ANSWERKEY SOLUTION = X O2

Size: px
Start display at page:

Download "ANSWERKEY SOLUTION = X O2"

Transcription

1 PPER CODE. NCERT XIII Pat Page 7.. In ƒcc unit cell a [ adius of Cu atom, a edge length] So, a SCORE-I 6 7 pm Sb S Sb + S ;K ( x ).( x) sp x x K sp 08x 5 ; K sp 08 ( 0 5 ) It is buffe solution so, + log Salt cid log cid Salt log 0 æ [ cid] ö ç Given 0 : [ Salt] è ø 6. NCERT-XII, Pat-I, Page-8(fomula-.6) P p 78 X ; \ P 75; \ P to NSWERKEY SOLUTION TEST # 06 PTTERN : JEE (Main) Date : Q Q Q Q Q C E 0 5 Copoate Office : LLEN CREER INSTITUTE, SNKLP, CP-6, INDR VIHR, KOT-005 PHONE : , ax : , info@allen.ac.in Website: 8. NCERT XI th Pat-I Page No.. Let the mass of methane and oxygen is w mole faction of oxygen + 6 w w w + 6 Let the total pessue be P The pessue exeted by oxygen (patial pessue) X O P total Þ P. Hence () is coect. 9. NCERT XI Pat Page # 96 + C ( 0.75) ( 0.75).5 Path to success [C] (.5).5 KOT (RJSTHN) K.0 [][] NCl 5, PH 5, CuI exist ugha djs gs a. PCl is sp hybidised and pyamidal in shape. PCl sp ladj.k dk gksk gs ;g fijkehmh; gksk gs 6. [X] is MnO x + ( ) x + 6 KOT / HS - /7 TM

2 8. SO, Cl O 7, N O 5 ¾ cidic natue oxides N O ¾ Neutal oxide. 9. ClO does not dispopotionate because in this oxoanion chloine is pesent in its highest oxidation state. 0. CCl + H O. Diffeence of oots R.T. ¾¾¾ No eaction a b (a + h) (b + h) D D D a a p D p. a(p + x) + bpx + c 0 oots ae, p 9. ab. a b cos a + b + c I.6. a + b + C I. 0 0 Þ LHS is intege if c 0 then a ai ˆ+ bj ˆ which lies in xy plane 0. Let P(h, k) be the point fom which two tangents ae dawn to y x. ny tangent to the paabola y x is poduct of oots p + c a. a(bc ) (c ) + ( 6) > 0 abc a b c + > 0...() > G a b c on adding e n () and () + + > / (abc) Þ (a + b + c) (abc) / >0..() abc (abc) / + > 0 x x + > 0 (x ) (x + ) > 0 x > (abc) / > abc > 8 y mx+ m If it passes though P(h, k), then k mh + m Þ m h mk + 0 Let m, m be the oots of this euation. Then, m + m k h and m m h Þ m k h and m h [Q m m (given)] æ k ö Þ ç Þ k 9h è hø h Hence, P(h, k) lies on y 9x KOT / HS - /7 ' Ç' n(' Ç ') Since a, b, c ae the oots of the euation x x + x + l 0 Þ a + b + c Þ a + b c Now aea of the tiangle will be a + b (a + b) ( -c) d > 0 dc ( - c) Þ s is an inceasing function & c Î [,] \ max s. units... (-6,0) dy dx 6 (xy) 5 x y 0 P(,5) p'(, 5) Þ y x (x, y ) lies on x y P'7 Þ x y ± \ Euation of tangent lines with slope ae y x + 6 & y x 6 Þ c c 0CE05

3 6. E of plane O Q R is x y z Since the aea is symmetical about x-axis, so aea ò 9 x dx y Þ x y + z 0 distance of P fom plane O x X x 7. P( - ) x 9 x + 9sin x/ù úû é êë 9p/ 8 9 sin (/) 9 (p/ sin /) 8 9 sec 8 (a) - MP ^ M (a+b) - - (b) 5. Solving the euation of the given cuves fo x, we get x x + Þ (x ) (x + ) 0 Þ x, Y Þ MP. O Q æ a+ b ö -. b- a 0 è ø Þ ç ( ) P x 0 x X é ù ê- a+ b a- b 0 ú ë û Þ ( ) ( ) So ed. aea ò éx+ x ù ê údx ë û 9. Statement- is clealy tue. uuuu uuu Since OM l OD ld Now points,, C and M ae coplana Þ [a b c] [m a b] + [m b c] + [m c a] Þ [ l d a b] +l [ d b c] +l [ d c a] [a b c] l [d a b] + [d b c] + [d c a] éx x ù ê + x ú ë û 9 [( + 8 / ) (/ + / )] 8 5. Given euation can be witten as é æ ö ù 5 dy æ m ö ædyö ê+ ç ú ç ç ê è dx ø ú èm + ë û ø èdx ø 5 This shows that its ode, degee 5 and theefoe Statement- is also tue. 0CE05 KOT / HS - /7

