97/100. Emily Simoskevitz Group Members: Aashvi Shah and Samantha Carella 11/5/18. Uniform Motion Formal Lab

Size: px
Start display at page:

Download "97/100. Emily Simoskevitz Group Members: Aashvi Shah and Samantha Carella 11/5/18. Uniform Motion Formal Lab"

Transcription

1 97/100 Emily Simoskevitz Group Members: Aashvi Shah and Samantha Carella 11/5/18 Uniform Motion Formal Lab Objective: The objective of the motion lab is to gather experimental data on two constant velocity cars, each with a different constant velocity, and one dynamics cart demonstrating acceleration. Using the data, position vs time graphs will be constructed for all three objects. The formulas learned in the 1-D motion unit will be utilized to derive velocity information from the position vs time graphs. A velocity vs time graph for the dynamics cart will be created from this data. Theory: This experiment begins with the motion of two constant velocity cars and one dynamics cart accelerating down a ramp. The angle of elevation of the ramp will found by the equation sinθ = (opposite/hypotenuse), where the opposite value is equal to the height above the ground where the beginning of the ramp is and the hypotenuse value is equal to the length of the ramp. The position data will be recorded with a spark timer and ticker tape in 0.1 second intervals. The measurements will be taken by a meter stick, so the units are going to be in centimeters. Each position value has to be converted to meters. This will be done by multiplying the value by the conversion factor: 1m / 100 cm. After all the conversions are calculated, the data points will be graphed to make Position vs Time graphs. A trend line will be fitted for all three objects motions. For the two constant velocity cars, the velocity will be derived from information presented by the trend line. The slopes of the trend lines are equal to the velocities of the cars. Since the accelerating dynamics cart s motion will be represented by a curve, the velocity is constantly changing. To find the acceleration of the cart, average velocity has to be found for each time interval on the Position vs Time graph. The formula, average velocity = slope = x/ t = (x2 - x1)/(t2 - t1), will be used. The average velocity data will then be graphed on a Velocity vs Time graph. A trend line will be fitted to the points, and the slope will be the dynamics cart s experimental acceleration. The expected value of acceleration will found using the formula: expected acceleration = 9.8sinθ. The final step will be to calculate the percent error, which will be found by the formula: % error = [(expected value - experimental value) / expected value] x 100.

2 Diagram: Materials: Constant Velocity Cars (Black and Red) Dynamics Cart Ramp/Textbooks (Support for Ramp) Meter stick Ticker Tape Masking Tape Spark Timer Procedure: Constant Velocity Cars: 1. Spark timer was plugged in and ticker tape was threaded through the opening. 2. Masking Tape was used to attach the end of the ticker tape to the back of the first constant velocity car (black). 3. The switches on the car and the timer were activated simultaneously. The car moved forward with a constant velocity as the ticker tape traveled through the spark timer, which marked a dot after each 0.1 second. 4. After the ticker tape ran out, the car and timer were shut off. The tape was removed from the car, and the meter stick was used to measure the distance between the 0.1 second intervals that the spark timer recorded in dots on the ticker tape. 5. The data for 12 points was written down in table form using centimeters and seconds as the units. The position data then needed to be converted into meters.

3 6. Steps 1-5 were repeated for the second constant velocity car (red). 7. Position vs Time graphs were constructed for each constant velocity car according to the data in the the tables, and a trend line was fitted to the points. These graphs were created using the Data Analysis app. 8. The velocities of the cars were derived using the information from the graph. Dynamics Cart on Ramp: 1. The beginning of the ramp was placed on two textbooks so that the incline remained constant. 2. The measurements of the height, from the ground to the top of the incline raised by textbooks, and the length of the ramp were recorded. Then, the angle of elevation of the ramp was found. 3. The spark timer was plugged in, and the ticker tape was threaded through the timer. Masking tape was used to attach the ticker tape to the dynamics cart. 4. The dynamics cart was fitted to the grooves at the top of the ramp. The spark timer was activated and the cart was released from the top of the ramp and proceeded down the surface. 5. The points displayed on the ticker tape were measured and recorded in table form. The points were recorded in 0.5 second intervals instead of 0.1 so that a greater change in distance between points would be visible, and the acceleration would be more accurate. The distance was measured in centimeters, which then had to be converted into meters. 6. A Position vs Time graph for the dynamics cart was constructed using the data. 7. Average velocities for each time interval were found using the slope formula and a Velocity vs Time graph was created. 8. The acceleration was derived from the Velocity vs Time graph. 9. The expected value of acceleration was found using the value of θ calculated previously. Then the percent error for the acceleration of the dynamics cart was calculated. Data:

4 Analysis: Position data was measured in centimeters, so conversions from centimeters to meters had to be calculated in order to make the position vs time graphs in the units of meters and seconds. Conversions: Black Constant Velocity Car: When t = 0.1s, x = 1.6cm 1.6cm * (1m / 100cm) = 0.016m Red Constant Velocity Car: When t = 0.1s, x = 1.0cm 1.0cm * (1m / 100cm) = 0.010m Dynamics Cart When t = 0.5s, x = 1.1cm 1.1cm * (1m / 100cm) = 0.011m *The same steps were repeated for all data points. Black Constant Velocity Car: X X = t t

5 The equation of the trend line is X = t using the parameter values presented and the variables of the graph. Velocity = slope of the line of motion. For the black constant velocity car, velocity = m/s. Red Constant Velocity Car: X X = 0.278t t The equation of the trend line is X = 0.278t using the parameter values presented and the variables of the graph. Velocity = slope of the line of motion. For the red constant velocity car, velocity = m/s.

6 Dynamics Cart: X X = t t t The equation of the trend curve is X = t t using the parameter values presented and the variables of the graph. Coordinates for points on the curve: X (m) t (s)

7 Finding velocities for the V vs T graph using coordinates: Average Velocity (Vavg) on a X vs T graph = slope = x/ t = (x2 - x1)/(t2 - t1) 0s - 0.5s: Vavg = [0.0118m - ( m)] / (0.5s - 0s) = m/s ~ m/s Vavg = m/s 0.5s - 1s: Vavg = m/s 1s - 1.5s: Vavg = V 1.5s - 2s: Vavg = m/s 2s - 2.5s: Vavg = m/s V = t s - 3s: Vavg = m/s 3s - 3.5s: Vavg = m/s 3.5s - 4s: Vavg = m/s 4s - 4.5s: Vavg = 0.08 m/s 4.5s - 5s: Vavg = m/s t 5s - 5.5s: Vavg = m/s 5.5s - 6s: Vavg = 0.1 m/s The equation of the trend line is V = t using the parameter values presented and the variables of the graph. Acceleration = slope of the V vs T graph. For the dynamics cart, acceleration = m/s 2. This is also the experimental value of acceleration.

8 Angle of Incline and Percent Error: 10 cm = 0.1 m 120 cm = 1.2 m θ The angle of elevation is represented by θ. To solve for θ, the following formula was used: sinθ = (opposite/hypotenuse) where the opposite value is equal to the height above the ground where the beginning of the ramp is (0.1m) and the hypotenuse value is equal to the length of the ramp (1.2m). Formula with substitution of values: sinθ = (0.1 / 1.2) Take the inverse of both sides: θ = sin -1 (0.1 / 1.2) Solve for θ: θ = 4.78 Formula for the expected value of acceleration = 9.8sin θ Expected acceleration = 9.8[sin(4.78)] Expected acceleration = m/s 2 Experimental acceleration = m/s 2 Percent Error = [(expected value - experimental value) / expected value] x 100 Percent Error = [( ) / 0.817] x 100 Percent Error = 98.2% Conclusion: The goal of this lab was to accurately construct position vs time graphs for two objects with a constant velocity and one object that is accelerating down a ramp. Information derived from the graphs include the trend line equations and the velocities of the two constant velocity cars. Using formulas and the data of the trend curve, a velocity vs time graph could be created for the accelerating dynamics cart. From that graph, the acceleration could be found. To gather the data needed to construct the graphs, ticker tape had to be attached to each object, and a spark timer recorded points at every 0.1 seconds the object had traveled. These distances were measured in centimeters, then converted to meters. Using this data, position vs time graphs could be made. All information derived from the graphs were recorded. Then, average velocities for each time interval of the accelerating dynamics cart were calculated. This data was used to make a velocity

