(competition between 2 species) (Laplace s equation, potential theory,electricity) dx4 (chemical reaction rates) (aerodynamics, stress analysis)

Size: px
Start display at page:

Download "(competition between 2 species) (Laplace s equation, potential theory,electricity) dx4 (chemical reaction rates) (aerodynamics, stress analysis)"

Transcription

1 SSE1793: Tutorial 1 1 UNIVERSITI TEKNOLOGI MALAYSIA SSE1793 DIFFERENTIAL EQUATIONS TUTORIAL 1 1. Classif each of the following equations as an ordinar differential equation (ODE) or a partial differential equation(pde), give the order, and indicate the independent and dependent variables. If the equation is an ODE, indicate whether the equation is linear or nonlinear. (a) 3 d x x = cos 3t (b) ( 3x) = x(1 3) (c) u x + u = 0 (mechanical vibration, electrical circuit, seismolog) (competition between species) (Laplace s equation, potential theor,electricit) (d) dp = kp(p p) where P and p are constants (logistic curve, epidemiolog,economics) (e) = (4 x)(1 x) (f) x d + + x = 0 (g) 8 d4 = x(1 x) 4 (chemical reaction rates) (aeronamics, stress analsis) (deflection of beams). Determine whether the given equation is separable, linear, neither or both. = sin x +. b. x + t x = sin t. e. (t + 1) = t. = ex+ x +. d. 3t = e t + lnt. 3. Solve the following ODE using separable variables. = sec b. x dv 1 + x = 1 4v 3v + x = x d. = 3x (1 + ) e. 1 + e cos x sin x = 0 f. (x + x ) + e x = 0 4. Solve the following Initial Value Problem. = x 3 (1 ), (0) = 3 b. = + 1(cosx), (π) = 0 d. = (1 + )tanx, (0) = 3 = x cos, (0) = π 4 5. Obtain the general solution to the following ODE. dr + r tan θ = sec θ b. (t + + 1) = 0 dθ (x + 1) + x = x d. (x + 1) = x + x 1 4x 6. Solve the following Initial Value Problem. + 4 e x = 0, (1) = e 1 b. + 3 x + 4 e x = 0, (0) = = 3x, (1) = 1 d. sin x + cos x = x sinx, (π ) =

2 7. Classif the equation as separable, linear, exact or none of these. Notice that some equations ma have more than one classifications. (x + x 4 cosx) x 3 = 0. b. (x 10 3 ) + x = 0. + (3 + x x ) = 0. d. + (x + cos ) = 0. e. θdr + (3r θ 1)dθ = 0 8. Classif the equation as separable, linear, exact or none of these. Notice that some equations ma have more than one classifications. (a) (x + 3) + (x 1) = 0. (b) (cos x cos + x) (sin x sin + ) = 0. (c) t + (1 + ln) = 0. (d) e t ( t) + (1 + e t ) = 0. (e) (x x ) + ( x 1 + x ) = 0 9. Solve the initial value problem: (a) (e x 1 ) + (xex + x ) = 0, (1) = 1. (b) ( sin x) + ( 1 x ) = 0, (π) = 1. x 10. For each of the following equations, find the most general function M(x, ) or N(x, ) respectivel so that the equation is exact. (a) M(x, ) + (sec x ) = 0. (b) ( cos (x) + e x ) + N(x, ) = Consider the equation ( + x) x = 0 (a) Show that this equation is not exact. (b) Show that multipling both sides of the equation b ields anew equation that is exact. (c) Use the solution of the resulting exact equation to solve the original equation. (d) Were an solutions lost in the process? 1. Use the method discussed under Homogeneous Equations to solve: (a) (3x ) + (x x 3 1 ) = 0. (b) (x + ) + x = 0.. (c) dθ = θ sec ( θ ) +. θ (d) (ln lnx + 1) =. x 13. Use the method discussed under Equations of the form = G(ax + b) to solve: = x + 1. b. = (x + 5).

