Detecting local deviations. Optimisation and applications to RNA-gene searching.

Size: px
Start display at page:

Download "Detecting local deviations. Optimisation and applications to RNA-gene searching."

Transcription

1 Detecting Local Deviations Detecting local deviations. Optimisation and applications to R-gene searching. iels Richard ansen niversity of openhagen Department of pplied Mathematics and Statistics p. 1/20

2 My scientific grandfather Ole E. Barndorff-ielsen Michael Sørensen (1986) iels Richard ansen (2004) ollaboration Distance (Barndorff-ielsen number): 6 iels Richard ansen coauthored with Ernst ansen Ernst ansen coauthored with Søren Fiig Jarner Søren Fiig Jarner coauthored with areth O. Roberts areth O. Roberts coauthored with Jesper Møller Jesper Møller coauthored with Michael Sørensen Michael Sørensen coauthored with Ole E. Barndorff-ielsen p. 2/20

3 Ribonucleic acid(r) ytosine 's T's ytosine 2 2 O O uanine uanine O O itrogenous Bases denine denine 2 Base pair 2 Sugar phosphate backbone racil T Thymine O O 3 O replaces Thymine in R itrogenous Bases R Ribonucleic acid D Deoxyribonucleic acid itrogenous Bases O ational Institutes of ealth ational uman enome Research Institute Division of Intramural Research

4 R molecular structure Let-7 (pre-cursor) from. Elegans. Member of the family of micro Rs that terminate or inhibit the translation of mr to protein. The pre-cursor is embedded as a gene in the D we want to find genes with similar structure. p. 4/20

5 Epidemic change point problem Two change points the epidemic alternative. The null model: (X n ) n 1 are i.i.d. The alternative: For some, unknown k 1 k 2, (X n ) n {k1,...,k 2 } are still i.i.d. but (X n ) n {k1,...,k 2 } has another distribution. Objectives: Test the null against the alternative. Estimate k 1 and k 2. Example: X n (µ n, 1), (X n ) n 1 independent. ull model: µ n = µ for all n 1 and some µ R. lternative: µ n = µ for all n {k 1,...,k 2 }, µ n = µ for all n {k 1,...,k 2 } with µ, µ R. p. 5/20

6 SM test The SM test statistic ( µ > µ) is M n = max 1 k 1 k 2 n { k2 k=k 1 Z k, 0 } = max 1 k 2 n max 1 k 1 k 2 { k2 } Z k, 0 k=k 1 T k2, where e.g. Z k = X k µ + µ 2. T k2 = max 1 k 1 k 2 { k2 k=k 1 Z k, 0 } = max{t k2 1 + Z k2, 0}. p. 6/20

7 SM test example X n S n T µ = 0 and µ = 1 n p. 7/20

8 SM test example X n S n W ˆk 1 = 37 (True k 1 = 38) ˆk2 = 50 (True k 2 = 50) n p. 8/20

9 Stem-loop alternative X 1...X i 1 5 -stem hairpin-loop 3 -stem X i...x i+δ δ+1 X i+δ+1...x j δ 1 j i 2δ 1 X j δ...x j δ+1 X j+1...x n. ull: lternative: (X n ) n 1 i.i.d. π 0 -distributed. (X i+k, X j k ) k=0,...,δ i.i.d. π-distributed and independent of everything else. Define Z i,j = f(x i, X j ), f(x, y) = log π(x, y) π 0 (x)π 0 (y) for i < j, x, y {,,, }. p. 9/20

10 Test statistic - without loop penalty X 1...X i 1 5 -stem hairpin-loop 3 -stem X i...x i+δ δ+1 X i+δ+1...x j δ 1 j i 2δ 1 X j δ...x j δ+1 X j+1...x n. Directly generalising the SM test gives M n = max i,j,δ { δ k=0 Z i+k,j k }= max i,j { δ } max Z i+k,j k δ k=0 T i,j. p. 10/20