9 vs time graph. From this graph, the acceleration of the motion could be found. The position vs time graph for the black constant velocity car was a line with a positive slope, which is equal to the velocity of the object. The velocity of the black car was m/s. The position vs time graph for the red car was also a line with a positive slope, which is equal to the velocity of the object. The velocity of the red car was m/s. These graphs made logical sense because the cars were both moving forward at constant speeds. This is represented by a linear line with a positive slope on an x vs t graph. The position vs time graph for the dynamics cart was a curve. This curve represented motion moving forward speeding up, which is as predicted since the cart increased in speed as it moved forward, traveling down the ramp. The velocity vs time graph was a line with a positive slope since it represents a motion with a constant acceleration forwards speeding up. The acceleration for the dynamics cart was m/s. The percent error was 98%, which is very high. This is due to multiple sources of error. First, the spark timer produced dots on the ticker tape that were scattered and sometimes hard to read. There were oftentimes more than one dot for each 0.1 second interval, and the dots were not in line causing an error in precision of each position. In addition, the data in the velocity vs time graph illustrates that the initial velocity may not have been 0 m/s, which it should have been. This could be due to the fact that the spark timer produced dots that looked fuzzy and not legible. The points had to be measured in 0.5 second intervals instead of 0.1 second ones in consequence of this. There were also sources of error for the constant velocity cars. The trend line of the red constant velocity car had more errors than the one of the black car. This could be due to the fact that the car did not reach its full velocity when the switch was initially activated. It may have taken a small increment of time to adjust to the speed. Nonetheless, the objectives of this lab were met and data was accurately found using the data.

EXPERIMENT 2: FREE FALL

EXPERIMENT 2: FREE FALL LAB SECTION: NAME: EXPERIMENT : FREE FALL Introduction: In this lab, you will measure the acceleration of an object as it falls toward the earth s surface. Air resistance should not be a factor, so the

More information

Force on a Free Body Lab 5.1

Force on a Free Body Lab 5.1 Purpose To investigate the relationship among mass, force, and acceleration Required Equipment Meter stick or meter tape Masking tape Timer Discussion In this experiment, you will investigate how increasing

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Linear Acceleration and Projectile Path

Linear Acceleration and Projectile Path Linear Acceleration and Projectile Path Objective To study the motion of a body when projected at an angle above the horizontal on an inclined plane. Introduction In this experiment we ll use an air table

More information

Hot Wheels of Glory (An Acceleration Lab)

Hot Wheels of Glory (An Acceleration Lab) Hot Wheels of Glory (An Acceleration Lab) Background: In this lab you are going to investigate the relationship between time and how far an accelerating object travels? For example, will an accelerating

More information

The Work-Kinetic Energy Theorem

The Work-Kinetic Energy Theorem The Work-Kinetic Energy Theorem As an object slides down an incline, it gravity does an amount of work =, where is the change in the y coordinate as the object moves and friction does an amount of work

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Lab VII Potential and Kinetic Energy 1 Introduction This is a lab about the interplay between kinetic and potential energy. While we can calculate forces and accelerations of an object as it moves along

More information

Free-Fall Acceleration

Free-Fall Acceleration Objective To determine the acceleration due to gravity. Introduction Free-Fall Acceleration The position y of a particle moving along a straight line with a constant acceleration a is given by the following

More information

Friction, Work, and Energy on an Inclined Plane

Friction, Work, and Energy on an Inclined Plane Friction, Work, and Energy on an Inclined Plane I. Purpose In this experiment, we will observe a cart or block moving up an inclined plane at a constant speed and determine the force of friction on the

More information

CONSERVATION OF ENERGY LAB. By: John Ta Lab Partners: Charan & Ram

CONSERVATION OF ENERGY LAB. By: John Ta Lab Partners: Charan & Ram CONSERVATION OF ENERGY LAB By: John Ta Lab Partners: Charan & Ram Introduction The purpose of the lab was to design and perform an experiment which analyzes the conservation of energy in a spring-based

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Equipment Marbles Stopwatch Block

Equipment Marbles Stopwatch Block Name 5 March 2018 Ms. Kelly Physics Marble ous Momentum Lab Introduction Existing theory asserts that momentum is conserved. In the first part of this two-part laboratory you will explore qualitatively

More information

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period: AP Calculus (BC) Chapter 10 Test No Calculator Section Name: Date: Period: Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The graph in the xy-plane represented

More information

PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration

PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration Investigation #1: How does changing the tilt of a surface affect the speed and acceleration of an object sliding down the surface?