3 14. Use the method discussed under Bernoulli Equations to solve: = ex 3. b. + x = 5(x ) 1. = x x. d. + tx3 + x t = Newton s Law of Cooling. According to Newton s Law of Cooling, if an object at temperature T is immersed in a medium having the constant temperature M, then the rate of change of T is proportional to the difference of temperature M T. This gives the differential equation, dt = k(m T) (a) Solve the equation for T. (b) A thermometer reading 100 o is placed in a medium having the constant temperature of 70 o. After 6 minutes, the thermometer reads 80 o. What is the reading after 0 min? (c) Blood plasma is stored at 40 o. Before the plasma can be used, it must be at 90 o. When the plasma is placed in an oven at 10 o, it takes 45 min for the plasma to warm to 90 o. How long will it take for the plasma to warm to 90 o if the oven is set at 100 o, 140 o and 80 o respectivel? (d) It was noon on a cold December da in Cameron Highland; 16 o C. Detective Musa arrive at the crime scene to find the sergeant leaning over a bo. The sergeant said that there were several suspects. If onl the knew the exact time of dealth, then the could narrow down the list. Detective Musa took out a thermometer and measured the temperature of the bo; 34.5 o C. He then left for lunch. Upon returning at 1:00 pm, he found the bo temperature to be 33.7 o C. When did the murder occur? Hint: Normal bo temperature is 37 o C. (e) Just before midda, the bo of an apparent homicide victim is found in a room that is kept at a constant temperature of 70 o F. At 1 noon, the temperature of the bo is 80 o F and at 1 pm it is 75 o F. Assume that the temperature of the bo at the time of death is was 98.6 o F and that it has cooled in accord with Newton s law of cooling. What was the time of death? 16. Free Fall. An object falls through the air toward earth. Assuming onl air resistance and gravit are acting on the object, it is found that the velocit v must satisf the equation m dv = mg bv where m is the mass, g is the acceleration due to gravit, and b > 0 is a constant. If m = 100 kg, g = 9.8 m/sec, b = 5 kg/sec, and v(0) = 10m/sec, solve for v(t). What is the limiting (i.e., terminal) velocit of the object. 17. Vertical Motion. A particle moves verticall under the force of gravit against air resistance kv, where k is a constant. The velocit v at an time t is given b the differential equation dv = g kv. If the particle starts off from rest show that such that λ = v = λ(eλkt 1) (e λkt + 1) g. Then find the velocit as the time approaches infinit. k 3

4 18. Electric Circuit. The simplest electric circuit shown in Figure 1 contains an electromotive force (usuall a batter or generator) that produces a voltage of E(t) volts (V) an a current of I(t) amperes (A) at time t. The circuit also contains a resistor with a resistance of R ohm Ω and an inductor with an inductance of L henries (H). Ohm s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to the inductor is L di. One of Kirchhoff s sas that the sum of voltage drops is equal to the supplied voltage E(t). Thus we have L di + RI = E(t) which is a first order linear differential equation. The solution gives the current I at time t. (a) Suppose that in the simple circuit of Figure 1, the resistance is 1Ω and the inductance is 4H. If a batter gives a constant voltage of 60V and the switch is closed when t = 0, so the current starts with I(0) = 0, find i. I(t) ii. the current after 1 sec iii. the limiting value of the current. (b) Suppose that the resistance and inductance remain as in part (a) but, instead of the batter, we use a generator that produces a variable voltage of E(t) = 60 sin 30t volts. Find I(t). 19. Electric Circuit. Figure shows a circuit containing an electromotive force, a capacitor with a capacitance of C farads (F), and a resistor with a resistance of R ohms (Ω). The voltage drop across the capacitor is Q/C where Q is the charge (in coulombs), so in this case Kirchhoff s Law gives but I = dq, so we have R RI + Q C = E(t) dq + 1 C Q = E(t). (a) Suppose the resistance is 5Ω, the capacitance is 0.05F, a batter gives a constant voltage of 60V, and the initial charge is Q(0) = 0C. Find the charge and the current at time 4t. (b) In the circuit of part (a), R = Ω, C = 0.01F, Q(0) = 0 and E(t) = 10 sin60t. Find the charge and current at time t. 4

