We call V a Banach space if it is complete, that is to say every Cauchy sequences in V converges to an element of V. (a (k) a (l) n ) (a (l)

Size: px
Start display at page:

Download "We call V a Banach space if it is complete, that is to say every Cauchy sequences in V converges to an element of V. (a (k) a (l) n ) (a (l)"

Transcription

1 Queston 1 Part () Suppose (a n ) =. Then sup{ a N} =. But a for all, so t follows that a = for all, that s to say (a n ) =. Let (a n ) c and α C. Then αa = α α for each, so α(a n ) = (αa n ) = sup{ α a N} = α sup{ a N} = α (a n ). Let (a n ), (b n ) c. Then Part () (a n ) +(b n ) = sup{ a +b N} sup{ a + b j, j N} = (a n ) + (b n ). We call V a Banach space f t s complete, that s to say every Cauchy sequences n V converges to an element of V. Part () Let (a (k) n ) k=1 be a Cauchy sequence n c. Fx N. Then for any k, l a (k) a (l) (a (k) n ) (a (l) n ) so t follows that (a (k) ) k=1 s a Cauchy sequence n C. But the complex numbers C are complete, so the sequence (a (k) ) k=1 con- a n as verges to some lmt, a. We clam that (a n ) c, and (a (k) n n. We wll prove the second of these frst. Let ε >. Snce the sequence (a (k) n that we have N such that a (k) a (l) whenever k, l N. Thus s we let l, we see a (k) ) k=1 s Cauchy, for each N, t follows (a (k) n ) (a (l) n ) < ε 2 a (a (k) n ) (a n ) ε 2 < ε whenever k N. So (a (k) n a n as n as requred. Fnally, we need to check that (a n ) c. Agan, let ε >. By the above, pck K such that (a (K) n ) (a n ) < ε 2 that a (K) n < ε 2 whenever n N. Now let n N. Then a n a n a (K) n. Snce (a(k) n so a n as n, and (a n ) c as we need. + a (K) n < ε 2 + ε 2 = ε ) c we have N N such 1

2 Part (v) Let V be a Banach space. We call A V closed f for any sequence (a n ) n A whch converges to a lmt v V, we have v A. Part (v) (a) Any sequence n c that converges n l s Cauchy. By the above, Cauchy sequences n c have lmts n c. Therefore c s closed. (b) Defne v n c by v n = (1, 12,..., 1n,,,... ). Let v = (1, 12, 13,... ). Observe v n v = 1 n+1, so the sequence (v n) has lmt v. But v c. So c s not closed. (c) The space c N s a fnte-dmensonal subspace of l, and s therefore closed. 2

3 Queston 2 Part () (a) Call T a bounded lnear map f there s a constant M such that T x x for all x V. We defne the norm T = T x sup x V \{} x (b) We call T open f t maps open sets to open sets. The open mappng theorem asserts that a surjectve bounded lnear map between Banach spaces s open. (c) Let c be the set of bounded sequences (a n ), whch are eventually zero. Defne T : c c by T ((a n )) = (a n /n). Then T s certanly a surjectve bounded lnear map. But T 1 ((a n )) = (na n ) whch does not defne a bounded lnear map. It follows that T 1 s not contnuous. By the formulaton of contnuty n terms of open sets, T s not open. Part () (a) We defne V to be the vector space of bounded lnear maps V R, wth norm as defned above. We want to show that V s complete. Let (f n ) be a Cauchy sequence n V. Let x V. If x =, then f n (x) = for all n, and f n (x) as n. So suppose x. Let ε >. Then, as (f n ) s Cauchy, we have N N such that f m f n < ε/ x whenever m, n N. Hence, for m, n N, we have f m (x) f n (x) f m f n x < ε. So the sequence (f n (x)) s a Cauchy sequence n R, for any x V. Cauchy sequences converge n R, so let f(x) be the lmt as n. We clam that f V, and f n f as n. Snce each f n s lnear, the algebra of lmts tells us that f s lnear. Observe f m f n f m f n for all m, n N. Thus, snce the sequence (f n ) s Cauchy, the sequence ( f n ) s a Cauchy sequence n R. Let f n C as n. Then for any x V, we have lm sup n x V \{} f n (x) x = C 3

