PSET 0 Due Today by 11:59pm Any issues with submissions, post on Piazza. Fall 2018: T-R: Lopata 101. Median Filter / Order Statistics

Size: px
Start display at page:

Download "PSET 0 Due Today by 11:59pm Any issues with submissions, post on Piazza. Fall 2018: T-R: Lopata 101. Median Filter / Order Statistics"

Transcription

1 CSE 559A: Computer Vision OFFICE HOURS This Friday (and this Friday only): Zhihao's Office Hours in Jolley 43 instead of 309. Monday Office Hours: 5:30-6:30pm, Collaboration Jolley 27. PSET 0 Due Today by :59pm Any issues with submissions, post on Piazza. Fall 208: T-R: Lopata 0 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao Xia, Charlie Wu, Han Liu Sep 6, 208 LAST TIME Convolutions Simplest spatial linear operation Output at each pixel is a function of a limited number of pixels in the input Linear Function Same function for different neighborhoods OTHER NEIGHBORHOOD OPERATIONS Median Filter / Order Statistics Neighborhood function N[ n ] {0, } O en better at removing outliers than convolution. Y[n] = Median{X[n n ]} N[ n ]= Edge & Line Detection: A Stereotypical Vision Algorithm Pipeline Use convolutions to detect local image properties (Gradients) Apply local non-linear processing to get local features (Edges) Aggregate information to find long-range structures (Lines) Source: Wikipedia Other ops: Y[n] = max / min{x[n n ]} N[ n ]>0

2 OTHER NEIGHBORHOOD OPERATIONS Morphological Operations Conducted on binary images (X [n] {0, }) Erosion: Dilation: Y [n] = AND {X [n n ]}N n Y [n] = OR {X [n n ]}N n [ [ ]= ]= ( if all neighbors ) ( if any neighbor ) Opening: Erosion followed by Dilation Closing: Dilation followed by Erosion See Szeliski Sec 3.3.2

3

4 Guided Bilateral Filter: B[ n n 2 based on a separate image Z [n]: depth, infra-red, etc., ] Far less efficient than convolution Filter also has to be computed, normalized, at each output location. Efficient Datastructures Possible Further Reading: Paris et al., SIGGRAPH/CVPR Course on Bilateral Filtering Recent work on using this for inference, best paper runner up at ECCV 206 Barron & Poole, The Fast Bilateral Solver, ECCV 206. Quick Recap: Complex Numbers A complex number f = x j ywhere x and y are scalar numbers. j = (EE convention: we use j instead of i x and y are called the real and imaginary components of f Think of f as a 2-D vector with special definitions of addition, multiplication, etc. ( x j y ) ( x 2 j y 2 ) = ( x x 2 ) j ( y y 2 ) ( x j y ) ( x 2 j y 2 ) = ( x x 2 y y 2 ) j ( x 2 y x y 2 ) ( x j y ) x 2 = x x 2 j y x 2 Conjugate: x j y = x j y = x j( y) Magnitude: (x j y) (x j y) = x 2 y 2

5 Quick Recap: Complex Numbers Euler's Formula exp(jθ) = cos θ j sin θ x j y = M exp(j θ) M = x 2 y 2, θ = tan (y, x) θ is called the "phase" M exp(jθ) = M exp( jθ) (x j y) exp(j ) = M exp(j(θ )) θ 0 θ 0 Preserves magnitude, adds to phase exp(j0) = exp(jnπ) = where N is an even integer, and = where N is an odd integer. Real in both cases The Discrete 2D Fourier Transform [X] = F[u, v] = X[, ] exp ( j u n 2π x n x n y ( )) n =0 x n =0 y Defined for a single-channel / grayscale image X. F is a "complex valued" array indexed by integers u, v. Each F[u, v] depends on the intensities at all pixels. exp(j θ) = cos θ j sin θ The Discrete 2D Fourier Transform [X] = F[u, v] = X[, ] exp ( j u n 2π x n x n y ( )) n =0 x n =0 y exp(j θ) = cos θ j sin θ The Discrete 2D Fourier Transform [X] = F[u, v] = X[, ] exp ( j u n 2π x n x n y ( )) n =0 x n =0 y exp(j θ) = cos θ j sin θ Note that F[u, v] = F[u W, v] = F[u, v H] because of periodicity. exp ( j 2π ( (u W ) n x W H )) = exp ( j u n 2π x ( n x W H )) = exp ( j u n 2π x ( ) j 2 π ) = exp ( j u n 2π x n x ( )) exp( j 2n x π) Note that F[u, v] = F[u W, v] = F[u, v H] because of periodicity. Therefore, we typically store F[u, v] for u {0,,W }, v {0,,H }. Can think of F[u, v] as a complex-valued "image" with the same number of pixels as X. Can be implemented fairly efficiently using the FFT algorithm: O(n log n) (o en, FFT is used to refer to the operation itself). = exp ( j u n 2π x ( ))

