Solutions to Exercises in Notes 1., multiplying byg kl, and using [ ]

Size: px
Start display at page:

Download "Solutions to Exercises in Notes 1., multiplying byg kl, and using [ ]"

Transcription

1 Fo any vecto fields X, Y and Z that Solutions to Execises in Notes. 2g ( X Y, Z) = X (g (Y, Z)) + Y (g (X, Z)) Z (g (X, Y )) () + g ([X, Y ], Z) g ([X, Z], Y ) g ([Y, Z], X). Applying this to X =, Y =, Z =, multiplying byg kl, and using [ ], x i x j x l x i x = 0, we obtain j equation (). Solution to Execise. The deivation of this fomula illustates a nice tick in computing evolutions of vaious geometic quantities such as the connection and the cuvatues. We compute at an abitaily chosen point p in nomal coodinates centeed at p so that Γ k ij (p) = 0. Note that g x i jk (p) = 0. In such coodinates, k a j j q i i (p) = have s Γk ij = ( 2 gkl x i s g jl + x k a j j q x j i i (p) fo any (, q)-tenso a. Thus, at p we s g il ) x l s g ij and s Γk ij = 2 gkl ( i v jl + j v il l v ij ) (2) follows since i v jl (p) = v x i jl (p). Finally we note that since both sides of (2) ae the components of tensos, equation (2) in fact holds as a tenso equation, that is, it is tue fo any coodinate system, not just nomal coodinates. Hee used the hint that the diffeence of two connections is a tenso and hence the vaiation of a family of connections is a tenso. Let α be a covaiant -tenso and X be a vecto field. Lie deivative of α with espect to X is denoted by L X α. Fomula: (L X α) (Y,..., Y ) = ( X α) (Y,..., Y ) (3) + α (Y,..., Y i, Yi X, Y i+,..., Y ). i= Solution to Execise 2. () Use X g = 0. (2) Apply (3) with Y =, Y x i 2 =. To obtain x j equation (4), let X i = i f. Note that i j f = 2 f ( ), x i x and 2 f (X, Y ) = X (Y f) ( j X Y ) f. Solution to Execise 3. () ultiplying (6) by g im, i.e., tacing, we obtain 0 = g im ( i R jklm + j R kilm + k R ijlm ) = g im i R jklm j R kl + k R jl. Tacing again, i.e., multiplying by g kl, we obtain g im i R jm j R + g kl k R jl = 0, which yields (7). (2) Taking the divegence of R jk = n Rg jk yields 2 kr = g ij i R jk = g ij i ( ) n Rg jk = n kr

2 and the esult follows fom n 2. Solution to Execise 4. These ae special cases of (8). Acting on functions, the Laplacian is ( ) f = div f = tace g ( 2 f) = g ij i j f = g ij 2 f x i x f j Γk ij. x k One can show that f = g i,j= whee g det (g ij ). Solution to Execise 5. () This follows fom whee we used the Ricci identities. (2) We compute ( g g ij f ), (4) x i x j i f = j i j f = i j j f R jijk k f, f 2 = i i j f 2 = 2 i ( i j f j f) = 2 i j f j f j f and obtain pat (2) fom pat (). (3) If Rc 0 and f = 0, then pat (2) implies f 2 = 2 2 f Rc ( f, f) 2 f 2. Hence, if also f = 0, then 2 f = 0 and Rc ( f, f) = 0. Divegence theoem: Poof. Define the (n )-fom α by div (X) dµ = α ι X (dµ). Using d 2 = 0 and L X (dµ) = (d ι X + ι X d) (dµ), we compute X, ν dσ. (5) dα = d ι X (dµ) = (d ι X + ι X d) (dµ) = L X (dµ) = div(x)dµ, whee to obtain the last equality, we may compute in an othonomal fame e,..., e n : L X (dµ) (e,..., e n ) = Now Stokes s theoem implies that div(x)dµ = dα = dµ (e,..., ei X,..., e n ) i= = div(x)dµ (e,..., e n ). α = 2 ι X (dµ) = X, ν dσ.