11 Test statistics with loop penalty X 1...X i 1 5 -stem hairpin-loop 3 -stem X i...x i+δ δ+1 X i+δ+1...x j δ 1 j i 2δ 1 X j δ...x j δ+1 X j+1...x n. Large loops are not favourable. We introduce a penalty function g : (, 0] and M n = max i,j,δ = max i,j max δ { δ } Z i+k,j k + g(j i 2δ 1) k=0 { δ } Z i+k,j k + g(j i 2δ 1). k=0 } {{ } T i,j p. 11/20

12 recursion Initialisation: Score g(2) T k,k+1 = g(2) (T k,k = g(1)) g(4) g(4) + 1 g(4) + 2 g(4) max{g(4) 2, g(12)} T i,j = max{t i+1,j 1 + Z i,j, g(j i + 1)} Index k k 1 k 2 k 3 k 4 k 5 i R Struct. X i Z i,j = f(x i, X j ) X j Index k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 j p. 12/20

13 The reflected random walk The process T n = max{t n 1 + Z n, g(n)}, T 0 = 0 for i.i.d. (Z n ) n 0 and g : (, 0] (g(0) = 0) is a random walk reflected at the barrier g. It fulfills that where S n = n k=1 Z k, S 0 = 0. T n = S n + max 0 k n {g(k) S k} L n M n := max 0 k n T k M := sup k 0 T k. p. 13/20

14 Three examples g(n)=0 g(n) = 15 log(n) g(n) = n p. 14/

15 Results Let θ > 0 solve E exp(θz 1 ) = 1, and let P have local Radon-ikodym derivative exp(θ S n ) w.r.t. P, then with L = sup {g(n) S n } = lim L n n 0 n we have P(M < ) = 1 E exp(θ L) <. Moreover (with L 1 = ), E exp(θ L) = exp(θ g(n))e(1 exp(θ (L n 1 L n ))) n=0 exp(θ g(n)) n=0 p. 15/20

16 Results Theorem: If E exp(θ L) < and if Z 1 is non-arithmetic P(M > u) exp( θ u) E exp(θ 1 P(τ + < ) L) θ E S τ+ K g K for u where and τ + = inf{n 0 S n > 0} L = sup{g(n) S n }. n 0 p. 16/20

17 Levy process detour With (S t ) t 0 a Lévy process and g : [0, ) (, 0] (cadlag) the reflection at g is defined by T t = S t + max {g(s) S s}. 0 s t L t onjecture: With θ > 0 solving E exp(θs 1 ) = 1, P having local Radon-ikodym derivative exp(θ S t ) w.r.t. P, and L = lim t L t, then P(sup t 0 T t < ) = 1 E exp(θ L) <, and ( E exp(θ L) = θ E 0 ) exp(θ g(t))dl t. p. 17/20

18 Results with loop penalty onsider T i,j = max{t i+1,j 1 + f(x i, X j ), g(j i + 1)} and let n (t) be the number of diagonals in (T i,j ) exceeding t. Define g i (n) = g(2n + i), i = 0, 1. Theorem: If K gi < then with t n = log {nk(k g 0 + K g1 )} + x θ it holds that D( n (t n )) Poi(exp( x)) 0 for n. p. 18/20

19 Results without loop penalty onsider T i,j = max{t i+1,j 1 + f(x i, X j ), 0} and let n (t) be the number of excursions in (T i,j ) exceeding t. Define K = KP (τ = ). and let π = exp(θ f) π 0 π 0. Theorem: If (π π 0 π 0 ) > 2 max{(π 1 π 0 ), (π 2 π 0 )} then with t n = log { n 2 K /2 } + x θ it holds that D( n (t n )) Poi(exp( x)) 0 for n. (Essentially Karlin et al. 1994). p. 19/20