More information

Physics 11 Course Plan

Physics 11 Course Plan Physics 11 Course Plan UNITS Chapters in your Textbook Approximate Number of Classes A Significant figures, scientific notation, 2 5 and unit conversions B Kinematics (motion) 3,4 17 C Dynamics (forces)

More information

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion Universiti Teknologi MARA Fakulti Sains Gunaan Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion PHY406: A Physical Science Activity Name: HP: Lab # 5: The goal of today s activity

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill In this lab, the two variables you are focusing on are time

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Lab 14 - Simple Harmonic Motion and Oscillations on an Incline

Lab 14 - Simple Harmonic Motion and Oscillations on an Incline Lab 14 - Simple Harmonic Motion and Oscillations on an Incline Name I. Introduction/Theory Partner s Name The purpose of this lab is to measure the period of oscillation of a spring and mass system on

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

<This Sheet Intentionally Left Blank For Double-Sided Printing>

<This Sheet Intentionally Left Blank For Double-Sided Printing> 21 22 Transformation Of Mechanical Energy Introduction and Theory One of the most powerful laws in physics is the Law of Conservation of

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Straight Line Motion (Motion Sensor)

Straight Line Motion (Motion Sensor) Straight Line Motion (Motion Sensor) Name Section Theory An object which moves along a straight path is said to be executing linear motion. Such motion can be described with the use of the physical quantities:

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

LAB 3: WORK AND ENERGY

LAB 3: WORK AND ENERGY 1 Name Date Lab Day/Time Partner(s) Lab TA (CORRECTED /4/05) OBJECTIVES LAB 3: WORK AND ENERGY To understand the concept of work in physics as an extension of the intuitive understanding of effort. To

More information

Module VII: Work. Background/Support Information

Module VII: Work. Background/Support Information Background/Support Information NAME: DATE: Module VII: Work OBJECTIVES/PURPOSE Students will: define the concept of work as force times distance distinguish the relation of work to energy apply the concept

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill. In this lab, the two variables you are focusing on are time

More information

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage of

More information

Introductory Energy & Motion Lab P4-1350

Introductory Energy & Motion Lab P4-1350 WWW.ARBORSCI.COM Introductory Energy & Motion Lab P4-1350 BACKGROUND: Students love to get to work fast, rather than spending lab time setting up and this complete motion lab lets them quickly get to the

More information

Static and Kinetic Friction

Static and Kinetic Friction Ryerson University - PCS 120 Introduction Static and Kinetic Friction In this lab we study the effect of friction on objects. We often refer to it as a frictional force yet it doesn t exactly behave as

More information

Inclined Plane Dynamics Set

Inclined Plane Dynamics Set Instruction Manual 012-10874A *012-10874* Inclined Plane Dynamics Set ME-6966 Table of Contents Included Equipment..................................................... 3 Related Equipment.....................................................

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

Dot Product August 2013

Dot Product August 2013 Dot Product 12.3 30 August 2013 Dot product. v = v 1, v 2,..., v n, w = w 1, w 2,..., w n The dot product v w is v w = v 1 w 1 + v 2 w 2 + + v n w n n = v i w i. i=1 Example: 1, 4, 5 2, 8, 0 = 1 2 + 4

More information

PHY321 Homework Set 2

PHY321 Homework Set 2 PHY321 Homework Set 2 1. [5 pts] Consider the forces from the previous homework set, F A ( r )and F B ( r ), acting on a particle. The force components depend on position r of the particle according to

More information

How will height of the bottom of a pendulum be affected if different weights are attached to the bottom of the pendulum?