3 To veify the last equality, we used (ι X (dµ)) (e 2,..., e n ) = n (dµ) (X, e 2,..., e n ) = n X, ν (dµ) (e, e 2,..., e n ) = X, ν. (n )! Solution to Execise 6. () This follows fom the divegence theoem and u = div( u). (2) This follows fom the divegence theoem applied to X = u v v u which has div(x) = u v v u. (3) This follows fom the divegence theoem applied to the vecto field fx. Solution to Execise 7. Easy calculation. Solution to Execise 8. This follows fom Execise 5(2) since integation by pats yields f fdµ = ( f)2 dµ. Solution to Execise 9. If u + λu = 0, then 2 u 2 = u 2 + u, u + Rc ( u, u) n ( u)2 λ u 2 + (n ) K u 2 = n λ2 u 2 + ((n ) K λ) u 2. Integating this, we have 0 n λ2 u 2 dµ + ((n ) K λ) u 2 dµ. Dividing by u2 dµ and using the fact that λ = u 2 dµ / u2 dµ implies Solution to Execise 0. Fom 0 n λ2 + ((n ) K λ) λ. R l ijk = i Γ l jk j Γ l ik + Γ p jk Γl ip Γ p ik Γl jp we compute ( ) ( ) s Rl ijk = i s Γl jk j s Γl ik = 2 ( ) i j vk l + k vj l l v jk 2 ( ) j i vk l + k vi l l v ik, which is the fist fomula. The second fomula follows fom this and the commutato fomula i j vk l j i vk l = R q ijk vl q + Rijqv l q k. 3

4 Solution to Execise. () We have s R ij = p ( ) ( ) s Γp ij i s Γp pj. This follows fom computing at the cente in nomal coodinates. Substituting the fomula fo s Γk ij into this, we obtain s R ij = 2 l ( i v jl + j v il l v ij ) 2 i j V. (6) Finally, commute deivatives. (2) Taking the tace, we obtain s R = gij ( ) s R ij s g ij R ij (7) = l i v il V v ij R ij. Solution to Execise 2. () and (2) follow immediately fom the pevious execise. (3) We shall show the equivalent fomula that unde the Ricci flow, the (3, )-Riemann cuvatue tenso evolves by t Rl ijk = Rijk l + g ( ) pq RijpR qk l 2RpikR jq l + 2RpiR l jqk R p i Rl pjk R p j Rl ipk R p k Rl ijp + RpR l p ijk. By applying the second Bianchi identity and commuting covaiant deivatives, we compute ( ) Rijk l = g pq p q Rijk l = g pq p i Rjqk l j Rqik l i p R = g pq jqk l + R pijrqk l + R piqrjk l + R pik Rl jq RpiR l jqk + j p Rqik l R pjirqk l R pjqrik l R pjk Rl iq + RpjR l iqk and then apply the second Bianchi identity again to obtain g pq p R l jqk = g pq g lm ( k R jqmp m R jqpk ) = k R l j l R jk. This lets us ewite the fomula fo R l ijk given above as Rijk l = i k Rj l + i l R jk + j k Ri l j l R ik RpijR + g pq qk l + R piqrjk l + R pik Rl jq RpiR l jqk RpjiR qk l R pjqrik l R pjk Rl iq + RpjR l iqk Now the fist Bianchi identity shows that which implies that R l ijk R pijr l qk R pjir l qk = R ijpr l qk, may be witten as. R l ijk = i k R l j + i l R jk + j k R l i j l R ik Ri Rjk l + RjR ik l RijpR + g pq qk l + R pik Rl jq + RpjR l iqk RpiR l jqk R pjk Rl iq. (8a) (8b) (8c) 4

5 On the othe hand, ewiting the commutato tem g lp ( j i i j ) R kp yields t Rl ijk = i k Rj l + i l R jk + j k Ri l j l R ik (9a) + g ( lp R q ijk R qp + R q ijp R kq). (9b) The eaction-diffusion equation fo the Riemann cuvatue tenso now follows fom compaing tems in fomulas (8) and (9). 5