20 onclusions and outlook We have dealt with a central test problem in bioinformatics identified as a kind of change point detection problem for a few simple test statistics. Realistic tests statistics have a more complicated combinatorial structure. Empirical evidence support that the results generalise qualitatively. urrent project: Estimate the asymptotic parameters from data/simulations. Investigate the space of score functions f and more elaborated score systems using the theory in particular, optimisation of the score system based on a dataset from the alternative (some R-structures). p. 20/20

proteins are the basic building blocks and active players in the cell, and

proteins are the basic building blocks and active players in the cell, and 12 RN Secondary Structure Sources for this lecture: R. Durbin, S. Eddy,. Krogh und. Mitchison, Biological sequence analysis, ambridge, 1998 J. Setubal & J. Meidanis, Introduction to computational molecular

More information

A Method for Aligning RNA Secondary Structures

A Method for Aligning RNA Secondary Structures Method for ligning RN Secondary Structures Jason T. L. Wang New Jersey Institute of Technology J Liu, JTL Wang, J Hu and B Tian, BM Bioinformatics, 2005 1 Outline Introduction Structural alignment of RN

More information

Poisson Approximation for Two Scan Statistics with Rates of Convergence

Poisson Approximation for Two Scan Statistics with Rates of Convergence Poisson Approximation for Two Scan Statistics with Rates of Convergence Xiao Fang (Joint work with David Siegmund) National University of Singapore May 28, 2015 Outline The first scan statistic The second

More information

Quantitative modeling of RNA single-molecule experiments. Ralf Bundschuh Department of Physics, Ohio State University

Quantitative modeling of RNA single-molecule experiments. Ralf Bundschuh Department of Physics, Ohio State University Quantitative modeling of RN single-molecule experiments Ralf Bundschuh Department of Physics, Ohio State niversity ollaborators: lrich erland, LM München Terence Hwa, San Diego Outline: Single-molecule

More information

q P (T b < T a Z 0 = z, X 1 = 1) = p P (T b < T a Z 0 = z + 1) + q P (T b < T a Z 0 = z 1)

q P (T b < T a Z 0 = z, X 1 = 1) = p P (T b < T a Z 0 = z + 1) + q P (T b < T a Z 0 = z 1) Random Walks Suppose X 0 is fixed at some value, and X 1, X 2,..., are iid Bernoulli trials with P (X i = 1) = p and P (X i = 1) = q = 1 p. Let Z n = X 1 + + X n (the n th partial sum of the X i ). The

More information

Combinatorial approaches to RNA folding Part I: Basics

Combinatorial approaches to RNA folding Part I: Basics Combinatorial approaches to RNA folding Part I: Basics Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2015 M. Macauley (Clemson)

More information

Combinatorial approaches to RNA folding Part II: Energy minimization via dynamic programming

Combinatorial approaches to RNA folding Part II: Energy minimization via dynamic programming ombinatorial approaches to RNA folding Part II: Energy minimization via dynamic programming Matthew Macauley Department of Mathematical Sciences lemson niversity http://www.math.clemson.edu/~macaule/ Math

More information

Operational Risk and Pareto Lévy Copulas

Operational Risk and Pareto Lévy Copulas Operational Risk and Pareto Lévy Copulas Claudia Klüppelberg Technische Universität München email: cklu@ma.tum.de http://www-m4.ma.tum.de References: - Böcker, K. and Klüppelberg, C. (25) Operational VaR

More information

Hyperuniformity on the Sphere

Hyperuniformity on the Sphere Hyperuniformity on the Sphere Peter Grabner Institute for Analysis and Number Theory Graz University of Technology Problem Session, ICERM, February 12, 2018 Two point distributions Quantify evenness For

More information

On the asymptotic behaviour of the number of renewals via translated Poisson

On the asymptotic behaviour of the number of renewals via translated Poisson On the asymptotic behaviour of the number of renewals via translated Poisson Aihua Xia ( 夏爱华 ) School of Mathematics and Statistics The University of Melbourne, VIC 3010 20 July, 2018 The 14th Workshop