5 UNIVERSITI TEKNOLOGI MALAYSIA SSE1793 DIFFERENTIAL EQUATIONS ANSWERS TO TUTORIAL 1 1. (a) ODE, nd order, ind.var. t, dep.var. x, linear. (b) ODE, 1 st order, ind.var.x, dep.var., nonlinear. (d) ODE, 1 st order, ind.var.t, dep.var.p, nonlinear.. linear b.separable not linear, not separable d.linear e.separable and linear 3. (a) + sin = 4 arctanx + C. (c) x = Cet Ce t 1, x = 1. 1 (e) = C e cos x. 4. (a) = e x (c) = sin x + sinx. (d) = arctan (1 + x ). r = sinθ + C cos θ. b. = t + Ce t. = 1 + C ( x + 1 ) (b) x = t 1 t linear with as dependent variable d. exact, linear with x as dep. var e. linear, r as dep var. (C 3x) = (x 1). b. sin x cos + x = C. t ln + t = C. e. x + arctan (x) = C. 9(b). 10(a). sin x x cos x = ln π 1. (equation is separable, not exact.) ln + f(x) 11. = x C x. ( ) 1(a). ln x 6 x = C d. es. (x + C) 13. (a) = x and = x. 4 (b) = x + (6 + 4Cex ) and = x + 4. (1 + Ce x ) 14. (b) = 5x and = 0. x 5 + C (d) x = t ln t + Ct and x = 0. 15(c). 8. min; 31.8 min; Never attains desired temperature

Solution to Homework 2

Solution to Homework 2 Solution to Homework. Substitution and Nonexact Differential Equation Made Exact) [0] Solve dy dx = ey + 3e x+y, y0) = 0. Let u := e x, v = e y, and hence dy = v + 3uv) dx, du = u)dx, dv = v)dy = u)dv

More information

MATH 312 Section 3.1: Linear Models

MATH 312 Section 3.1: Linear Models MATH 312 Section 3.1: Linear Models Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Population Growth 2 Newton s Law of Cooling 3 Kepler s Law Second Law of Planetary Motion 4

More information

Homework #5 Solutions

Homework #5 Solutions Homework #5 Solutions Math 123: Mathematical Modeling, Spring 2019 Instructor: Dr. Doreen De Leon 1. Exercise 7.2.5. Stefan-Boltzmann s Law of Radiation states that the temperature change dt/ of a body

More information

XXIX Applications of Differential Equations

XXIX Applications of Differential Equations MATHEMATICS 01-BNK-05 Advanced Calculus Martin Huard Winter 015 1. Suppose that the rate at which a population of size yt at time t changes is proportional to the amount present. This gives rise to the

More information

sections June 11, 2009

sections June 11, 2009 sections 3.2-3.5 June 11, 2009 Population growth/decay When we model population growth, the simplest model is the exponential (or Malthusian) model. Basic ideas: P = P(t) = population size as a function

More information

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem.

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem. page 57 1.7 Modeling Problems Using First-Order Linear Differential Equations 57 For Problems 33 38, use a differential equation solver to determine the solution to each of the initial-value problems and

More information

SPS Mathematical Methods Lecture #7 - Applications of First-order Differential Equations

SPS Mathematical Methods Lecture #7 - Applications of First-order Differential Equations 1. Linear Models SPS 2281 - Mathematical Methods Lecture #7 - Applications of First-order Differential Equations (a) Growth and Decay (b) Half-life of Radioactive (c) Carbon Dating (d) Newton s Law of

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

CHAPTER 1: FIRST ORDER ORDINARY DIFFERENTIAL EQUATION

CHAPTER 1: FIRST ORDER ORDINARY DIFFERENTIAL EQUATION Classification by type - Ordinary Differential Equations (ODE) Contains one or more dependent variables with respect to one independent variable is the dependent variable while is the independent variable

More information

2.4 Harmonic Oscillator Models

2.4 Harmonic Oscillator Models 2.4 Harmonic Oscillator Models In this section we give three important examples from physics of harmonic oscillator models. Such models are ubiquitous in physics, but are also used in chemistry, biology,

More information

2.4 Models of Oscillation

2.4 Models of Oscillation 2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are

More information

MATH 23 EXAM 1 REVIEW PROBLEMS

MATH 23 EXAM 1 REVIEW PROBLEMS MATH 3 EXAM 1 REVIEW PROBLEMS Problem 1. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential equation for the volume of the raindrop as a function of time.