4 a a+b a-b a+b cos cos - cos + a+bæ a-b a+bö cos ç cos - cos + è ø a+b a b cos sin sin + b+ Þ a b 55. sin x cos x ( sin x) sin x cos x No value of x fo L.H.S. R.H.S. 56. Given, 0 99 s 59. f(x) x x + 00x + 00 f (x) x x + 00 > 0 " Î R \ f(x) is inceasing (stictly) \ f æ ç ö > f æ ö 999 ç 000 è ø è ø f(x + ) > f(x ) 60. Let f(x) x ln x x ln x \ f (x) x ln x x 0 Þ x e -/ lim x 0 f(x) 0, lim f ( x) x and - f(e ) e Þ s 0 \ Maximum value of f(x) is e SD of euied seies s Ù ( Ú ) is when Ú ( Ù ) is when, We have [ Ù ( )] º [ Ù (~ Ú )] º [( Ù (~)) Ú ( Ù )] º Ù º ~( Ù ) Ú º [(~) Ú (~)] Ú º (~) Ú [(~) Ú ] º (~) Ú T º T \ [ Ù ( )] is a tautology X C / D D X C D D + D - D - D X C D % + % - % -5% % + % - % -5% The pecentage eo contibuted by C is which is minimum among,, C and D. KOT / HS - /7 E a b C Statement- is Tue. In statement- if the height of the pole is h, then the length of the adjacent sides of the field ae h cot a and h cot b and the aea if h cot a cot b h as a + b p/ Þ cot a cot b. So h 500 Þ h 5 units. and the statement- is tue using statement-. h D 6. (i) [(a cos ) î + (b sin ) ĵ]. [(b sin ) î (a cos ) ĵ] ab sin cos ba sin cos 0 (ii) [a(cos ) î + (b sin ) ĵ]. éæ öˆ æ ö sin i cos ˆù êç -ç j a a ú ëè ø è ø û sin cos sin cos 0 (iii) [(a cos ) î + (b sin ) ĵ]. 5 ˆk 0 Hence, all the thee options ae coect because the dot poduct of two pependicula vectos is zeo. 0CE05

5 Using v u gh (fo vetically upwad motion unde gavity) 0CE05 0 u 0 5 u 0 ms lso using u u gt t t s which means the each ball is thown afte sec. Theefoe the numbe of balls thown up pe minute is Velocity of the stone elative to the gound m/s (upwads) Velocity of the stone afte s, elative to the gound v 5 0 v 5 ms o v +5 ms 65. Given x ct + bt ct dx velocity v a + bt -ct dt dv and acceleation f b -6ct dt cceleation is zeo at time b 6ct 0 (using, v u gt) b t c Putting this value of t in e. (i), we get æ b ö æ b ö v a + bç -cç èc ø èc ø b b b o v a+ - a+ c c c 66. Given, R H u sin u sin g g o sin cos sin o cos sin tan Þ 0º Mv 67. Mgcos- R when the body leaves the suface, R 0 Mv Mgcos Mg cos Mg R v (5) cos g º 68. Time taken to each the bag on the gound 69. h 90 t 0s g 9.8 \ R m u sin Hmax g u sin R g Dividing both the euations, we get tan o sin 5 Putting the value of sin in en. (i), we get, 8g u 6 / 5 o u 5 g/ 70. µ (m + M) g + (M + m)a...(i) µ mg µ (m+m)g m M Now, since the fiction foce between m and M is µ mg, the acceleation. oce µ mg a µg mass m Putting the value of a in en. (i), we get µ (m + M)g + µ (m + M)g (µ + µ ) (m + M)g ( ) ( + 5) 0 96 N KOT / HS - 5/7