How will height of the bottom of a pendulum be affected if different weights are attached to the bottom of the pendulum? Home Abstract Our project involved attaching weights at 50 gram increments and observing the ways in which they affect the velocity and distance of a pendulum. To acheive this goal, we made a pendulum

More information

Physics Skills (a.k.a. math review)

Physics Skills (a.k.a. math review) Physics Skills (a.k.a. math review) PART I. SOLVING EQUATIONS Solve the following equations for the quantity indicated. 1. y = 1 at Solve for t. x = vot + 1 at Solve for v o 3. v = ax Solve for x v 4.

More information

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same?

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same? IP 614 Rolling marble lab Name: Block: Date: A. Purpose In this lab you are going to see, first hand, what acceleration means. You will learn to describe such motion and its velocity. How does the position

More information

Graphing Motion (Part 1 Distance)

Graphing Motion (Part 1 Distance) Unit Graphing Motion (Part 1 Distance) Directions: Work in your group (2 or 3 people) on the following activity. Choose ONE group member to be the subject (the person who walks to/from motion detector).

More information

Physics 512. Motion Graphs Review

Physics 512. Motion Graphs Review Physics 512 Mr. Greenberg Name Test 1-2 Review Motion Graphs Review Type of Motion on a position vs. time graph on a velocity vs. time graph on an acceleration vs. time graph At Rest Moving forward at

More information

Constant velocity and constant acceleration

Constant velocity and constant acceleration Constant velocity and constant acceleration Physics 110 Laboratory Introduction In this experiment we will investigate two rather simple forms of motion (kinematics): motion with uniform (non-changing)

More information

P. O. D. Station 2. You already have the real time. You found that with your stop watch.

P. O. D. Station 2. You already have the real time. You found that with your stop watch. P. O. D. Station 2 In Station 2 you have to find the real time (t real ), the real acceleration (a real )and the real force (Force real ). Then you have to find the ideal force, the ideal acceleration,

More information

Physics 1050 Experiment 3. Force and Acceleration

Physics 1050 Experiment 3. Force and Acceleration Force and Acceleration Prelab uestions! These questions need to be completed before entering the lab. Please show all workings. Prelab 1: Draw the free body diagram for the cart on an inclined plane. Break

More information

4.1 - Acceleration. What is acceleration?

4.1 - Acceleration. What is acceleration? 4.1 - Acceleration How do we describe speeding up or slowing down? What is the difference between slowing down gradually and hitting a brick wall? Both these questions have answers that involve acceleration.

More information

14300 Dynamics Carts w/o Hoops Teachers Instructions

14300 Dynamics Carts w/o Hoops Teachers Instructions 14300 Dynamics Carts w/o Hoops Teachers Instructions Required Accessories o (2) Table stops (wooden bars) o (4) C-Clamps o (2) Recording Timers (#15210 or #15215) o (5) Bricks or Books (or other identical

More information

E X P E R I M E N T 6

E X P E R I M E N T 6 E X P E R I M E N T 6 Static & Kinetic Friction Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 6: Static and Kinetic

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Lab 5 Projectile Motion 47 Name Date Partners Lab 5: Projectile Motion OVERVIEW We learn in our study of kinematics that two-dimensional motion is a straightforward application of onedimensional motion.

More information

LAB 3: VELOCITY AND ACCELERATION

LAB 3: VELOCITY AND ACCELERATION Lab 3 - Velocity & Acceleration 25 Name Date Partners LAB 3: VELOCITY AND ACCELERATION A cheetah can accelerate from to 5 miles per hour in 6.4 seconds. A Jaguar can accelerate from to 5 miles per hour

More information

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus) AP Physics C Work and Energy Free-Response Problems (Without Calculus) 1. A block with a mass m =10 kg is released from rest and slides a distance d = 5 m down a frictionless plane inclined at an angle

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds.

a. Determine the sprinter's constant acceleration during the first 2 seconds. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

Experiment P-9 An Inclined Plane

Experiment P-9 An Inclined Plane 1 Experiment P-9 An Inclined Plane Objectives To understand the principles of forces on an inclined plane. To measure the parallel component of the gravitational force and compare it to the calculated

More information

Lab 4: Projectile Motion

Lab 4: Projectile Motion 59 Name Date Partners OVEVIEW Lab 4: Projectile Motion We learn in our study of kinematics that two-dimensional motion is a straightforward extension of one-dimensional motion. Projectile motion under

More information

Work and Energy. W F s)