4 whch means, when we rearrage f = f(x) sup x V \{} x = C In partcular, f s bounded. Now let ε >. Snce (f n ) s Cauchy, we have N such that f m (x) f n (x) ε 2 x for all x V, whenever m, n N. Let m. Then f(x) f n (x) ε 2 x for all x V, whenever m, n N. It follows that f n f < ε whenever n N, and we are done. (b) Let W be a subspace of a normed vector space V. Let f W. Then we have F V such that F W = f and F = f. (c) Let v V. Observe for all f V. It follows that τ(v) v. τ(v)(f) = f(v) f v If v =, then τ(v) =, so τ(v) = v. So suppose τ(v). Let W be the one-dmensonal vector space spanned by the vector v. Defne f: W K by f(αv) = α v α K. Then by the Hahn-Banach theorem, we have F V such that F = f, and F (v) = f(v) = 1. We see that f(αv) F = f = sup α α v = 1. Hence τ(v) τ(v)(f ) = F (v) = v. Combnng the two nequaltes, we are done. 4

5 Queston 3 Part () Let X be a compact metrc space. Let A be a untal subalgebra of C(X) whch separates ponts. Then A s dense n C(X). Part () Let m > n. The formulae cos((m + n)x) = cos(mx) cos(nx) sn(mx) sn(nx) let us wrte cos((m n)x) = cos(mx) cos(nx) + sn(mx) sn(nx) cos(mx) cos(nx) = 1 (cos((m + n)x) + cos((m n)x) 2 that s as as a lnear combnaton of cos(mx) and cos(nx). It follows that A s an algebra. Allowng n =, we have that 1 A, so A s a untal algebra. If x, y [, π], then for x y we have cos x cos y. Hence A separates ponts. By the Stone-Weerstrass theorem, A s dense n C[, π]. Part () Let M (C[, π], ) be dense, where s the supremum norm. Let be the Hlbert space norm on L 2 [, π]. Let f, g C[, π]. Then f g 2 = (f g) 2 π f g 2 f g π f g. It follows that M s also dense n the space (C[, π], ). But (C[, π], ) s tself dense n L 2 [, π]. So M s also dense n L 2 [, π]. Part (v) By above, the span of the set {e, e 1, e 2,...} s dense n L 2 [, π]. We must check that the set s orthonormal. Let m > n >. Then e m, e n = 2 π Let m >. Then cos(mx) cos(nx) dx = 1 π e m, e = 2 π 5 cos((m+n)x) dx+ 1 π cos(mx) dx = cos((m n)x) dx =.

6 Observe Fnally, for m > e 2 = 1 π dx = 1. e m 2 = 2 π cos 2 (mx) dx = 1. Part (v) We have so for n = : For n > : The formulae α = 1 π α n = 2 π α n = e n, f sn x dx = 2 π cos(nx) sn x dx sn((m + 1)x) = sn(mx) cos(x) + cos(mx) sn(x) let us wrte sn((m 1)x) = (mx) cos(x) cos(mx) sn(x) so that s cos(mx) sn(x) = 1 (sn((m + 1)x) sn((m 1)x) 2 α n = 1 sn((n + 1)x) sn((n 1)x) dx 2π α n = By Parseval s law ( 2 1 π n 1 1 ) 2 2 = n + 1 π(n2 1). α n 2 = f 2 = n= sn 2 x dx =

7 Queston 4 Part () (a) (b) Let S n = 1 + x + + x n. Observe, for n > m Spectrum(x) = {λ C x λ s not nvertble}. S n S m = x m x n x m+1 1 x as m, n, snce x < 1. So (S n ) s a Cauchy sequence, meanng t converges n norm to some S A by completeness. Now (1 x)s n = (1 + x + x 2 + x n ) (x + x x n + x n+1 ) = 1 x n+1 so 1 (1 x)s n = x n+1 x n+1. Let n. Snce x < 1, we see (1 x)s =, and so (1 x)s =. In the same way, S(1 x) =, so 1 x s nvertble, wth (1 x) 1 = S. (c) We call U untary f U U = UU = I. Observe that f U s untary, then for any v V, In partcular, U = 1. Uv 2 = Uv, Uv = U Uv, v = v, v = v 2. Let λ C and suppose λ > 1. Then U/λ < 1, so I Uλ s nvertble by part (b). Multplyng by λ, we see that U λi s nvertble, so λ Spectrum(U). In the same way, f λ < 1, then I λu s nvertble, and multplyng by U, we see that U λi s nvertble, so λ Spectrum(U). Therefore f λ Spectrum(U), then λ = 1. 7