6 7. mv + 0 mv + mg( l) l If v v then v v (given) \ m(v) mv + mgl O mv mg l v gl d(mv) dm 7. v dt dt Wok Powe (P) Time kg-m/s oce Displacement oce velocity Time J/s o watt 7. Initial hoizontal momentum inal hoizontal momentum kg /m/s kg v cos m/s+ kg v cosm/s 0 0 n amount of 8 J is impated by explosion. Thus, the total enegy of the fagments is 6 J, i.e. each fagment has J kinetic enegy. kg v J v 6 v 8 m/s and v cos cos Þ 60º 7. s 6t t ds dt v 8t -t t t 0; v 0 t t s ; v m/s lso W m(v -v) (56 0) J 75. Let the sping constant of sping Q is k and that of P is k. The extensions poduced by applying eual foces on them ae x p and x Q, espectively. Since kx (numeically) o x k v v and o U kx æö U kç èk ø k 8 v cos v cos m/s...(i) The initial kinetic enegy of the shell kg (m / s) 6 J o Thus, o U µ k UQ k k U k k P P Q U Q U P E KOT / HS - 6/7 0CE05

7 76. Relative velocity afte collision e Relative velocity befoe collision o the collision between the blocks and v -v v -v e 0.5 v -v 0-0 (Q u 0 and u 0 m/s) o v v 5...(i) lso fom the pinciple of consevation of linea momentum, mu + mu mv + mv o v + v o v + v 0...(ii) om es. (i) and (ii) v 7.5 m/s and v.5 m/s Now fo the collision between the blocks and C. vc -v vc -v e 0.5 u -u o v C v (iii) and also fom momentum consevation pinciple, mu + mu C mv + mv C v + v C o v C + v (iv) om es. (iii) and (iv), we get v C 5.6 m/s u u u 77. V Vi ˆ+wR( - ˆi);V Vi;V ˆ C Vi ˆ+wRi ˆ u u V ˆ C - V wri u u [V - V C] [V(i) -V(i) -w R(i)] -w R(i) u u u u Hence VC - V -(V -V C) C ngula momentum of a body of mass m moving with velocity v in cicula obit of adius about the cente of the obit is mv om the angula momentum consevation pinciple, if v' is the linea velocity of the coment when it is fathest distance ' fom the sun, then mv' ' mv 0 v v' 0 m/s ' t. ^. R t Ia whee I MR (Moment of inetia of the disc about axis passing though its cente and ^ to its plane face) \ Ia. R R.R a I MR MR Thus, aµ R R C w V wr wr V V 0CE05 KOT / HS - 7/7

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Department of Physics, Korea University Page 1 of 5

Department of Physics, Korea University Page 1 of 5 Name: Depatment: Student ID #: Notice ˆ + ( 1) points pe coect (incoect) answe. ˆ No penalty fo an unansweed question. ˆ Fill the blank ( ) with ( ) if the statement is coect (incoect). ˆ : coections to

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pena Towe, Road No, Contactos Aea, Bistupu, Jamshedpu 8, Tel (657)89, www.penaclasses.com IIT JEE Mathematics Pape II PART III MATHEMATICS SECTION I Single Coect Answe Type This section contains 8 multiple

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line

CIRCULAR MOTION. Particle moving in an arbitrary path. Particle moving in straight line 1 CIRCULAR MOTION 1. ANGULAR DISPLACEMENT Intoduction: Angle subtended by position vecto of a paticle moving along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle moving

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is Chapte 8 Homewok Solutions Easy P8. Assume the velocity of the blood is constant ove the 0.60 s. Then the patient s body and pallet will have a constant velocity of 6 0 5 m 3.75 0 4 m/ s 0.60 s in the

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

KCET 2015 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY 12 th MAY, 2015) MATHEMATICS ALLEN Y (0, 14) (4) 14x + 5y ³ 70 y ³ 14and x - y ³ 5 (2) (3) (4)

KCET 2015 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY 12 th MAY, 2015) MATHEMATICS ALLEN Y (0, 14) (4) 14x + 5y ³ 70 y ³ 14and x - y ³ 5 (2) (3) (4) KET 0 TEST PAPER WITH ANSWER KEY (HELD ON TUESDAY th MAY, 0). If a and b ae the oots of a + b = 0, then a +b is equal to a b () a b a b () a + b Ans:. If the nd and th tems of G.P. ae and esectively, then