More information

Operational Risk and Pareto Lévy Copulas

Operational Risk and Pareto Lévy Copulas Operational Risk and Pareto Lévy Copulas Claudia Klüppelberg Technische Universität München email: cklu@ma.tum.de http://www-m4.ma.tum.de References: - Böcker, K. and Klüppelberg, C. (25) Operational VaR

More information

98 Algorithms in Bioinformatics I, WS 06, ZBIT, D. Huson, December 6, 2006

98 Algorithms in Bioinformatics I, WS 06, ZBIT, D. Huson, December 6, 2006 98 Algorithms in Bioinformatics I, WS 06, ZBIT, D. Huson, December 6, 2006 8.3.1 Simple energy minimization Maximizing the number of base pairs as described above does not lead to good structure predictions.

More information

Background: comparative genomics. Sequence similarity. Homologs. Similarity vs homology (2) Similarity vs homology. Sequence Alignment (chapter 6)

Background: comparative genomics. Sequence similarity. Homologs. Similarity vs homology (2) Similarity vs homology. Sequence Alignment (chapter 6) Sequence lignment (chapter ) he biological problem lobal alignment Local alignment Multiple alignment Background: comparative genomics Basic question in biology: what properties are shared among organisms?

More information

4.7.1 Computing a stationary distribution

4.7.1 Computing a stationary distribution At a high-level our interest in the rest of this section will be to understand the limiting distribution, when it exists and how to compute it To compute it, we will try to reason about when the limiting

More information

Random Toeplitz Matrices

Random Toeplitz Matrices Arnab Sen University of Minnesota Conference on Limits Theorems in Probability, IISc January 11, 2013 Joint work with Bálint Virág What are Toeplitz matrices? a0 a 1 a 2... a1 a0 a 1... a2 a1 a0... a (n

More information

P(X 0 = j 0,... X nk = j k )

P(X 0 = j 0,... X nk = j k ) Introduction to Probability Example Sheet 3 - Michaelmas 2006 Michael Tehranchi Problem. Let (X n ) n 0 be a homogeneous Markov chain on S with transition matrix P. Given a k N, let Z n = X kn. Prove that

More information

T. Liggett Mathematics 171 Final Exam June 8, 2011

T. Liggett Mathematics 171 Final Exam June 8, 2011 T. Liggett Mathematics 171 Final Exam June 8, 2011 1. The continuous time renewal chain X t has state space S = {0, 1, 2,...} and transition rates (i.e., Q matrix) given by q(n, n 1) = δ n and q(0, n)

More information

Introduction to Root Locus. What is root locus?

Introduction to Root Locus. What is root locus? Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response

More information

Lecture 5: Importance sampling and Hamilton-Jacobi equations

Lecture 5: Importance sampling and Hamilton-Jacobi equations Lecture 5: Importance sampling and Hamilton-Jacobi equations Henrik Hult Department of Mathematics KTH Royal Institute of Technology Sweden Summer School on Monte Carlo Methods and Rare Events Brown University,

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

Lecture 5: September Time Complexity Analysis of Local Alignment

Lecture 5: September Time Complexity Analysis of Local Alignment CSCI1810: Computational Molecular Biology Fall 2017 Lecture 5: September 21 Lecturer: Sorin Istrail Scribe: Cyrus Cousins Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Computational Complexity. This lecture. Notes. Lecture 02 - Basic Complexity Analysis. Tom Kelsey & Susmit Sarkar. Notes

Computational Complexity. This lecture. Notes. Lecture 02 - Basic Complexity Analysis. Tom Kelsey & Susmit Sarkar. Notes Computational Complexity Lecture 02 - Basic Complexity Analysis Tom Kelsey & Susmit Sarkar School of Computer Science University of St Andrews http://www.cs.st-andrews.ac.uk/~tom/ twk@st-andrews.ac.uk