8 Part () (a) Observe x n x n and the seres x n n= converges. So the seres n= converges absolutely, and therefore (snce A s a Banach space) also converges to an element e x A. Now By the bnomal theorem exp(x) exp(y) = (x + y) n = n k= x n n n= k= x k k! y n k (n k)! k!(n k)! xk y n k Therefore n (x + y) n exp(x) exp(y) = n= k= = exp(x + y) (b) Observe (T ) = T as T s self-adjont. So By the above exp(t ) ((T ) ) n = n= = ( T ) n n= = exp( T ). exp(t ) exp( T ) = exp( T ) exp(t ) = exp() = I. Therefoe, by defnton, exp(t ) s untary. 8

9 Queston 5 Part () If V and W are normed vector spaces, we call a lnear map T : V W compact f the mage T [B(, 1)] has compact closure. Part () Let (x n ) be a bounded sequence n V. Say x n < M for all n. Then the sequence (x n /M) s contaned n the unt ball B(, 1) n V. Hence the sequence (T (x n )/M) s contaned n the compact space T [B(, 1)], and so has a convergent subsequence, T (x nk )/M. It follows that the sequence (T x n ) has a convergent subsequence (T x nk ). Part () Let T : V W be a bounded lnear map wth fnte-dmensonal mage. Then, f v B(, 1), we have v < 1, so T v < T. It follows that the mage T [B(, 1)] s bounded, so the closure T [B(, 1)] s also bounded. So T [B(, 1)] s a closed bounded subset of a fnte-dmensonal normed vector space. By the Hene-Borel theorem, ths set must be compact, meanng T s a compact operator. Part (v) Observe T x m T x n 2 = T x m T x n, T x m T x n = T T x m T T x n, x m x n Snce the sequence (x n ) s bounded, we have a constance C such that x n C for all n. By the trangle nequalty, x m x n 2C for all m and n. Hence, by the Cauchy-Schwarz nequalty T x m T x n 2 2C T T x m T x n. Snce the sequence (T T x n ) converges, t must be a Cauchy sequence. Let ε >. Then we have N such that f m, n N, then T T x m T x n < ε 2 /2C. By the above, t follows that T x m T x n < ε for m, n N, so the sequence (T x n ) s Cauchy as desred. Part (v) Let (x n ) be a bounded sequence n H. Then as K K s compact, (K Kx n ) has a convergent subsequence (K Kx nk ). By the above, the sequence (Kx nk ) s Cauchy, and therefore converges. Thus (Kx n ) has a convergent subsequence, and therefore K s compact. 9

10 Part (v) Let K be compact. The product of a compact operator wth another operator s compact. Therefore K K s compact, and the converse holds. 1

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Math 702 Midterm Exam Solutions

Math 702 Midterm Exam Solutions Math 702 Mdterm xam Solutons The terms measurable, measure, ntegrable, and almost everywhere (a.e.) n a ucldean space always refer to Lebesgue measure m. Problem. [6 pts] In each case, prove the statement

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell Orthogonal Functons and Fourer Seres Vector Spaces Set of ectors Closed under the followng operatons Vector addton: 1 + 2 = 3 Scalar multplcaton: s 1 = 2 Lnear combnatons: Scalars come from some feld F

More information

ALGEBRA HW 7 CLAY SHONKWILER

ALGEBRA HW 7 CLAY SHONKWILER ALGEBRA HW 7 CLAY SHONKWILER 1 Whch of the followng rngs R are dscrete valuaton rngs? For those that are, fnd the fracton feld K = frac R, the resdue feld k = R/m (where m) s the maxmal deal), and a unformzer

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

Math 205A Homework #2 Edward Burkard. Assume each composition with a projection is continuous. Let U Y Y be an open set.