More information

RAO IIT ACADEMY / NSEP Physics / Code : P 152 / Solutions NATIONAL STANDARD EXAMINATION IN PHYSICS SOLUTIONS

RAO IIT ACADEMY / NSEP Physics / Code : P 152 / Solutions NATIONAL STANDARD EXAMINATION IN PHYSICS SOLUTIONS RAO ACADEMY / NSEP Physics / Code : P 5 / Solutions NAONAL SANDARD EXAMNAON N PHYSCS - 5 SOLUONS RAO ACADEMY / NSEP Physics / Code : P 5 / Solutions NSEP SOLUONS (PHYSCS) CODE - P 5 ANSWER KEY & SOLUONS.

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

Momentum and Collisions

Momentum and Collisions SOLUTIONS TO PROBLES Section 8. P8. m 3.00 kg, (a) omentum and Collisions Linea omentum and Its Consevation v ( 3.00î 4.00ĵ ) m s p mv ( 9.00î.0ĵ ) kg m s Thus, p x 9.00 kg m s and p y.0 kg m s. p p x

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

Written as per the revised syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune.

Written as per the revised syllabus prescribed by the Maharashtra State Board of Secondary and Higher Secondary Education, Pune. Witten as pe e evised syllabus pescibed by e Mahaashta State oad of Seconday and Highe Seconday Education, Pune. Pecise Physics I SD. XII Sci. Salient Featues Concise coveage of syllabus in Question nswe

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Rotational Motion: Statics and Dynamics

Rotational Motion: Statics and Dynamics Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

More information

Cartesian Coordinate System and Vectors

Cartesian Coordinate System and Vectors Catesian Coodinate System and Vectos Coodinate System Coodinate system: used to descibe the position of a point in space and consists of 1. An oigin as the efeence point 2. A set of coodinate axes with

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

JEE(MAIN) 2018 TEST PAPER WITH SOLUTIONS (HELD ON SUNDAY 08 th APRIL, 2018) PART B MATHEMATICS ALLEN

JEE(MAIN) 2018 TEST PAPER WITH SOLUTIONS (HELD ON SUNDAY 08 th APRIL, 2018) PART B MATHEMATICS ALLEN . The integal sin cos 5 5 (sin cos sin sin cos cos ) is equal to () ( tan ) C () cot C () cot C () ( tan ) C (whee C is a constant of integation) Ans. () Let I sin cos d [(sin cos )(sin cos )] sin cos

More information

SAMPLE QUESTION PAPER CLASS NAME & LOGO XII-JEE (MAINS)-YEAR Topic Names: Cicula motion Test Numbe Test Booklet No. 000001 110001 Wite/Check this Code on you Answe Sheet : IMPORTANT INSTRUCTIONS : Wite

More information

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05 AMM PBL Membes: Chin Guan Wei p3674 Huang Pengfei p36783 Lim Wilson p36808 Yap Jun Da p36697 Class: MEMS803MAM05 The common values that we use ae: G=6.674 x 0 - m 3 kg - s - Radius of Eath ()= 637km [Fom

More information

PROGRESS TEST-4 GR, GRK & GRS JEE MAIN PATTERN

PROGRESS TEST-4 GR, GRK & GRS JEE MAIN PATTERN PROGRESS TEST- GR, GRK & GRS JEE MIN PTTERN Test Date: -7-7 [ ] PT-IV (Main) GR, GRK & GRS_.7.7 PHYSIS. () mg mg m m. () If acceleation of block is a upwad along the incline, then acceleation of block

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

Physics 120 Homework Solutions April 25 through April 30, 2007

Physics 120 Homework Solutions April 25 through April 30, 2007 Physics Homewok Solutions Apil 5 though Apil 3, 7 Questions: 6. The oce is pependicula to evey incement o displacement. Theeoe, F =. 6.4 Wok is only done in acceleating the ball om est. The wok is done

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B. Fom Newton to Einstein Mid-Tem Test, a.m. Thu. 3 th Nov. 008 Duation: 50 minutes. Thee ae 0 maks in Section A and 30 in Section B. Use g = 0 ms in numeical calculations. You ma use the following epessions

More information

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points PHYSICS 1210 Exam 2 Univesity of Wyoming 14 Mach ( Day!) 2013 150 points This test is open-note and closed-book. Calculatos ae pemitted but computes ae not. No collaboation, consultation, o communication

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

Principles of Physics I

Principles of Physics I Pinciples of Physics I J. M. Veal, Ph. D. vesion 8.05.24 Contents Linea Motion 3. Two scala equations........................ 3.2 Anothe scala equation...................... 3.3 Constant acceleation.......................