More information

Shifting processes with cyclically exchangeable increments at random

Shifting processes with cyclically exchangeable increments at random Shifting processes with cyclically exchangeable increments at random Gerónimo URIBE BRAVO (Collaboration with Loïc CHAUMONT) Instituto de Matemáticas UNAM Universidad Nacional Autónoma de México www.matem.unam.mx/geronimo

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

Changepoints and Associated Climate Controversies

Changepoints and Associated Climate Controversies Changepoints and Associated Climate Controversies Robert Lund Clemson Math Sciences Lund@Clemson.edu Coconspirators: Alexander Aue, Colin Gallagher, Jaechoul Lee, Thomas Lee, Shanghong Li, Yingbo Li, QiQi

More information

A Conditional Approach to Modeling Multivariate Extremes

A Conditional Approach to Modeling Multivariate Extremes A Approach to ing Multivariate Extremes By Heffernan & Tawn Department of Statistics Purdue University s April 30, 2014 Outline s s Multivariate Extremes s A central aim of multivariate extremes is trying

More information

Local Alignment of RNA Sequences with Arbitrary Scoring Schemes

Local Alignment of RNA Sequences with Arbitrary Scoring Schemes Local Alignment of RNA Sequences with Arbitrary Scoring Schemes Rolf Backofen 1, Danny Hermelin 2, ad M. Landau 2,3, and Oren Weimann 4 1 Institute of omputer Science, Albert-Ludwigs niversität Freiburg,

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary

Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary Complexity Analysis Complexity Theory Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary Output TRUE or FALSE Time and Space

More information

Estimating Unnormalised Models by Score Matching

Estimating Unnormalised Models by Score Matching Estimating Unnormalised Models by Score Matching Michael Gutmann Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh Spring semester 2018 Program 1. Basics

More information

Bayesian Inference for directional data through ABC and homogeneous proper scoring rules

Bayesian Inference for directional data through ABC and homogeneous proper scoring rules Bayesian Inference for directional data through ABC and homogeneous proper scoring rules Monica Musio* Dept. of Mathematics and Computer Science, University of Cagliari, Italy - email: mmusio@unica.it

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information

Testing for Anomalous Periods in Time Series Data. Graham Elliott

Testing for Anomalous Periods in Time Series Data. Graham Elliott Testing for Anomalous Periods in Time Series Data Graham Elliott 1 Introduction The Motivating Problem There are reasons to expect that for a time series model that an anomalous period might occur where

More information

The parallel replica method for Markov chains

The parallel replica method for Markov chains The parallel replica method for Markov chains David Aristoff (joint work with T Lelièvre and G Simpson) Colorado State University March 2015 D Aristoff (Colorado State University) March 2015 1 / 29 Introduction

More information

Nonparametric Tests for Multi-parameter M-estimators

Nonparametric Tests for Multi-parameter M-estimators Nonparametric Tests for Multi-parameter M-estimators John Robinson School of Mathematics and Statistics University of Sydney The talk is based on joint work with John Kolassa. It follows from work over

More information

A memory gradient algorithm for l 2 -l 0 regularization with applications to image restoration

A memory gradient algorithm for l 2 -l 0 regularization with applications to image restoration A memory gradient algorithm for l 2 -l 0 regularization with applications to image restoration E. Chouzenoux, A. Jezierska, J.-C. Pesquet and H. Talbot Université Paris-Est Lab. d Informatique Gaspard

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30)

Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30) Stochastic Process (NPC) Monday, 22nd of January 208 (2h30) Vocabulary (english/français) : distribution distribution, loi ; positive strictement positif ; 0,) 0,. We write N Z,+ and N N {0}. We use the

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 4 - Jan. 10, 2018 CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5 University of Manitoba Picture is from the cover of the textbook CLRS. 1 /

