for large distributed parameter estimation problems with possible discontinuities Uri Ascher Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4,

More information

Math Methods for Polymer Physics Lecture 1: Series Representations of Functions

Math Methods for Polymer Physics Lecture 1: Series Representations of Functions Math Methods for Polymer Physics ecture 1: Series Representations of Functions Series analysis is an essential tool in polymer physics and physical sciences, in general. Though other broadly speaking,

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Chemical Reaction Engineering II Prof. A. K. Suresh Department of Chemical Engineering Indian Institute of Technology, Bombay

Chemical Reaction Engineering II Prof. A. K. Suresh Department of Chemical Engineering Indian Institute of Technology, Bombay Chemical Reaction Engineering II Prof A K Suresh Department of Chemical Engineering Indian Institute of Technology, Bombay Lecture - 24 GLR-5: Transition to Instantaneous reaction; Reaction regimes in

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

MITOCW 6. Standing Waves Part I

MITOCW 6. Standing Waves Part I MITOCW 6. Standing Waves Part I The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Matrix Assembly in FEA

Matrix Assembly in FEA Matrix Assembly in FEA 1 In Chapter 2, we spoke about how the global matrix equations are assembled in the finite element method. We now want to revisit that discussion and add some details. For example,

More information

February 13, Option 9 Overview. Mind Map

February 13, Option 9 Overview. Mind Map Option 9 Overview Mind Map Return tests - will discuss Wed..1.1 J.1: #1def,2,3,6,7 (Sequences) 1. Develop and understand basic ideas about sequences. J.2: #1,3,4,6 (Monotonic convergence) A quick review:

More information

PARALLEL LAGRANGE-NEWTON-KRYLOV-SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV-SCHUR SOLVER

PARALLEL LAGRANGE-NEWTON-KRYLOV-SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV-SCHUR SOLVER PARALLEL LAGRANGE-NEWTON-KRYLOV-SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV-SCHUR SOLVER GEORGE BIROS AND OMAR GHATTAS Abstract. Large scale optimization of systems governed by partial

More information

MITOCW watch?v=wr88_vzfcx4

MITOCW watch?v=wr88_vzfcx4 MITOCW watch?v=wr88_vzfcx4 PROFESSOR: So we're building this story. We had the photoelectric effect. But at this moment, Einstein, in the same year that he was talking about general relativity, he came

More information

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES General: OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES This points out some important directions for your revision. The exam is fully based on what was taught in class: lecture notes, handouts and homework.

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Math 5311 Constrained Optimization Notes

Math 5311 Constrained Optimization Notes ath 5311 Constrained Optimization otes February 5, 2009 1 Equality-constrained optimization Real-world optimization problems frequently have constraints on their variables. Constraints may be equality

More information

1 Differential. Equations. A differential equation is any equation that involves a derivative. For example, Newton s second law F ma

1 Differential. Equations. A differential equation is any equation that involves a derivative. For example, Newton s second law F ma 1 Differential Equations b The strange attractor for a Sprott system consisting of three quadratic differential equations. 1 A differential equation is any equation that involves a derivative. For example,

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

IP-PCG An interior point algorithm for nonlinear constrained optimization

IP-PCG An interior point algorithm for nonlinear constrained optimization IP-PCG An interior point algorithm for nonlinear constrained optimization Silvia Bonettini (bntslv@unife.it), Valeria Ruggiero (rgv@unife.it) Dipartimento di Matematica, Università di Ferrara December

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

Master Thesis Literature Study Presentation

Master Thesis Literature Study Presentation Master Thesis Literature Study Presentation Delft University of Technology The Faculty of Electrical Engineering, Mathematics and Computer Science January 29, 2010 Plaxis Introduction Plaxis Finite Element

More information

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4 GILBERT STRANG: OK, today is about differential equations. That's where calculus really is applied. And these will be equations that describe growth.

More information

KKT Examples. Stanley B. Gershwin Massachusetts Institute of Technology

KKT Examples. Stanley B. Gershwin Massachusetts Institute of Technology Stanley B. Gershwin Massachusetts Institute of Technology The purpose of this note is to supplement the slides that describe the Karush-Kuhn-Tucker conditions. Neither these notes nor the slides are a

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

A multigrid method for large scale inverse problems

A multigrid method for large scale inverse problems A multigrid method for large scale inverse problems Eldad Haber Dept. of Computer Science, Dept. of Earth and Ocean Science University of British Columbia haber@cs.ubc.ca July 4, 2003 E.Haber: Multigrid

More information

MITOCW watch?v=fxlzy2l1-4w

MITOCW watch?v=fxlzy2l1-4w MITOCW watch?v=fxlzy2l1-4w PROFESSOR: We spoke about the hydrogen atom. And in the hydrogen atom, we drew the spectrum, so the table, the data of spectrum of a quantum system. So this is a question that

More information

MITOCW MIT18_02SCF10Rec_61_300k

MITOCW MIT18_02SCF10Rec_61_300k MITOCW MIT18_02SCF10Rec_61_300k JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been learning about the divergence theorem, also known as Gauss's theorem, and flux, and all that good stuff.

More information

Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter

Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter Thomas Bewley 23 May 2014 Southern California Optimization Day Summary 1 Introduction 2 Nonlinear Model

More information

Numerical Solution of a Coefficient Identification Problem in the Poisson equation

Numerical Solution of a Coefficient Identification Problem in the Poisson equation Swiss Federal Institute of Technology Zurich Seminar for Applied Mathematics Department of Mathematics Bachelor Thesis Spring semester 2014 Thomas Haener Numerical Solution of a Coefficient Identification

More information

Parameter Identification in Partial Differential Equations

Parameter Identification in Partial Differential Equations Parameter Identification in Partial Differential Equations Differentiation of data Not strictly a parameter identification problem, but good motivation. Appears often as a subproblem. Given noisy observation

More information

PARALLEL LAGRANGE NEWTON KRYLOV SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV SCHUR SOLVER

PARALLEL LAGRANGE NEWTON KRYLOV SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV SCHUR SOLVER SIAM J. SCI. COMPUT. Vol. 27, No. 2, pp. 687 713 c 2005 Society for Industrial and Applied Mathematics PARALLEL LAGRANGE NEWTON KRYLOV SCHUR METHODS FOR PDE-CONSTRAINED OPTIMIZATION. PART I: THE KRYLOV

More information

Numerical Optimization of Partial Differential Equations

Numerical Optimization of Partial Differential Equations Numerical Optimization of Partial Differential Equations Part I: basic optimization concepts in R n Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada

More information