More information

Translation and Rotation Kinematics

Translation and Rotation Kinematics Tanslation and Rotation Kinematics Oveview: Rotation and Tanslation of Rigid Body Thown Rigid Rod Tanslational Motion: the gavitational extenal foce acts on cente-of-mass F ext = dp sy s dt dv total cm

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYS Summer Professor Caillault Homework Solutions. Chapter 9 PHYS - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 9 3. Pictue the Poblem The owne walks slowly towad the notheast while the cat uns eastwad and the dog uns nothwad. Stategy Sum the momenta

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

PART- A 1. (C) 2. (D) 3. (D) 4. (B) 5. (D) 6. (C) 7. (D) 8. (B) 9. (D) 10. (B) 11. (B) 12. (B) 13. (A) 14. (D)

PART- A 1. (C) 2. (D) 3. (D) 4. (B) 5. (D) 6. (C) 7. (D) 8. (B) 9. (D) 10. (B) 11. (B) 12. (B) 13. (A) 14. (D) PRACTICE TEST-4 KISHORE VAIGYANIK PROTSAHAN YOJANA (KVPY) 7 STREAM (SA)_ DATE : -9-7 ANSWER KEY PART- A. (C). (D) 3. (D) 4. (B) 5. (D) 6. (C) 7. (D) 8. (B) 9. (D). (B). (B). (B) 3. (A) 4. (D) 5. (C) 6.

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

10.2 Parametric Calculus

10.2 Parametric Calculus 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point

More information

NARAYANA IIT ACADEMY INDIA Sec: Sr. IIT-IZ-CO SPARK Jee-Advanced Date: Time: 09:00 AM to 12:00 Noon 2015_P1 Max.Marks:264

NARAYANA IIT ACADEMY INDIA Sec: Sr. IIT-IZ-CO SPARK Jee-Advanced Date: Time: 09:00 AM to 12:00 Noon 2015_P1 Max.Marks:264 NARAYANA IIT ACADEMY INDIA Sec: S. IIT-IZ-CO SPARK Jee-Advanced Date: 6-5-8 Time: 9: AM to : Noon 5_P Ma.Maks:64 KEY SHEET PHYSICS 4 5 5 9 6 7 7 5 8 4 9 AD ACD AD C 4 CD 5 ACD 6 AD 7 ACD 8 A 9 A-RT; -S;

More information

Rectilinea Motion. A foce P is applied to the initially stationay cat. Detemine the velocity and displacement at time t=5 s fo each of the foce histoi

Rectilinea Motion. A foce P is applied to the initially stationay cat. Detemine the velocity and displacement at time t=5 s fo each of the foce histoi Rectilinea Motion 1. Small objects ae deliveed to the m inclined chute by a conveyo belt A which moves at a speed v 1 =0.4 m/s. If the conveyo belt B has a speed v =0.9 m/s and the objects ae deliveed

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Basic oces an Keple s Laws 1. Two ientical sphees of gol ae in contact with each othe. The gavitational foce of attaction between them is Diectly popotional to the squae of thei aius ) Diectly popotional

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

PHYS 1410, 11 Nov 2015, 12:30pm.

PHYS 1410, 11 Nov 2015, 12:30pm. PHYS 40, Nov 205, 2:30pm. A B = AB cos φ x = x 0 + v x0 t + a 2 xt 2 a ad = v2 2 m(v2 2 v) 2 θ = θ 0 + ω 0 t + 2 αt2 L = p fs µ s n 0 + αt K = 2 Iω2 cm = m +m 2 2 +... m +m 2 +... p = m v and L = I ω ω

More information

Q A. A B C A C D A,C,D A,B,C B,C B,C Q A. C C B SECTION-I. , not possible

Q A. A B C A C D A,C,D A,B,C B,C B,C Q A. C C B SECTION-I. , not possible PAPER CODE SCORE-I LEADER & ENTHUSIAST COURSE TARGET : JEE (Main + Advanced) 04 PART- : MATHEMATICS SECTION-I SECTION-II SECTION-IV. Ans. (A) 0 C T 0 7 SECTION-I For x > & >, [x] - [] - + is not possible