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine

Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Séminaire de Statistiques de l'irma Modèles de dépendance entre temps inter-sinistres et montants de sinistre en théorie de la ruine Romain Biard LMB, Université de Franche-Comté en collaboration avec

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 4 - Jan. 14, 2019 CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5 University of Manitoba Picture is from the cover of the textbook CLRS. COMP

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri RNA Structure Prediction Secondary

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Chapter 4: Modelling

Chapter 4: Modelling Chapter 4: Modelling Exchangeability and Invariance Markus Harva 17.10. / Reading Circle on Bayesian Theory Outline 1 Introduction 2 Models via exchangeability 3 Models via invariance 4 Exercise Statistical

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

INTRINSIC MEAN ON MANIFOLDS. Abhishek Bhattacharya Project Advisor: Dr.Rabi Bhattacharya

INTRINSIC MEAN ON MANIFOLDS. Abhishek Bhattacharya Project Advisor: Dr.Rabi Bhattacharya INTRINSIC MEAN ON MANIFOLDS Abhishek Bhattacharya Project Advisor: Dr.Rabi Bhattacharya 1 Overview Properties of Intrinsic mean on Riemannian manifolds have been presented. The results have been applied

More information

Rare-Event Simulation

Rare-Event Simulation Rare-Event Simulation Background: Read Chapter 6 of text. 1 Why is Rare-Event Simulation Challenging? Consider the problem of computing α = P(A) when P(A) is small (i.e. rare ). The crude Monte Carlo estimator

More information

STOCHASTIC GEOMETRY BIOIMAGING

STOCHASTIC GEOMETRY BIOIMAGING CENTRE FOR STOCHASTIC GEOMETRY AND ADVANCED BIOIMAGING 2018 www.csgb.dk RESEARCH REPORT Anders Rønn-Nielsen and Eva B. Vedel Jensen Central limit theorem for mean and variogram estimators in Lévy based

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

Fundamental Algorithms

Fundamental Algorithms Fundamental Algorithms Chapter 1: Introduction Michael Bader Winter 2011/12 Chapter 1: Introduction, Winter 2011/12 1 Part I Overview Chapter 1: Introduction, Winter 2011/12 2 Organizational Stuff 2 SWS

More information

The Ihara zeta function of the infinite grid

The Ihara zeta function of the infinite grid The Ihara zeta function of the infinite grid Bryan Clair Department of Mathematics and Computer Science Saint Louis University bryan@slu.edu November 3, 2013 An Integral I(k) = 1 2π 2π (2π) 2 log [ 1 k

More information

Non-parametric Inference and Resampling

Non-parametric Inference and Resampling Non-parametric Inference and Resampling Exercises by David Wozabal (Last update. Juni 010) 1 Basic Facts about Rank and Order Statistics 1.1 10 students were asked about the amount of time they spend surfing

More information

Protein Threading. BMI/CS 776 Colin Dewey Spring 2015

Protein Threading. BMI/CS 776  Colin Dewey Spring 2015 Protein Threading BMI/CS 776 www.biostat.wisc.edu/bmi776/ Colin Dewey cdewey@biostat.wisc.edu Spring 2015 Goals for Lecture the key concepts to understand are the following the threading prediction task

More information

Multiple Sequence Alignment using Profile HMM

Multiple Sequence Alignment using Profile HMM Multiple Sequence Alignment using Profile HMM. based on Chapter 5 and Section 6.5 from Biological Sequence Analysis by R. Durbin et al., 1998 Acknowledgements: M.Sc. students Beatrice Miron, Oana Răţoi,

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

PID controllers. Laith Batarseh. PID controllers

PID controllers. Laith Batarseh. PID controllers Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

More information

Boosting with decision stumps and binary features

Boosting with decision stumps and binary features Boosting with decision stumps and binary features Jason Rennie jrennie@ai.mit.edu April 10, 2003 1 Introduction A special case of boosting is when features are binary and the base learner is a decision