6 The Discrete 2D Fourier Transform Pair [X] = F[u, v] = X[, ] exp ( j u n x n x n y 2π ( )) n =0 x n =0 y [F] = X[, ] = F[u, v] exp ( j u n x n x n y 2π ( )) If X is real-valued, F[ u, v] = F[W u, H v] = F [u, v], where F implies complex conjugate. F[0, 0] is o en called the DC component. It is the average intensity of X. It is real if X is real. Only independent "numbers" in F[u, v] (counting real and imaginary separately) if X is real. Parseval's Theorem: (energy preserving upto constant factor) F[u, v] 2 = F[u, v] F [u, v] = X[ n x, n y ] 2 u,v u,v n, x n y The Discrete 2D Fourier Transform Pair for a fixed integers, [X] = F[u, v] = X[, ] exp ( j u n x n x n y 2π ( )) n =0 x n =0 y F [u, v] = F[u, v] exp ( j 2π ( u t x v t y W H [ ] = X[, ] = [u, v] exp ( j u n F n x t x n y t y F x 2π ( )) t x t y A change in the phase of the Fourier coefficients, that is linear in u, v, leads to a translation in the image. )) where each F[u, v] = S uv[ n x, n y ] X[ n x, n y ] =0 =0 can be thought of as a different (complex-valued) image: n x n y [, ] = exp ( j u n x n x n y 2π ( )) where each F[u, v] = can be thought of as a different (complex-valued) image: F[u, v] is the inner-product between X and. (scaled by ), X u n x [ n x, n y ] = exp ( j 2π ( )) For, x x x, y C n x, y = y is the Hermitian of x Transpose Conjugate (transpose the vector, and take conjugate of each entry) x y = i x iy i

7 where each F[u, v] = can be thought of as a different (complex-valued) image: F[u, v] is the inner-product between X and. (scaled by ), X u n x [ n x, n y ] = exp ( j 2π ( )) where each can be thought of as a different (complex-valued) image: F[u, v] is the inner-product between X and. (scaled by ) Property: F[u, v] =, X u n x [ n x, n y ] = exp ( j 2π (, S u = if = u & = v, and 0 otherwise. v v u )) Inverse-DFT: u n x X[ n x, n y ] = F[u, v] exp ( j 2π ( )) where each can be thought of as a different (complex-valued) image: F[u, v] is the inner-product between X and. (scaled by ) Property: F[u, v] =, X u n x [ n x, n y ] = exp ( j 2π (, S u = if = u & = v, and 0 otherwise. v v u )) F[u, v] = S, X uv, X = F[u, v], S u = if = u & = v, and 0 otherwise. v u v Inverse-DFT: X = F[u, v] X is a weighted sum of the images, weights are given by F[u, v].

8 F[u, v] = S, X uv, X = F[u, v], S u = if = u & = v, and 0 otherwise. v u v S is a matrix with each column a different. So, S S = S S = I S = S. This means S is a unitary matrix. Multiplication by S is a co-ordinate transform: F = S X, X = W H S F X are the co-ordinates of a point in a dimensional space. Multiplication by S changes the 'co-ordinate system'. In the new co-ordinate system, each 'dimension' now corresponds to frequency rather than location. S is a length-preserving matrix ( S X 2 = X 2 ). It does rotations or reflections (in dimensional space).