Math 205A Homework #2 Edward Burkard. Assume each composition with a projection is continuous. Let U Y Y be an open set. Math 205A Homework #2 Edward Burkard Problem - Determne whether the topology T = fx;?; fcg ; fa; bg ; fa; b; cg ; fa; b; c; dgg s Hausdor. Choose the two ponts a; b 2 X. Snce there s no two dsjont open

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Geometry of Müntz Spaces

Geometry of Müntz Spaces WDS'12 Proceedngs of Contrbuted Papers, Part I, 31 35, 212. ISBN 978-8-7378-224-5 MATFYZPRESS Geometry of Müntz Spaces P. Petráček Charles Unversty, Faculty of Mathematcs and Physcs, Prague, Czech Republc.

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

D.K.M COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE DEPARTMENT OF MATHEMATICS

D.K.M COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE DEPARTMENT OF MATHEMATICS D.K.M COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE DEPARTMENT OF MATHEMATICS SUB: ALGEBRA SUB CODE: 5CPMAA SECTION- A UNIT-. Defne conjugate of a n G and prove that conjugacy s an equvalence relaton on G. Defne

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES. 1. Introduction ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES TAKASHI ITOH AND MASARU NAGISA Abstract We descrbe the Haagerup tensor product l h l and the extended Haagerup tensor product l eh l n terms of

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Orthogonal Functions and Fourier Series. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Orthogonal Functons and Fourer Seres Fall 21 Don Fussell Vector Spaces Set of ectors Closed under the followng operatons Vector addton: 1 + 2 = 3 Scalar multplcaton: s 1 = 2 Lnear combnatons: Scalars come

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

MAT 578 FUNCTIONAL ANALYSIS EXERCISES MAT 578 FUNCTIONAL ANALYSIS EXERCISES JOHN QUIGG Exercise 1. Prove that if A is bounded in a topological vector space, then for every neighborhood V of 0 there exists c > 0 such that tv A for all t > c.

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information

42. Mon, Dec. 8 Last time, we were discussing CW complexes, and we considered two di erent CW structures on S n. We continue with more examples.

42. Mon, Dec. 8 Last time, we were discussing CW complexes, and we considered two di erent CW structures on S n. We continue with more examples. 42. Mon, Dec. 8 Last tme, we were dscussng CW complexes, and we consdered two d erent CW structures on S n. We contnue wth more examples. (2) RP n. Let s start wth RP 2. Recall that one model for ths space

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Math General Topology Fall 2012 Homework 11 Solutions

Math General Topology Fall 2012 Homework 11 Solutions Math 535 - General Topology Fall 2012 Homework 11 Solutions Problem 1. Let X be a topological space. a. Show that the following properties of a subset A X are equivalent. 1. The closure of A in X has empty

More information

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C Some basc nequaltes Defnton. Let V be a vector space over the complex numbers. An nner product s gven by a functon, V V C (x, y) x, y satsfyng the followng propertes (for all x V, y V and c C) (1) x +

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Review of metric spaces. 1. Metric spaces, continuous maps, completeness

Review of metric spaces. 1. Metric spaces, continuous maps, completeness (March 14, 2014) Revew of metrc spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [Ths document s http://www.math.umn.edu/ garrett/m/mfms/notes 2013-14/12a metrc spaces.pdf] We

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

2 More examples with details

2 More examples with details Physcs 129b Lecture 3 Caltech, 01/15/19 2 More examples wth detals 2.3 The permutaton group n = 4 S 4 contans 4! = 24 elements. One s the dentty e. Sx of them are exchange of two objects (, j) ( to j and

More information

Genericity of Critical Types

Genericity of Critical Types Genercty of Crtcal Types Y-Chun Chen Alfredo D Tllo Eduardo Fangold Syang Xong September 2008 Abstract Ely and Pesk 2008 offers an nsghtful characterzaton of crtcal types: a type s crtcal f and only f

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

Real Analysis Chapter 4 Solutions Jonathan Conder

Real Analysis Chapter 4 Solutions Jonathan Conder 2. Let x, y X and suppose that x y. Then {x} c is open in the cofinite topology and contains y but not x. The cofinite topology on X is therefore T 1. Since X is infinite it contains two distinct points