Work and Energy. W F s) Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Senior 2. Appendix 3: In Motion

Senior 2. Appendix 3: In Motion Senior 2 Appendix 3: In Motion Senior 2 Science Appendix 3.1 TSM Teacher Support Material A Visual Representation of Motion Teacher Background There are several ways to produce a visual representation

More information

Physics 103 Laboratory Fall Lab #2: Position, Velocity and Acceleration

Physics 103 Laboratory Fall Lab #2: Position, Velocity and Acceleration Physics 103 Laboratory Fall 011 Lab #: Position, Velocity and Acceleration Introduction In this lab, we will study one-dimensional motion looking at position (x), velocity (v) and acceleration (a) which

More information

Conservation of Momentum: Marble Collisions Advanced Version

Conservation of Momentum: Marble Collisions Advanced Version Conservation of Momentum: Marble Collisions Advanced Version In this lab you will roll a marble down a ramp, and at the bottom of the ramp the marble will collide with another marble. You will measure

More information

Newton s Second Law Thou rulest the power of the sea: and appeasest the motion of the waves thereof. Psalms 88:10

Newton s Second Law Thou rulest the power of the sea: and appeasest the motion of the waves thereof. Psalms 88:10 Newton s Second Law Thou rulest the power of the sea: and appeasest the motion of the waves thereof. Psalms 88:10 Introduction Newton developed a second law that further clarified the force, mass and acceleration

More information

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc.

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc. Car Lab: Results Were you able to plot: Position versus Time? Velocity versus Time? Chapter 2.2: Acceleration Acceleration Acceleration is the rate at which velocity changes with time. Average acceleration:

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018)

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Equipment shallow glass pan pitcher for water masking tape graph paper (8.5 x14 ) colored pencils metal shapes sand paper paper towels DC power supply

More information

Cart on an Incline (Easy)

Cart on an Incline (Easy) Cart on an Incline (Easy) Theory: As a laboratory cart goes up or down an inclined plane, it will be under the influence of two primary forces gravity and friction. While it is comforting to consider only

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Objectives Conservation of Energy and Momentum You will test the extent to which conservation of momentum and conservation of energy apply to real-world elastic and inelastic collisions. Equipment air

More information

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick.

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick. F = m a F = m a Newton s Second Law 1 Object To investigate, understand and verify the relationship between an object s acceleration and the net force acting on that object as well as further understand

More information

ATWOOD S MACHINE. 1. You will use a tape timer to measure the position of one of the masses of the Atwood s machine as it falls.

ATWOOD S MACHINE. 1. You will use a tape timer to measure the position of one of the masses of the Atwood s machine as it falls. PHYSICS C ATWOOD S MACHINE OVERVIEW Atwood s machine is a device developed in the 18 th century to illustrate Newton s laws and to measure the acceleration due to gravity. An ideal Atwood s machine consists

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

AP Physics C: Mechanics Summer Work 2015

AP Physics C: Mechanics Summer Work 2015 AP Physics C: Mechanics Summer Work 2015 The exercises below are a review of the prerequisite math skills that you need to succeed in AP Physics. This packet will not be turned in! However, you will be

More information

Force and Motion. Thought Experiment

Force and Motion. Thought Experiment Team Force and Motion In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 7 Energy Name: Lab Partner: Section: 7.1 Purpose In this experiment, energy and work will be explored. The relationship between total energy, kinetic energy and potential energy will be observed.

More information

Motion, Velocity, Acceleration

Motion, Velocity, Acceleration And thus, since God is the First Mover, simply, it is by His motion that everything seeks to be likened to God in its own way. Summa Theologica, IIa:Q109,A6 Introduction Objects in motion are moving at

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

Part I. Two Force-ometers : The Spring Scale and The Force Probe

Part I. Two Force-ometers : The Spring Scale and The Force Probe Team Force and Motion In previous labs, you used a motion detector to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that got the object

More information

Measuring Momentum: Using distance moved after impact to estimate velocity

Measuring Momentum: Using distance moved after impact to estimate velocity Case File 6 Measuring Momentum: Using distance moved after impact to estimate velocity Explore how the speed of an impacting vehicle causes a stationary object to move. Police Report Last Tuesday night,

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

AP Physics 1 Summer Assignment-2018

AP Physics 1 Summer Assignment-2018 AP Physics 1 Summer Assignment-2018 Welcome to the AP Physics 1 Team! AP Physics 1 is an introductory college level physics course. Concept development and problem solving are algebra and trigonometry

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion.