9

10 A k is not square for valid / long convolution. Question: Y = X k Y = Let Y = A k X correspond to Y = X k. Now, let X = A T Y. How is X related to Y by convolution? valid k What operation does represent? A T k X A k k[, ] A: Full convolution with n x n y (flipped version of k) Now if we consider the square A k matrix corresponding to 'same' convolution with circular padding, i.e. padding as X[W n x, n y ] = X[ n x, n y ], X[ n x, n y ] = X[ n x, H n y ], etc. A k Then, is diagonalized by the Fourier Transform! Here, D k is a diagonal matrix. The above equation holds for every A k You get different diagonal matrices. Y = X k Y = But S is the diagonalizing basis for all kernels. A k = S D k S X A k In the Fourier co-ordinate system, convolution is a 'point-wise' operation! D k Y = A k X = S D k S X ( S Y ) = D k ( S X) Why does this happen? X = u,v F[u, v] Y = X k = u,v F[u, v] k(by linearity / distributivity) ( k)[n] = n k[ n ] [n n ] [n n ], assuming circular padding, is also a sinusoid with the same frequency (u, v) and magnitude, but different phase. Multiplying by k[ n ] changes the magnitude, but frequency still the same. Adding different sinusoids of the same frequency gives you another sinusoid of the same frequency. ( k)[ n x, n y ] = d uv:k [ n x, n y ], where d uv:k is some complex scalar. Sinusoids are eigen-functions of convolution Y = X k = F[u, v] S k = ( F[u, v] uv d uv:k ) u,v u,v

11 A k = S D k S What's more, the diagonal elements of D k are the ( W x W y ) Fourier transform of k. This is the convolution theorem. ( D k = diag S Computational advantage for performing (and inverting!) convolution, albeit under circular padding. Good way of analyzing what a kernel is doing by looking at its Fourier transform. Why did we use complex numbers? Like quaternions in Graphics, for convenience! If we used real number co-ordinate transform, convolution would convert to several 2 2 transforms on pairs of co-ordinates. k ) Complex numbers are just a way of grouping these pairs into a single 'number'.

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 208: T-R: :30-pm @ Lopata 0 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao ia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/ Sep

More information

CSE 559A: Computer Vision Tomorrow Zhihao's Office Hours back in Jolley 309: 10:30am-Noon

CSE 559A: Computer Vision Tomorrow Zhihao's Office Hours back in Jolley 309: 10:30am-Noon CSE 559A: Computer Vision ADMINISTRIVIA Tomorrow Zhihao's Office Hours back in Jolley 309: 0:30am-Noon Fall 08: T-R: :30-pm @ Lopata 0 This Friday: Regular Office Hours Net Friday: Recitation for PSET

More information

CSE 559A: Computer Vision EVERYONE needs to fill out survey.

CSE 559A: Computer Vision EVERYONE needs to fill out survey. CSE 559A: Computer Vision ADMINISRIVIA EVERYONE needs to fill out survey. Setup git and Anaconda, send us your public key, and do problem set 0. Do immediately: submit public key and make sure you can

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 2017: T-R: 11:30-1pm @ Lopata 101 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu) http://www.cse.wustl.edu/~ayan/courses/cse559a/

More information

GENERAL. CSE 559A: Computer Vision AUTOGRAD AUTOGRAD

GENERAL. CSE 559A: Computer Vision AUTOGRAD AUTOGRAD CSE 559A: Computer Vision Fall 2017: T-R: 11:30-1pm @ Lopata 101 GENERAL PSET 5 Posted. One day extension (now due on the Friday two weeks from now) You get to implement SLIC, and your own conv layer!