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

OPERATOR POWER MEANS DUE TO LAWSON-LIM-PÁLFIA FOR 1 < t < 2

OPERATOR POWER MEANS DUE TO LAWSON-LIM-PÁLFIA FOR 1 < t < 2 OPERATOR POWER MEANS DUE TO LAWSON-LIM-PÁLFIA FOR 1 < t < 2 YUKI SEO Abstract. For 1 t 1, Lm-Pálfa defned a new famly of operator power means of postve defnte matrces and subsequently by Lawson-Lm ther

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

Another converse of Jensen s inequality

Another converse of Jensen s inequality Another converse of Jensen s nequalty Slavko Smc Abstract. We gve the best possble global bounds for a form of dscrete Jensen s nequalty. By some examples ts frutfulness s shown. 1. Introducton Throughout

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

MATH Homework #2

MATH Homework #2 MATH609-601 Homework #2 September 27, 2012 1. Problems Ths contans a set of possble solutons to all problems of HW-2. Be vglant snce typos are possble (and nevtable). (1) Problem 1 (20 pts) For a matrx

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets

where a is any ideal of R. Lemma Let R be a ring. Then X = Spec R is a topological space. Moreover the open sets 11. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

1 Definition and Basic Properties of Compa Operator

1 Definition and Basic Properties of Compa Operator 1 Definition and Basic Properties of Compa Operator 1.1 Let X be a infinite dimensional Banach space. Show that if A C(X ), A does not have bounded inverse. Proof. Denote the unit ball of X by B and the

More information

Errata to Invariant Theory with Applications January 28, 2017

Errata to Invariant Theory with Applications January 28, 2017 Invarant Theory wth Applcatons Jan Drasma and Don Gjswjt http: //www.wn.tue.nl/~jdrasma/teachng/nvtheory0910/lecturenotes12.pdf verson of 7 December 2009 Errata and addenda by Darj Grnberg The followng

More information

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets

where a is any ideal of R. Lemma 5.4. Let R be a ring. Then X = Spec R is a topological space Moreover the open sets 5. Schemes To defne schemes, just as wth algebrac varetes, the dea s to frst defne what an affne scheme s, and then realse an arbtrary scheme, as somethng whch s locally an affne scheme. The defnton of

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Prof. Wickerhauser Due Friday, February 5th, 2016 Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*. Exercises marked

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Math 101 Fall 2013 Homework #7 Due Friday, November 15, 2013

Math 101 Fall 2013 Homework #7 Due Friday, November 15, 2013 Math 101 Fall 2013 Homework #7 Due Frday, November 15, 2013 1. Let R be a untal subrng of E. Show that E R R s somorphc to E. ANS: The map (s,r) sr s a R-balanced map of E R to E. Hence there s a group

More information

FUNCTIONAL ANALYSIS DR. RITU AGARWAL MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

FUNCTIONAL ANALYSIS DR. RITU AGARWAL MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR FUNCTIONAL ANALYSIS DR. RITU AGARWAL MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR Contents 1. About 1 2. Syllabus 1 References 1 2.1. Orgn 2 3. Abstract space 2 4. Metrc Space 2 5. Sem-Metrc 6 6. Separable

More information

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx. Math 321 Final Examination April 1995 Notation used in this exam: N 1 π (1) S N (f,x) = f(t)e int dt e inx. 2π n= N π (2) C(X, R) is the space of bounded real-valued functions on the metric space X, equipped

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n ANALYSIS QUALIFYING EXAM FALL 206: SOLUTIONS Problem. Let m be Lebesgue measure on R. For a subset E R and r (0, ), define E r = { x R: dist(x, E) < r}. Let E R be compact. Prove that m(e) = lim m(e /n).