More information

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011 FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions.

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions. UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 1 1 Determine the domain and range for each of the following functions a = + b = 1 c = d = ln( ) + e = e /( 1) Sketch the level curves

More information

Compartmental Analysis

Compartmental Analysis Compartmental Analysis Math 366 - Differential Equations Material Covering Lab 3 We now learn how to model some physical phonomena through DE. General steps for modeling (you are encouraged to find your

More information

Integration Techniques

Integration Techniques Review for the Final Exam - Part - Solution Math Name Quiz Section The following problems should help you review for the final exam. Don t hesitate to ask for hints if you get stuck. Integration Techniques.

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Introduction Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Introduction BFF1303 ELECTRICAL/ELECTRONICS

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions.

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions. UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 1 1 Determine the domain and range for each of the following functions a = + b = 1 c = d = ln( ) + e = e /( 1) Sketch the level curves

More information

1.1. BASIC ANTI-DIFFERENTIATION 21 + C.

1.1. BASIC ANTI-DIFFERENTIATION 21 + C. .. BASIC ANTI-DIFFERENTIATION and so e x cos xdx = ex sin x + e x cos x + C. We end this section with a possibly surprising complication that exists for anti-di erentiation; a type of complication which

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS FE eview ELECONICS # FUNDAMENALS Electric Charge 2 In an electric circuit there is a conservation of charge. he net electric charge is constant. here are positive and negative charges. Like charges repel

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Transient Response of a Chemical Reactor Concentration of a substance in a chemical reactor

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

More information

Applications of Second-Order Linear Differential Equations

Applications of Second-Order Linear Differential Equations CHAPTER 14 Applications of Second-Order Linear Differential Equations SPRING PROBLEMS The simple spring system shown in Fig. 14-! consists of a mass m attached lo the lower end of a spring that is itself

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

REUNotes08-CircuitBasics May 28, 2008

REUNotes08-CircuitBasics May 28, 2008 Chapter One Circuits (... introduction here... ) 1.1 CIRCUIT BASICS Objects may possess a property known as electric charge. By convention, an electron has one negative charge ( 1) and a proton has one

More information

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have

dy dx and so we can rewrite the equation as If we now integrate both sides of this equation, we get xy x 2 C Integrating both sides, we would have LINEAR DIFFERENTIAL EQUATIONS A first-der linear differential equation is one that can be put into the fm 1 d Py Q where P and Q are continuous functions on a given interval. This type of equation occurs

More information

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016 BME/ISE 35 Bioelectronics - Test Six ourse Notes Fall 06 Alternating urrent apacitive & Inductive Reactance and omplex Impedance R & R ircuit Analyses (D Transients, Time onstants, Steady State) Electrical

More information

2.1 Exponential Growth

2.1 Exponential Growth 2.1 Exponential Growth A mathematical model is a description of a real-world system using mathematical language and ideas. Differential equations are fundamental to modern science and engineering. Many

More information

ENGI 2422 First Order ODEs - Separable Page 3-01

ENGI 2422 First Order ODEs - Separable Page 3-01 ENGI 4 First Order ODEs - Separable Page 3-0 3. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Differential Equations Spring 2007 Assignments

Differential Equations Spring 2007 Assignments Differential Equations Spring 2007 Assignments Homework 1, due 1/10/7 Read the first two chapters of the book up to the end of section 2.4. Prepare for the first quiz on Friday 10th January (material up

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Basic Theory of Differential Equations

Basic Theory of Differential Equations page 104 104 CHAPTER 1 First-Order Differential Equations 16. The following initial-value problem arises in the analysis of a cable suspended between two fixed points y = 1 a 1 + (y ) 2, y(0) = a, y (0)

More information

y = ± x 2 + c. ln y = 2 ln x + 2C sin(x) dx

y = ± x 2 + c. ln y = 2 ln x + 2C sin(x) dx Worked Solutions Chapter 4: Separable First-Order Equations 43 a Factoring out 2, we get 3 sinx)) 2, which is f x)g), ds with f x) 3 sinx) and g) 2 So the equation is separable 43 c x x )2 x )2 f x)g)

More information

Learnabout Electronics - AC Theory

Learnabout Electronics - AC Theory Learnabout Electronics - AC Theory Facts & Formulae for AC Theory www.learnabout-electronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...