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Transforms Unitary Transforms and the 2D Discrete Fourier Transform DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON What is this

More information

Fourier transforms and convolution

Fourier transforms and convolution Fourier transforms and convolution (without the agonizing pain) CS/CME/BioE/Biophys/BMI 279 Oct. 26, 2017 Ron Dror 1 Outline Why do we care? Fourier transforms Writing functions as sums of sinusoids The

More information

FFTs in Graphics and Vision. Groups and Representations

FFTs in Graphics and Vision. Groups and Representations FFTs in Graphics and Vision Groups and Representations Outline Groups Representations Schur s Lemma Correlation Groups A group is a set of elements G with a binary operation (often denoted ) such that

More information

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 6 Miki Lustig, UCB September 11, 2012 Miki Lustig, UCB DFT and Sampling the DTFT X (e jω ) = e j4ω sin2 (5ω/2) sin 2 (ω/2) 5 x[n] 25 X(e jω ) 4 20 3 15 2 1 0 10 5 1 0 5 10 15 n 0 0 2 4 6 ω 5 reconstructed

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Announcements EE Digital Signal Processing otes posted HW due Friday SDR give away Today! Read Ch 9 $$$ give me your names Lecture based on slides by JM Kahn M Lustig, EECS UC Berkeley M Lustig, EECS UC

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

ADMINISTRIVIA SENSOR

ADMINISTRIVIA SENSOR CSE 559A: Computer Vision ADMINISRIVIA Everyone needs to fill out survey and join Piazza. We strongly encourage you to use Piazza over e-mail for questions (mark only to instructors if you wish). Also

More information

FFTs in Graphics and Vision. The Laplace Operator

FFTs in Graphics and Vision. The Laplace Operator FFTs in Graphics and Vision The Laplace Operator 1 Outline Math Stuff Symmetric/Hermitian Matrices Lagrange Multipliers Diagonalizing Symmetric Matrices The Laplacian Operator 2 Linear Operators Definition:

More information

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading:

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading: Announcements Filtering Homework 2 is due Apr 26, :59 PM eading: Chapter 4: Linear Filters CSE 52 Lecture 6 mage Filtering nput Output Filter (From Bill Freeman) Example: Smoothing by Averaging Linear

More information

2. Image Transforms. f (x)exp[ 2 jπ ux]dx (1) F(u)exp[2 jπ ux]du (2)

2. Image Transforms. f (x)exp[ 2 jπ ux]dx (1) F(u)exp[2 jπ ux]du (2) 2. Image Transforms Transform theory plays a key role in image processing and will be applied during image enhancement, restoration etc. as described later in the course. Many image processing algorithms

More information

Frequency-domain representation of discrete-time signals

Frequency-domain representation of discrete-time signals 4 Frequency-domain representation of discrete-time signals So far we have been looing at signals as a function of time or an index in time. Just lie continuous-time signals, we can view a time signal as

More information

Linear Operators and Fourier Transform

Linear Operators and Fourier Transform Linear Operators and Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013

More information

Homework #1 Solution

Homework #1 Solution February 7, 4 Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 734 VLSI Array Structures for Digital Signal Processing Homework # Solution Due: February 6, 4 in class.

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

CAP4453-Robot Vision Lecture 2-Basics of Images. Ulas Bagci

CAP4453-Robot Vision Lecture 2-Basics of Images. Ulas Bagci CAP4453-Robot Vision Lecture 2-Basics of Images Ulas Bagci bagci@ucf.edu 1 Outline Image as a function Extracting useful information from Images Pixels / Histogram Convolution/Correlation Read Szeliski,

More information

Math 307 Learning Goals. March 23, 2010

Math 307 Learning Goals. March 23, 2010 Math 307 Learning Goals March 23, 2010 Course Description The course presents core concepts of linear algebra by focusing on applications in Science and Engineering. Examples of applications from recent

More information

Visual features: From Fourier to Gabor

Visual features: From Fourier to Gabor Visual features: From Fourier to Gabor Deep Learning Summer School 2015, Montreal Hubel and Wiesel, 1959 from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009) Alexnet ICA from: Natural Image Statistics

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27 Chapter 2 Ma 322 Fall 2013 Ma 322 Sept 23-27 Summary ˆ Matrices and their Operations. ˆ Special matrices: Zero, Square, Identity. ˆ Elementary Matrices, Permutation Matrices. ˆ Voodoo Principle. What is

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Bastian Steder

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Bastian Steder Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Bastian Steder Reference Book Thrun, Burgard, and Fox: Probabilistic Robotics Vectors Arrays of numbers Vectors represent

More information

L29: Fourier analysis

L29: Fourier analysis L29: Fourier analysis Introduction The discrete Fourier Transform (DFT) The DFT matrix The Fast Fourier Transform (FFT) The Short-time Fourier Transform (STFT) Fourier Descriptors CSCE 666 Pattern Analysis

More information

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions.