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Lecture 2 Definitions Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Dynamics: The study of the forces that cause motion. Chapter Outline Consider

More information

To conduct the experiment, each person in your group should be given a role:

To conduct the experiment, each person in your group should be given a role: Varying Motion NAME In this activity, your group of 3 will collect data based on one person s motion. From this data, you will create graphs comparing displacement, velocity, and acceleration to time.

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement SIGNIFICANT DIGITS AND SCIENTIFIC NOTATION LEARNING GOALS Students will: 6 ERROR Describe the difference between precision and accuracy Be able to compare values quantitatively Understand and describe

More information

Forces & Newton s Laws FR Practice Problems

Forces & Newton s Laws FR Practice Problems 1) A drag-racing car speeds up from rest to 22 m/s in 2 s. The car has mass 800 kg; the driver has mass 80 kg. a) Calculate the acceleration of the car. b) Calculate the net force on the car. c) Which

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Lecture T2 The Pendulum-Based Start Gate (US 8,016,639 B2)

Lecture T2 The Pendulum-Based Start Gate (US 8,016,639 B2) 1 Lecture T2 The Pendulum-Based Start Gate (US 8,016,639 B2) INTRODUCTION Literally millions of Pinewood Derby races have been run since the inception of the race in 1953, mostly by Cub Scouts and their

More information

AP Physics 1 Summer Assignment 2018 Bayonne High School

AP Physics 1 Summer Assignment 2018 Bayonne High School AP Physics 1 Summer Assignment 2018 Bayonne High School AP Physics 1 is an algebra based physics course through which one would develop a deep conceptual understanding of how the physical world works.

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5 AP Physics C Fall, 2016 Work-Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. (12 pts ) 1. Consider the vectors A = 2 î + 3

More information

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits)

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits) SPEED & ACCELERATION PART I: A DISTANCE-TIME STUDY AT CONSTANT SPEED Speed is composed of two fundamental concepts, namely, distance and time. In this part of the experiment you will take measurements

More information

SPH 4C Unit 2 Mechanical Systems

SPH 4C Unit 2 Mechanical Systems SPH 4C Unit 2 Mechanical Systems Forces and Free Body Diagrams Learning Goal: I can consistently identify and draw Free Body Diagrams for given real world situations. There are 4 fundamental forces Gravity

More information

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string.

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string. Free-body diagrams 1. wo blocks of masses m1 = 5.0 kg and m =.0 kg hang on both sides of an incline, connected through an ideal, massless string that goes through an ideal, massless pulley, as shown below.

More information

Impulse, Momentum, and Energy

Impulse, Momentum, and Energy Impulse, Momentum, and Energy Impulse, Momentum, and Energy 5-1 INTRODUCTION Newton expressed what we now call his second law of motion, 1 not as F = m a, but in terms of the rate of change of momentum

More information

11.2 Speed and Velocity. Vocabulary speed average speed instantaneous speed velocity. Section Resources

11.2 Speed and Velocity. Vocabulary speed average speed instantaneous speed velocity. Section Resources Section 11.2 11.2 Speed and Velocity 1 FOCUS Objectives 11.2.1 Identify appropriate SI units for measuring speed. 11.2.2 Compare and contrast average speed and instantaneous speed. 11.2.3 Interpret distance-time

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Physics nd Air Table Experiment Conservation of Angular Momentum

Physics nd Air Table Experiment Conservation of Angular Momentum Physics 141 2 nd Air Table Experiment Conservation of Angular Momentum Introduction In this experiment, you will investigate angular momentum, and learn something important about the conditions under which

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

Welcome Back to Physics 211!

Welcome Back to Physics 211! Welcome Back to Physics 211! (General Physics I) Thurs. Aug 30 th, 2012 Physics 211 -Fall 2012 Lecture01-2 1 Last time: Syllabus, mechanics survey Particle model Today: Using your clicker 1D displacement,

More information