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

3D-Central Force Problems I

3D-Central Force Problems I 5.73 Lectue #1 1-1 Roadmap 1. define adial momentum 3D-Cental Foce Poblems I Read: C-TDL, pages 643-660 fo next lectue. All -Body, 3-D poblems can be educed to * a -D angula pat that is exactly and univesally

More information

Now we just need to shuffle indices around a bit. The second term is already of the form

Now we just need to shuffle indices around a bit. The second term is already of the form Depatment of Physics, UCSD Physics 5B, Geneal Relativity Winte 05 Homewok, solutions. (a) Fom the Killing equation, ρ K σ ` σ K ρ 0 taking one deivative, µ ρ K σ ` µ σ K ρ 0 σ µ K ρ σ ρ K µ 0 ρ µ K σ `

More information

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an

More information

ON RICCI TYPE IDENTITIES IN MANIFOLDS WITH NON-SYMMETRIC AFFINE CONNECTION. Svetislav M. Minčić

ON RICCI TYPE IDENTITIES IN MANIFOLDS WITH NON-SYMMETRIC AFFINE CONNECTION. Svetislav M. Minčić PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle séie, tome 9 (08) (0), 0 7 DOI: 0.98/PIM080M ON RICCI TPE IDENTITIES IN MANIFOLDS WITH NON-SMMETRIC AFFINE CONNECTION Svetislav M. Minčić Abstact. In [8],

More information

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx SUPPLEMENTARY MATERIAL 613 7.6.3 CHAPTER 7 ( px + q) a x + bx + c dx. We choose constants A and B such that d px + q A ( ax + bx + c) + B dx A(ax + b) + B Compaing the coefficients of x and the constant

More information

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version The Binomial Theoem Factoials Auchmuty High School Mathematics Depatment The calculations,, 6 etc. often appea in mathematics. They ae called factoials and have been given the notation n!. e.g. 6! 6!!!!!

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Mean Curvature and Shape Operator of Slant Immersions in a Sasakian Space Form

Mean Curvature and Shape Operator of Slant Immersions in a Sasakian Space Form Mean Cuvatue and Shape Opeato of Slant Immesions in a Sasakian Space Fom Muck Main Tipathi, Jean-Sic Kim and Son-Be Kim Abstact Fo submanifolds, in a Sasakian space fom, which ae tangential to the stuctue

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

FINSLER SPACE SUBJECTED TO A KROPINA CHANGE WITH AN. 1. Introduction

FINSLER SPACE SUBJECTED TO A KROPINA CHANGE WITH AN. 1. Introduction FACTA UNIVERSITATIS (NIŠ) Se.Math.Infom. Vol. 30 No 4 (2015) 513 525 FINSER SPACE SUBJECTE TO A KROPINA CHANGE WITH AN h-vector M. K. Gupta and P. N. Pandey Abstact. In this pape we discuss the Finsle

More information

DIFFERENTIAL GEOMETRY ATTACKS THE TORUS William Schulz Department of Mathematics and Statistics Northern Arizona University, Flagstaff, AZ 86011

DIFFERENTIAL GEOMETRY ATTACKS THE TORUS William Schulz Department of Mathematics and Statistics Northern Arizona University, Flagstaff, AZ 86011 DIFFERENTIAL GEOMETRY ATTACKS THE TORUS William Schulz Depatment of Mathematics Statistics Nothen Aizona Univesity, Flagstaff, AZ 86. INTRODUCTION This is a pdf showing computations of Diffeential Geomety

More information

dq 1 (5) q 1 where the previously mentioned limit has been taken.

dq 1 (5) q 1 where the previously mentioned limit has been taken. 1 Vecto Calculus And Continuum Consevation Equations In Cuvilinea Othogonal Coodinates Robet Maska: Novembe 25, 2008 In ode to ewite the consevation equations(continuit, momentum, eneg) to some cuvilinea

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Lecture 23. Representation of the Dirac delta function in other coordinate systems

Lecture 23. Representation of the Dirac delta function in other coordinate systems Lectue 23 Repesentation of the Diac delta function in othe coodinate systems In a geneal sense, one can wite, ( ) = (x x ) (y y ) (z z ) = (u u ) (v v ) (w w ) J Whee J epesents the Jacobian of the tansfomation.