More information

Affine and Riemannian Connections

Affine and Riemannian Connections Affne and Remannan Connectons Semnar Remannan Geometry Summer Term 2015 Prof Dr Anna Wenhard and Dr Gye-Seon Lee Jakob Ullmann Notaton: X(M) space of smooth vector felds on M D(M) space of smooth functons

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N)

SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) M(B) := # ( B Z N) SUCCESSIVE MINIMA AND LATTICE POINTS (AFTER HENK, GILLET AND SOULÉ) S.BOUCKSOM Abstract. The goal of ths note s to present a remarably smple proof, due to Hen, of a result prevously obtaned by Gllet-Soulé,

More information

THE PROBLEMS FOR THE SECOND TEST FOR BRIEF SOLUTIONS

THE PROBLEMS FOR THE SECOND TEST FOR BRIEF SOLUTIONS THE PROBLEMS FOR THE SECOND TEST FOR 18.102 BRIEF SOLUTIONS RICHARD MELROSE Question.1 Show that a subset of a separable Hilbert space is compact if and only if it is closed and bounded and has the property

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS ALGEBRA SCHEMES AND THEIR REPRESENTATIONS AMELIA ÁLVAREZ, CARLOS SANCHO, AND PEDRO SANCHO Introducton The equvalence (Carter dualty) between the category of topologcally flat formal k-groups and the category

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Real Variables # 10 : Hilbert Spaces II

Real Variables # 10 : Hilbert Spaces II randon ehring Real Variables # 0 : Hilbert Spaces II Exercise 20 For any sequence {f n } in H with f n = for all n, there exists f H and a subsequence {f nk } such that for all g H, one has lim (f n k,

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS

ALGEBRA SCHEMES AND THEIR REPRESENTATIONS ALGEBRA SCHEMES AND THEIR REPRESENTATIONS AMELIA ÁLVAREZ, CARLOS SANCHO, AND PEDRO SANCHO Introducton The equvalence (Carter dualty) between the category of topologcally flat formal k-groups and the category

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

1 Functional Analysis

1 Functional Analysis 1 Functional Analysis 1 1.1 Banach spaces Remark 1.1. In classical mechanics, the state of some physical system is characterized as a point x in phase space (generalized position and momentum coordinates).

More information

SOLUTIONS TO SOME PROBLEMS

SOLUTIONS TO SOME PROBLEMS 23 FUNCTIONAL ANALYSIS Spring 23 SOLUTIONS TO SOME PROBLEMS Warning:These solutions may contain errors!! PREPARED BY SULEYMAN ULUSOY PROBLEM 1. Prove that a necessary and sufficient condition that the

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY The Bot-Savart Law The velocty nduced by the sngular vortex lne wth the crculaton can be determned by means of the Bot- Savart formula

More information

Homework 1 Lie Algebras

Homework 1 Lie Algebras Homework 1 Le Algebras Joshua Ruter February 9, 018 Proposton 0.1 Problem 1.7a). Let A be a K-algebra, wth char K. Then A s alternatve f and only f the folowng two lnear) denttes hold for all a, b, y A.

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

Functional Analysis HW #1

Functional Analysis HW #1 Functional Analysis HW #1 Sangchul Lee October 9, 2015 1 Solutions Solution of #1.1. Suppose that X

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Continuity of convex functions in normed spaces

Continuity of convex functions in normed spaces Continuity of convex functions in normed spaces In this chapter, we consider continuity properties of real-valued convex functions defined on open convex sets in normed spaces. Recall that every infinitedimensional

More information

A FINITE TO ONE OPEN MAPPING PRESERVES SPAN ZERO

A FINITE TO ONE OPEN MAPPING PRESERVES SPAN ZERO Volume 13, 1988 Pages 181 188 http://topology.auburn.edu/tp/ A FINITE TO ONE OPEN MAPPING PRESERVES SPAN ZERO by Mara Cuervo and Edwn Duda Topology Proceedngs Web: http://topology.auburn.edu/tp/ Mal: Topology

More information

Overview of normed linear spaces

Overview of normed linear spaces 20 Chapter 2 Overview of normed linear spaces Starting from this chapter, we begin examining linear spaces with at least one extra structure (topology or geometry). We assume linearity; this is a natural

More information

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces Chapter 6 Bounded and continuous functions on a locally compact Hausdorff space and dual spaces Recall that the dual space of a normed linear space is a Banach space, and the dual space of L p is L q where

More information

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0 FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM If M is a linear subspace of a normal linear space X and if F is a bounded linear functional on M then F can be extended to M + [x 0 ] without changing its norm.

More information