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions. L Vandenberghe EE133A (Spring 2017) 3 Matrices notation and terminology matrix operations linear and affine functions complexity 3-1 Matrix a rectangular array of numbers, for example A = 0 1 23 01 13

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Vectors Arrays of numbers Vectors represent a point

More information

Recap of Monday. Linear filtering. Be aware of details for filter size, extrapolation, cropping

Recap of Monday. Linear filtering. Be aware of details for filter size, extrapolation, cropping Recap of Monday Linear filtering h[ m, n] k, l f [ k, l] I[ m Not a matrix multiplication Sum over Hadamard product k, n l] Can smooth, sharpen, translate (among many other uses) 1 1 1 1 1 1 1 1 1 Be aware

More information

Mathematics. EC / EE / IN / ME / CE. for

Mathematics.   EC / EE / IN / ME / CE. for Mathematics for EC / EE / IN / ME / CE By www.thegateacademy.com Syllabus Syllabus for Mathematics Linear Algebra: Matrix Algebra, Systems of Linear Equations, Eigenvalues and Eigenvectors. Probability

More information

Chapter 4 Image Enhancement in the Frequency Domain

Chapter 4 Image Enhancement in the Frequency Domain Chapter 4 Image Enhancement in the Frequency Domain Yinghua He School of Computer Science and Technology Tianjin University Background Introduction to the Fourier Transform and the Frequency Domain Smoothing

More information

Module 7:Data Representation Lecture 35: Wavelets. The Lecture Contains: Wavelets. Discrete Wavelet Transform (DWT) Haar wavelets: Example

Module 7:Data Representation Lecture 35: Wavelets. The Lecture Contains: Wavelets. Discrete Wavelet Transform (DWT) Haar wavelets: Example The Lecture Contains: Wavelets Discrete Wavelet Transform (DWT) Haar wavelets: Example Haar wavelets: Theory Matrix form Haar wavelet matrices Dimensionality reduction using Haar wavelets file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture35/35_1.htm[6/14/2012

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) Week 1: 8/26, 8/28 Week 2: 9/2, 9/4

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857)  Week 1: 8/26, 8/28 Week 2: 9/2, 9/4 IMGS 616-20141 p.1 Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) 3 July 2014 (TENTATIVE and subject to change) Note that I expect to be in Europe twice during the term: in Paris the week

More information

Chapter 16. Local Operations

Chapter 16. Local Operations Chapter 16 Local Operations g[x, y] =O{f[x ± x, y ± y]} In many common image processing operations, the output pixel is a weighted combination of the gray values of pixels in the neighborhood of the input

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

Mathematics for Graphics and Vision

Mathematics for Graphics and Vision Mathematics for Graphics and Vision Steven Mills March 3, 06 Contents Introduction 5 Scalars 6. Visualising Scalars........................ 6. Operations on Scalars...................... 6.3 A Note on

More information

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write 1 MATH FACTS 11 Vectors 111 Definition We use the overhead arrow to denote a column vector, ie, a number with a direction For example, in three-space, we write The elements of a vector have a graphical

More information

Transforms and Orthogonal Bases

Transforms and Orthogonal Bases Orthogonal Bases Transforms and Orthogonal Bases We now turn back to linear algebra to understand transforms, which map signals between different domains Recall that signals can be interpreted as vectors

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Eigenvalues and Eigenvectors Ramani Duraiswami, Dept. of Computer Science Eigen Values of a Matrix Recap: A N N matrix A has an eigenvector x (non-zero) with corresponding