More information

Perturbation theory and stability analysis for string-corrected black holes in arbitrary dimensions

Perturbation theory and stability analysis for string-corrected black holes in arbitrary dimensions CPHT-RR-046-0805 SPHT-T05/50 axiv:hep-th/0608009 v Aug 006 Petubation theoy and stability analysis fo sting-coected black holes in abitay dimensions Filipe Moua Cente de Physique Théoique, École Polytéchnique

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

The Strain Compatibility Equations in Polar Coordinates RAWB, Last Update 27/12/07

The Strain Compatibility Equations in Polar Coordinates RAWB, Last Update 27/12/07 The Stain Compatibility Equations in Pola Coodinates RAWB Last Update 7//7 In D thee is just one compatibility equation. In D polas it is (Equ.) whee denotes the enineein shea (twice the tensoial shea)

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

ME 210 Applied Mathematics for Mechanical Engineers

ME 210 Applied Mathematics for Mechanical Engineers Tangent and Ac Length of a Cuve The tangent to a cuve C at a point A on it is defined as the limiting position of the staight line L though A and B, as B appoaches A along the cuve as illustated in the

More information

Chapter 2: Introduction to Implicit Equations

Chapter 2: Introduction to Implicit Equations Habeman MTH 11 Section V: Paametic and Implicit Equations Chapte : Intoduction to Implicit Equations When we descibe cuves on the coodinate plane with algebaic equations, we can define the elationship

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple Global Jounal of Pue and Applied Mathematics. ISSN 0973-1768 Volume 12, Numbe 4 2016, pp. 3315 3325 Reseach India Publications http://www.ipublication.com/gjpam.htm Tansfomation of the Navie-Stokes Equations

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is thee a magnification paadox in gavitational ing? Olaf Wucknitz wucknitz@asto.uni-bonn.de Astophysics semina/colloquium, Potsdam, 6 Novembe 7 Is thee a magnification paadox in gavitational ing? gavitational

More information

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4 Fouie tansfom pais: f(x) 1 f(k) e p 2 (k) p e iax 2 (k a) 2 e a x a a 2 + k 2 e a2 x 1 2, a > 0 a p k2 /4a2 e 2 1 H(x) ik p 2 + 2 (k) The fist few Y m Y 0 0 = Y 0 1 = Y ±1 1 = l : 1 Y2 0 = 4 3 ±1 cos Y

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

Magnetic field due to a current loop.

Magnetic field due to a current loop. Example using spheical hamonics Sp 18 Magnetic field due to a cuent loop. A cicula loop of adius a caies cuent I. We place the oigin at the cente of the loop, with pola axis pependicula to the plane of

More information

SPECTRAL SEQUENCES. im(er

SPECTRAL SEQUENCES. im(er SPECTRAL SEQUENCES MATTHEW GREENBERG. Intoduction Definition. Let a. An a-th stage spectal (cohomological) sequence consists of the following data: bigaded objects E = p,q Z Ep,q, a diffeentials d : E

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

THE NAVIER-STOKES EQUATION: The Queen of Fluid Dynamics. A proof simple, but complete.

THE NAVIER-STOKES EQUATION: The Queen of Fluid Dynamics. A proof simple, but complete. THE NAIER-TOKE EQUATION: The Queen of Fluid Dnamics. A poof simple, but complete. Leonado Rubino leonubino@ahoo.it eptembe 010 Rev. 00 Fo www.via.og Abstact: in this pape ou will find a simple demonstation

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

3D-Central Force Problems II

3D-Central Force Problems II 5.73 ectue # - 1 3D-Cental Foce Poblems II ast time: [x,p] vecto commutation ules: genealize fom 1-D to 3-D conugate position and momentum components in Catesian coodinates Coespondence Pinciple Recipe