More information

MATH 104 Practice Problems for Exam 2

MATH 104 Practice Problems for Exam 2 . Find the area between: MATH 4 Practice Problems for Exam (a) x =, y = / + x, y = x/ Answer: ln( + ) 4 (b) y = e x, y = xe x, x = Answer: e6 4 7 4 (c) y = x and the x axis, for x 4. x Answer: ln 5. Calculate

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the general solution to the eact differential equation. ) dy dt =

More information

1. First-order ODE s

1. First-order ODE s 18.03 EXERCISES 1. First-order ODE s 1A. Introduction; Separation of Variables 1A-1. Verif that each of the following ODE s has the indicated solutions (c i,a are constants): a) 2 + = 0, = c 1 e x +c 2

More information

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2 Capacitance: Lecture 2: Resistors and Capacitors Capacitance (C) is defined as the ratio of charge (Q) to voltage (V) on an object: C = Q/V = Coulombs/Volt = Farad Capacitance of an object depends on geometry

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2 November 3, 203. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity ELECTRIC NATURE OF MATTER: The electric nature of matter means the ability of a matter to produce charge on it. The addition

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lectures & 3 Spring 5 Midterm, C. Bordel Monday, April 6, 5 7pm-9pm Make sure you show all your work and justify your answers in order to get full credit. Problem esistance & current ( pts)

More information

15-884/484 Electric Power Systems 1: DC and AC Circuits

15-884/484 Electric Power Systems 1: DC and AC Circuits 15-884/484 Electric Power Systems 1: DC and AC Circuits J. Zico Kolter October 8, 2013 1 Hydro Estimated U.S. Energy Use in 2010: ~98.0 Quads Lawrence Livermore National Laboratory Solar 0.11 0.01 8.44

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work!

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work! PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, 2013 7pm-9pm Make sure you show your work! Problem 1 - Current and Resistivity (20 pts) a) A cable of diameter d carries a current

More information

2 Growth, Decay, and Oscillation

2 Growth, Decay, and Oscillation 2 Growth, Decay, and Oscillation b The city of Suzhou in Jiangsu Province, China. Suzhou is the fastest growing city in the world, with an annual population growth of 6.5% between the years 2000 and 2014.1

More information

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors

More information

Section B. Ordinary Differential Equations & its Applications Maths II

Section B. Ordinary Differential Equations & its Applications Maths II Section B Ordinar Differential Equations & its Applications Maths II Basic Concepts and Ideas: A differential equation (D.E.) is an equation involving an unknown function (or dependent variable) of one

More information

Introductory Differential Equations

Introductory Differential Equations Introductory Differential Equations Lecture Notes June 3, 208 Contents Introduction Terminology and Examples 2 Classification of Differential Equations 4 2 First Order ODEs 5 2 Separable ODEs 5 22 First

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Exam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the differential equation with the appropriate slope field. 1) y = x

More information

Math Applied Differential Equations

Math Applied Differential Equations Math 256 - Applied Differential Equations Notes Existence and Uniqueness The following theorem gives sufficient conditions for the existence and uniqueness of a solution to the IVP for first order nonlinear

More information

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge:

Practice Exam 1. Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Practice Exam 1 Necessary Constants and Equations: Electric force (Coulomb s Law): Electric field due to a point charge: Electric potential due to a point charge: Electric potential energy: Capacitor energy:

More information

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS 9 DIFFERENTIAL EQUATIONS Direction fields enable us to sketch solutions of differential equations without an explicit formula. Perhaps the most important of all the applications of calculus is to differential