More information

An ABC interpretation of the multiple auxiliary variable method

An ABC interpretation of the multiple auxiliary variable method School of Mathematical and Physical Sciences Department of Mathematics and Statistics Preprint MPS-2016-07 27 April 2016 An ABC interpretation of the multiple auxiliary variable method by Dennis Prangle

More information

Combinatorial Variants of Lebesgue s Density Theorem

Combinatorial Variants of Lebesgue s Density Theorem Combinatorial Variants of Lebesgue s Density Theorem Philipp Schlicht joint with David Schrittesser, Sandra Uhlenbrock and Thilo Weinert September 6, 2017 Philipp Schlicht Variants of Lebesgue s Density

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

RNA Secondary Structure Prediction

RNA Secondary Structure Prediction RN Secondary Structure Prediction Perry Hooker S 531: dvanced lgorithms Prof. Mike Rosulek University of Montana December 10, 2010 Introduction Ribonucleic acid (RN) is a macromolecule that is essential

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

Graphical Model Selection

Graphical Model Selection May 6, 2013 Trevor Hastie, Stanford Statistics 1 Graphical Model Selection Trevor Hastie Stanford University joint work with Jerome Friedman, Rob Tibshirani, Rahul Mazumder and Jason Lee May 6, 2013 Trevor

More information

Algorithms, CSE, OSU. Introduction, complexity of algorithms, asymptotic growth of functions. Instructor: Anastasios Sidiropoulos

Algorithms, CSE, OSU. Introduction, complexity of algorithms, asymptotic growth of functions. Instructor: Anastasios Sidiropoulos 6331 - Algorithms, CSE, OSU Introduction, complexity of algorithms, asymptotic growth of functions Instructor: Anastasios Sidiropoulos Why algorithms? Algorithms are at the core of Computer Science Why

More information

Sequential Change-Point Approach for Online Community Detection

Sequential Change-Point Approach for Online Community Detection Sequential Change-Point Approach for Online Community Detection Yao Xie Joint work with David Marangoni-Simonsen H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

More information

The best expert versus the smartest algorithm

The best expert versus the smartest algorithm Theoretical Computer Science 34 004 361 380 www.elsevier.com/locate/tcs The best expert versus the smartest algorithm Peter Chen a, Guoli Ding b; a Department of Computer Science, Louisiana State University,

More information

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Hypothesis Testing Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA An Example Mardia et al. (979, p. ) reprint data from Frets (9) giving the length and breadth (in

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Sequence Alignment (chapter 6)

Sequence Alignment (chapter 6) Sequence lignment (chapter 6) he biological problem lobal alignment Local alignment Multiple alignment Introduction to bioinformatics, utumn 6 Background: comparative genomics Basic question in biology:

More information

Differentiation of functions of covariance

Differentiation of functions of covariance Differentiation of log X May 5, 2005 1 Differentiation of functions of covariance matrices or: Why you can forget you ever read this Richard Turner Covariance matrices are symmetric, but we often conveniently

More information

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I)

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) Contents Alignment algorithms Needleman-Wunsch (global alignment) Smith-Waterman (local alignment) Heuristic algorithms FASTA BLAST

More information

Covariate-Assisted Variable Ranking

Covariate-Assisted Variable Ranking Covariate-Assisted Variable Ranking Tracy Ke Department of Statistics Harvard University WHOA-PSI@St. Louis, Sep. 8, 2018 1/18 Sparse linear regression Y = X β + z, X R n,p, z N(0, σ 2 I n ) Signals (nonzero

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

Large sample distribution for fully functional periodicity tests

Large sample distribution for fully functional periodicity tests Large sample distribution for fully functional periodicity tests Siegfried Hörmann Institute for Statistics Graz University of Technology Based on joint work with Piotr Kokoszka (Colorado State) and Gilles

More information

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales Lecture 6 Classification of states We have shown that all states of an irreducible countable state Markov chain must of the same tye. This gives rise to the following classification. Definition. [Classification