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 ELETRODYNAMIS: PHYS 44. Electomagnetic Field Equations. Maxwell s Equations Analysis in space (vacuum). oulomb Bon June 4, 76 Angoulême, Fance Died August 2, 86 Pais, Fance In 785 oulomb pesented his thee

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

EN221 - Fall HW # 1 Solutions

EN221 - Fall HW # 1 Solutions EN221 - Fall2008 - HW # 1 Solutions Prof. Vivek Shenoy 1. Let A be an arbitrary tensor. i). Show that II A = 1 2 {(tr A)2 tr A 2 } ii). Using the Cayley-Hamilton theorem, deduce that Soln. i). Method-1

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems ! Revised Apil 11, 2017 1:48 PM! 1 Vectos, Vecto Calculus, and Coodinate Systems David Randall Physical laws and coodinate systems Fo the pesent discussion, we define a coodinate system as a tool fo descibing

More information

Chapter Eight Notes N P U1C8S4-6

Chapter Eight Notes N P U1C8S4-6 Chapte Eight Notes N P UC8S-6 Name Peiod Section 8.: Tigonometic Identities An identit is, b definition, an equation that is alwas tue thoughout its domain. B tue thoughout its domain, that is to sa that

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13

PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13 PHZ 3113 Fall 2017 Homewok #5, Due Fiday, Octobe 13 1. Genealize the poduct ule (fg) = f g +f g to wite the divegence Ö (Ù Ú) of the coss poduct of the vecto fields Ù and Ú in tems of the cul of Ù and

More information

Review of the H-O model. Problem 1. Assume that the production functions in the standard H-O model are the following:

Review of the H-O model. Problem 1. Assume that the production functions in the standard H-O model are the following: Revie of the H-O model Poblem 1 Assume that the poduction functions in the standad H-O model ae the folloing: f 1 L 1 1 ) L 1/ 1 1/ 1 f L ) L 1/3 /3 In addition e assume that the consume pefeences ae given

More information

Dilatonic black holes in heterotic string theory: perturbations and stability

Dilatonic black holes in heterotic string theory: perturbations and stability Dilatonic black holesin heteotic sting theoy:petubations and stability p. 1/2 Dilatonic black holes in heteotic sting theoy: petubations and stability Filipe Moua Cento de Matemática, Univesidade do Minho,

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

On Pseudo-Union Curves in a Hypersurface of a Weyl Space

On Pseudo-Union Curves in a Hypersurface of a Weyl Space Intenational Mathematical Foum, Vol., 07, no. 6, 78-793 HIKARI Ltd, www.m-hikai.com https://doi.og/0.988/imf.07.7760 On Pseudo-Union Cues in a Hypesuface of a Weyl Space Nil Kofoğlu Beykent Uniesity Faculty

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 9 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 9 Solutions Math 451: Euclidean and Non-Euclidean Geomety MWF 3pm, Gasson 04 Homewok 9 Solutions Execises fom Chapte 3: 3.3, 3.8, 3.15, 3.19, 3.0, 5.11, 5.1, 5.13 Execise 3.3. Suppose that C and C ae two cicles with

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Physics Tutorial V1 2D Vectors

Physics Tutorial V1 2D Vectors Physics Tutoial V1 2D Vectos 1 Resolving Vectos & Addition of Vectos A vecto quantity has both magnitude and diection. Thee ae two ways commonly used to mathematically descibe a vecto. y (a) The pola fom:,

More information

Recall from last week:

Recall from last week: Recall fom last week: Length of a cuve '( t) dt b Ac length s( t) a a Ac length paametization ( s) with '( s) 1 '( t) Unit tangent vecto T '(s) '( t) dt Cuvatue: s ds T t t t t t 3 t ds u du '( t) dt Pincipal

More information

Measure Estimates of Nodal Sets of Polyharmonic Functions

Measure Estimates of Nodal Sets of Polyharmonic Functions Chin. Ann. Math. Se. B 39(5), 08, 97 93 DOI: 0.007/s40-08-004-6 Chinese Annals of Mathematics, Seies B c The Editoial Office of CAM and Spinge-Velag Belin Heidelbeg 08 Measue Estimates of Nodal Sets of