More information

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25

Lecture 2. Introduction to Differential Equations. Roman Kitsela. October 1, Roman Kitsela Lecture 2 October 1, / 25 Lecture 2 Introduction to Differential Equations Roman Kitsela October 1, 2018 Roman Kitsela Lecture 2 October 1, 2018 1 / 25 Quick announcements URL for the class website: http://www.math.ucsd.edu/~rkitsela/20d/

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

Ordinary Differential Equations Lake Ritter, Kennesaw State University

Ordinary Differential Equations Lake Ritter, Kennesaw State University Ordinary Differential Equations Lake Ritter, Kennesaw State University 2017 MATH 2306: Ordinary Differential Equations Lake Ritter, Kennesaw State University This manuscript is a text-like version of the

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

Exam 2 Solutions. Applying the junction rule: i 1 Applying the loop rule to the left loop (LL), right loop (RL), and the full loop (FL) gives:

Exam 2 Solutions. Applying the junction rule: i 1 Applying the loop rule to the left loop (LL), right loop (RL), and the full loop (FL) gives: PHY61 Eam Solutions 1. [8 points] In the circuit shown, the resistance R 1 = 1Ω. The batter voltages are identical: ε1 = ε = ε3 = 1 V. What is the current (in amps) flowing through the middle branch from

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (Part-I) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Chapter 6. Second order differential equations

Chapter 6. Second order differential equations Chapter 6. Second order differential equations A second order differential equation is of the form y = f(t, y, y ) where y = y(t). We shall often think of t as parametrizing time, y position. In this case

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,

More information

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L. 1 (a) A charged capacitor is connected across the ends of a negative temperature coefficient (NTC) thermistor kept at a fixed temperature. The capacitor discharges through the thermistor. The potential

More information

MT410 EXAM 1 SAMPLE 1 İLKER S. YÜCE DECEMBER 13, 2010 QUESTION 1. SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS. dy dt = 4y 5, y(0) = y 0 (1) dy 4y 5 =

MT410 EXAM 1 SAMPLE 1 İLKER S. YÜCE DECEMBER 13, 2010 QUESTION 1. SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS. dy dt = 4y 5, y(0) = y 0 (1) dy 4y 5 = MT EXAM SAMPLE İLKER S. YÜCE DECEMBER, SURNAME, NAME: QUESTION. SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS where t. (A) Classify the given equation in (). = y, y() = y () (B) Solve the initial value problem.

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

ENGR 2405 Chapter 6. Capacitors And Inductors

ENGR 2405 Chapter 6. Capacitors And Inductors ENGR 2405 Chapter 6 Capacitors And Inductors Overview This chapter will introduce two new linear circuit elements: The capacitor The inductor Unlike resistors, these elements do not dissipate energy They

More information

Make sure you show all your work and justify your answers in order to get full credit.

Make sure you show all your work and justify your answers in order to get full credit. PHYSICS 7B, Lecture 3 Spring 5 Final exam, C. Bordel Tuesday, May, 5 8- am Make sure you show all your work and justify your answers in order to get full credit. Problem : Thermodynamic process ( points)

More information

6. In a dry cell electrical energy is obtained due to the conversion of:

6. In a dry cell electrical energy is obtained due to the conversion of: 1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information

Turn in scantron You keep these question sheets

Turn in scantron You keep these question sheets Exam 2 on OCT. 15. 2018 - Physics 106 R. Schad YOUR NAME ¼À Turn in scantron You keep these question sheets 1) This is to identify the exam version you have IMPORTANT Mark the A 2) This is to identify

More information

8. Electric Currents

8. Electric Currents 8. Electric Currents S. G. Rajeev January 30, 2011 An electric current is produced by the movement of electric charges. In most cases these are electrons. A conductor is a material through which an electric

More information

AP Calculus Testbank (Chapter 6) (Mr. Surowski)

AP Calculus Testbank (Chapter 6) (Mr. Surowski) AP Calculus Testbank (Chapter 6) (Mr. Surowski) Part I. Multiple-Choice Questions 1. Suppose that f is an odd differentiable function. Then (A) f(1); (B) f (1) (C) f(1) f( 1) (D) 0 (E). 1 1 xf (x) =. The

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Science Olympiad Circuit Lab

Science Olympiad Circuit Lab Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary

More information