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis

Conflict Exam Issue. Sorry, Can t do it. Please see Kevin Pitts if you have any additional questions or concerns about this. Office is 231 Loomis Conflict Exam Issue. Soy, Can t do it I was told that: Students can only be excused fom the scheduled final fo illness, death in the family o eligious holiday. No exceptions. Please see Kevin Pitts if

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

1121 T Question 1

1121 T Question 1 1121 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, tavelling on the sae path in the sae diection as you, at a constant speed

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & .. Linea Combinations: (a) (b) (c) (d) Given a finite set of vectos a b c,,,... then the vecto xa + yb + zc +... is called a linea combination of a, b, c,... fo any x, y, z... R. We have the following

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

13.10 Worked Examples

13.10 Worked Examples 13.10 Woked Examples Example 13.11 Wok Done in a Constant Gavitation Field The wok done in a unifom gavitation field is a faily staightfowad calculation when the body moves in the diection of the field.

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon xample: A 1-kg stone is thown vetically up fom the suface of the Moon by Supeman. The maximum height fom the suface eached by the stone is the same as the adius of the moon. Assuming no ai esistance and

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angula Momentum Rotational Motion Evey quantity that we have studied with tanslational motion has a otational countepat TRANSLATIONAL ROTATIONAL Displacement x Angula Position Velocity

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Section 26 The Laws of Rotational Motion

Section 26 The Laws of Rotational Motion Physics 24A Class Notes Section 26 The Laws of otational Motion What do objects do and why do they do it? They otate and we have established the quantities needed to descibe this motion. We now need to

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 6: motion in two and three dimensions III. Slide 6-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 6: motion in two and three dimensions III. Slide 6-1 Physics 1501 Fall 2008 Mechanics, Themodynamics, Waves, Fluids Lectue 6: motion in two and thee dimensions III Slide 6-1 Recap: elative motion An object moves with velocity v elative to one fame of efeence.

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

CAREER POINT TARGET IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS HINTS & SOLUTION (B*) (C*) (D) MeMgBr 9. [A, D]

CAREER POINT TARGET IIT JEE CHEMISTRY, MATHEMATICS & PHYSICS HINTS & SOLUTION (B*) (C*) (D) MeMgBr 9. [A, D] CAREER PINT TARGET IIT JEE CEMISTRY, MATEMATICS & PYSICS RS -- I -A INTS & SLUTIN CEMISTRY Section I n +. [B] C n n + n + nc + (n + ) V 7 n + (n + ) / 7 n VC 4 n 4 alkane is C 6 a.[a] P + (v b) RT V at

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

Physics 1C Fall 2011: Quiz 1 Version A 1

Physics 1C Fall 2011: Quiz 1 Version A 1 Physics 1C Fall 2011: Quiz 1 Vesion A 1 Depatment of Physics Physics 1C Fall Quate - 2011 D. Mak Paddock INSTRUCTIONS: 1. Pint you full name below LAST NAME FIRST NAME MIDDLE INITIAL 2. You code numbe

More information

ALL INDIA TEST SERIES

ALL INDIA TEST SERIES Fom Classoom/Integated School Pogams 7 in Top 0, in Top 00, 54 in Top 00, 06 in Top 500 All India Ranks & 4 Students fom Classoom /Integated School Pogams & 7 Students fom All Pogams have been Awaded a

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sec: S. IIT_IZ JEE-MAIN Date: 4--8 Time: 7: AM to : AM GTM-5 Max.Maks: 6 KEY SHEET MATHS 4 4 5 6 4 7 4 8 9 4 4 5 6 7 8 4 9 4 5 6 7 8 9 4 PHYSICS 4 4 5 6 7 4 8 9 4 4 4 4 4 44 45 46 47 4 48 49 5 5

More information

Lecture 13. Rotational motion Moment of inertia

Lecture 13. Rotational motion Moment of inertia Lectue 13 Rotational motion Moment of inetia EXAM 2 Tuesday Mach 6, 2018 8:15 PM 9:45 PM Today s Topics: Rotational Motion and Angula Displacement Angula Velocity and Acceleation Rotational Kinematics

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Motion 2. Newton s Law of Univesal Gavitation 3. Calculating satellite obital paametes (assuming cicula motion) Scala & Vectos Scala: a physical quantity

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information