More information

Fluid flow in curved geometries: Mathematical Modeling and Applications

Fluid flow in curved geometries: Mathematical Modeling and Applications Fluid flow in cuved geometies: Mathematical Modeling and Applications D. Muhammad Sajid Theoetical Plasma Physics Division PINSTECH, P.O. Niloe, PAEC, Islamabad Mach 01-06, 010 Islamabad, Paistan Pesentation

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in ME 01 DYNAMICS Chapte 1: Kinematics of a Paticle Chapte 1 Kinematics of a Paticle A. Bazone 1.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Pola Coodinates Pola coodinates ae paticlaly sitable fo solving

More information

Emerging from Matrix Models

Emerging from Matrix Models fom Matix Models Talk pesented by Daniel N. Blaschke Faculty of Physics, Mathematical Physics Goup Collaboato: H. Steinacke May 15, 2010 1 / 28 1 2 Cuvatue and Actions fo Matix Models 3 4 Reissne-Nodstöm

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

Goodness-of-fit for composite hypotheses.

Goodness-of-fit for composite hypotheses. Section 11 Goodness-of-fit fo composite hypotheses. Example. Let us conside a Matlab example. Let us geneate 50 obsevations fom N(1, 2): X=nomnd(1,2,50,1); Then, unning a chi-squaed goodness-of-fit test

More information

Conformally Recurrent Riemannian Manifolds with Harmonic Conformal Curvature Tensor

Conformally Recurrent Riemannian Manifolds with Harmonic Conformal Curvature Tensor KYUNGPOOK Math. J. 44(2004), 47-61 Confomally Recuent Riemannian Manifolds with Hamonic Confomal Cuvatue Tenso Jin Ok Baek and Young Jin Suh Depatment of Mathematics, Kyungpook Univesity, Taegu 702-701,

More information

PURDUE UNIVERSITY. BRIDGE TO RESEARCH SEMINAR AN INTERPLAY BETWEEN ANALYSIS AND GEOMETRY : THE SOAP BUBBLE THEOREM OF A. D.

PURDUE UNIVERSITY. BRIDGE TO RESEARCH SEMINAR AN INTERPLAY BETWEEN ANALYSIS AND GEOMETRY : THE SOAP BUBBLE THEOREM OF A. D. PURDUE UNIVERITY. BRIDGE TO REEARCH EMINAR AN INTERPLAY BETWEEN ANALYI AND GEOMETRY : THE OAP BUBBLE THEOREM OF A. D. ALEXANDROV NICOLA GAROFALO 1. Intoduction The mean cuvatue of a suface R 3 is one of

More information

EQUATIONS OF MOTION LUCA GUIDO MOLINARI

EQUATIONS OF MOTION LUCA GUIDO MOLINARI EQUATIONS OF MOTION LUCA GUIDO MOLINARI 1. Equation of motion of destuction opeatos Conside a system of bosons o femions descibed by a Hamiltonian H = H 1 + H 2, whee H 1 and H 2 ae espectively the one

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information

Flux Shape in Various Reactor Geometries in One Energy Group

Flux Shape in Various Reactor Geometries in One Energy Group Flux Shape in Vaious eacto Geometies in One Enegy Goup. ouben McMaste Univesity Couse EP 4D03/6D03 Nuclea eacto Analysis (eacto Physics) 015 Sept.-Dec. 015 Septembe 1 Contents We deive the 1-goup lux shape

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

Perelman s Dilaton. Annibale Magni (TU-Dortmund) April 26, joint work with M. Caldarelli, G. Catino, Z. Djadly and C.

Perelman s Dilaton. Annibale Magni (TU-Dortmund) April 26, joint work with M. Caldarelli, G. Catino, Z. Djadly and C. Annibale Magni (TU-Dortmund) April 26, 2010 joint work with M. Caldarelli, G. Catino, Z. Djadly and C. Mantegazza Topics. Topics. Fundamentals of the Ricci flow. Topics. Fundamentals of the Ricci flow.