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

1.5 Sequence alignment

1.5 Sequence alignment 1.5 Sequence alignment The dramatic increase in the number of sequenced genomes and proteomes has lead to development of various bioinformatic methods and algorithms for extracting information (data mining)

More information

Non-parametric Residual Variance Estimation in Supervised Learning

Non-parametric Residual Variance Estimation in Supervised Learning Non-parametric Residual Variance Estimation in Supervised Learning Elia Liitiäinen, Amaury Lendasse, and Francesco Corona Helsinki University of Technology - Lab. of Computer and Information Science P.O.

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 3: Regenerative Processes Contents 3.1 Regeneration: The Basic Idea............................... 1 3.2

More information

where x i and u i are iid N (0; 1) random variates and are mutually independent, ff =0; and fi =1. ff(x i )=fl0 + fl1x i with fl0 =1. We examine the e

where x i and u i are iid N (0; 1) random variates and are mutually independent, ff =0; and fi =1. ff(x i )=fl0 + fl1x i with fl0 =1. We examine the e Inference on the Quantile Regression Process Electronic Appendix Roger Koenker and Zhijie Xiao 1 Asymptotic Critical Values Like many other Kolmogorov-Smirnov type tests (see, e.g. Andrews (1993)), the

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

Fundamental Algorithms

Fundamental Algorithms Fundamental Algorithms Chapter 1: Introduction Jan Křetínský Winter 2016/17 Chapter 1: Introduction, Winter 2016/17 1 Part I Overview Chapter 1: Introduction, Winter 2016/17 2 Organization Extent: 2 SWS

More information

Nonparametric Estimation of the Dependence Function for a Multivariate Extreme Value Distribution

Nonparametric Estimation of the Dependence Function for a Multivariate Extreme Value Distribution Nonparametric Estimation of the Dependence Function for a Multivariate Extreme Value Distribution p. /2 Nonparametric Estimation of the Dependence Function for a Multivariate Extreme Value Distribution

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Structure-Based Comparison of Biomolecules

Structure-Based Comparison of Biomolecules Structure-Based Comparison of Biomolecules Benedikt Christoph Wolters Seminar Bioinformatics Algorithms RWTH AACHEN 07/17/2015 Outline 1 Introduction and Motivation Protein Structure Hierarchy Protein

More information

Statistical mass spectrometry-based proteomics

Statistical mass spectrometry-based proteomics 1 Statistical mass spectrometry-based proteomics Olga Vitek www.stat.purdue.edu Outline What is proteomics? Biological questions and technologies Protein quantification in label-free workflows Joint analysis

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

In Memory of Wenbo V Li s Contributions

In Memory of Wenbo V Li s Contributions In Memory of Wenbo V Li s Contributions Qi-Man Shao The Chinese University of Hong Kong qmshao@cuhk.edu.hk The research is partially supported by Hong Kong RGC GRF 403513 Outline Lower tail probabilities

More information

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010 Optimal stopping for Hunt and Lévy processes Ernesto Mordecki 1 Lecture III. PASI - Guanajuato - June 2010 1Joint work with Paavo Salminen (Åbo, Finland) 1 Plan of the talk 1. Motivation: from Finance

More information

A Bahadur Representation of the Linear Support Vector Machine

A Bahadur Representation of the Linear Support Vector Machine A Bahadur Representation of the Linear Support Vector Machine Yoonkyung Lee Department of Statistics The Ohio State University October 7, 2008 Data Mining and Statistical Learning Study Group Outline Support

More information

Seminar über Statistik FS2008: Model Selection

Seminar über Statistik FS2008: Model Selection Seminar über Statistik FS2008: Model Selection Alessia Fenaroli, Ghazale Jazayeri Monday, April 2, 2008 Introduction Model Choice deals with the comparison of models and the selection of a model. It can

More information