More information

1 MathematicalPreliminaries

1 MathematicalPreliminaries 1 MathematicalPeliminaies The enomous usefulness of mathematics in the natual sciences is something bodeing on the mysteious. Eugene Wigne (1960 1.1 Intoduction This chapte pesents a collection of mathematical

More information

QIP Course 10: Quantum Factorization Algorithm (Part 3)

QIP Course 10: Quantum Factorization Algorithm (Part 3) QIP Couse 10: Quantum Factoization Algoithm (Pat 3 Ryutaoh Matsumoto Nagoya Univesity, Japan Send you comments to yutaoh.matsumoto@nagoya-u.jp Septembe 2018 @ Tokyo Tech. Matsumoto (Nagoya U. QIP Couse

More information

TRANSILVANIA UNIVERSITY OF BRASOV MECHANICAL ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING ONLY FOR STUDENTS

TRANSILVANIA UNIVERSITY OF BRASOV MECHANICAL ENGINEERING FACULTY DEPARTMENT OF MECHANICAL ENGINEERING ONLY FOR STUDENTS TNSILVNI UNIVSITY OF BSOV CHNICL NGINING FCULTY DPTNT OF CHNICL NGINING Couse 9 Cuved as 9.. Intoduction The eams with plane o spatial cuved longitudinal axes ae called cuved as. Thee ae consideed two

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

Continuum mechanics II. Kinematics in curvilinear coordinates. 1. Strain in cartesian coordinates (recapitulation)

Continuum mechanics II. Kinematics in curvilinear coordinates. 1. Strain in cartesian coordinates (recapitulation) Continuum mechanics office Math.7 ales.janka@unif.ch http://peso.unif.ch/ales.janka/mechanics Decembe 22, 2, Univesité de Fiboug. Stain in catesian coodinates (ecapitulation) Geen stain tenso: Lagange

More information

Computational Methods of Solid Mechanics. Project report

Computational Methods of Solid Mechanics. Project report Computational Methods of Solid Mechanics Poject epot Due on Dec. 6, 25 Pof. Allan F. Bowe Weilin Deng Simulation of adhesive contact with molecula potential Poject desciption In the poject, we will investigate

More information

VIII - Geometric Vectors

VIII - Geometric Vectors MTHEMTIS 0-05-RE Linea lgeba Matin Huad Fall 05 VIII - Geometic Vectos. Find all ectos in the following paallelepiped that ae equialent to the gien ectos. E F H G a) b) HE c) H d) E e) f) F g) HE h) F

More information

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks Intenet Appendix fo A Bayesian Appoach to Real Options: The Case of Distinguishing Between Tempoay and Pemanent Shocks Steven R. Genadie Gaduate School of Business, Stanfod Univesity Andey Malenko Gaduate

More information

F-IF Logistic Growth Model, Abstract Version

F-IF Logistic Growth Model, Abstract Version F-IF Logistic Gowth Model, Abstact Vesion Alignments to Content Standads: F-IFB4 Task An impotant example of a model often used in biology o ecology to model population gowth is called the logistic gowth

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

The Divergence Theorem

The Divergence Theorem 13.8 The ivegence Theoem Back in 13.5 we ewote Geen s Theoem in vecto fom as C F n ds= div F x, y da ( ) whee C is the positively-oiented bounday cuve of the plane egion (in the xy-plane). Notice this

More information

Lab #0. Tutorial Exercises on Work and Fields

Lab #0. Tutorial Exercises on Work and Fields Lab #0 Tutoial Execises on Wok and Fields This is not a typical lab, and no pe-lab o lab epot is equied. The following execises will emind you about the concept of wok (fom 1130 o anothe intoductoy mechanics

More information

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases APPENDIX Fo the lectues of Claude Cohen-Tannoudji on Atom-Atom Inteactions in Ultacold Quantum Gases Pupose of this Appendix Demonstate the othonomalization elation(ϕ ϕ = δ k k δ δ )k - The wave function

More information