More information

Key Intuition: invertibility

Key Intuition: invertibility Introduction to Fourier Analysis CS 510 Lecture #6 January 30, 2017 In the extreme, a square wave Graphic from http://www.mechatronics.colostate.edu/figures/4-4.jpg 2 Fourier Transform Formally, the Fourier

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

CLASSICAL GROUPS DAVID VOGAN

CLASSICAL GROUPS DAVID VOGAN CLASSICAL GROUPS DAVID VOGAN 1. Orthogonal groups These notes are about classical groups. That term is used in various ways by various people; I ll try to say a little about that as I go along. Basically

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional space

More information

3 What You Should Know About Complex Numbers

3 What You Should Know About Complex Numbers 3 What You Should Know About Complex Numbers Life is complex it has a real part, and an imaginary part Andrew Koenig. Complex numbers are an extension of the more familiar world of real numbers that make

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

The Fast Fourier Transform

The Fast Fourier Transform The Fast Fourier Transform 1 Motivation: digital signal processing The fast Fourier transform (FFT) is the workhorse of digital signal processing To understand how it is used, consider any signal: any

More information

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

! Circular Convolution.  Linear convolution with circular convolution. ! Discrete Fourier Transform.  Linear convolution through circular Previously ESE 531: Digital Signal Processing Lec 22: April 18, 2017 Fast Fourier Transform (con t)! Circular Convolution " Linear convolution with circular convolution! Discrete Fourier Transform " Linear

More information

Introduction to Fourier Analysis Part 2. CS 510 Lecture #7 January 31, 2018

Introduction to Fourier Analysis Part 2. CS 510 Lecture #7 January 31, 2018 Introduction to Fourier Analysis Part 2 CS 510 Lecture #7 January 31, 2018 OpenCV on CS Dept. Machines 2/4/18 CSU CS 510, Ross Beveridge & Bruce Draper 2 In the extreme, a square wave Graphic from http://www.mechatronics.colostate.edu/figures/4-4.jpg

More information

Theory and Problems of Signals and Systems

Theory and Problems of Signals and Systems SCHAUM'S OUTLINES OF Theory and Problems of Signals and Systems HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University

More information

Assorted DiffuserCam Derivations

Assorted DiffuserCam Derivations Assorted DiffuserCam Derivations Shreyas Parthasarathy and Camille Biscarrat Advisors: Nick Antipa, Grace Kuo, Laura Waller Last Modified November 27, 28 Walk-through ADMM Update Solution In our derivation

More information

Fourier Matching. CS 510 Lecture #7 February 8 th, 2013

Fourier Matching. CS 510 Lecture #7 February 8 th, 2013 Fourier Matching CS 510 Lecture #7 February 8 th, 2013 Details are on the assignments page you have un4l Monday Programming Assignment #1 Source (Target) Images Templates Le4 Eye Right Eye Le4 Ear Nose

More information

Fundamentals of the DFT (fft) Algorithms

Fundamentals of the DFT (fft) Algorithms Fundamentals of the DFT (fft) Algorithms D. Sundararajan November 6, 9 Contents 1 The PM DIF DFT Algorithm 1.1 Half-wave symmetry of periodic waveforms.............. 1. The DFT definition and the half-wave

More information

CSE 548: Analysis of Algorithms. Lecture 4 ( Divide-and-Conquer Algorithms: Polynomial Multiplication )

CSE 548: Analysis of Algorithms. Lecture 4 ( Divide-and-Conquer Algorithms: Polynomial Multiplication ) CSE 548: Analysis of Algorithms Lecture 4 ( Divide-and-Conquer Algorithms: Polynomial Multiplication ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2015 Coefficient Representation

More information

Review of Linear Systems Theory

Review of Linear Systems Theory Review of Linear Systems Theory The following is a (very) brief review of linear systems theory, convolution, and Fourier analysis. I work primarily with discrete signals, but each result developed in

More information

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides)

Fourier analysis of discrete-time signals. (Lathi Chapt. 10 and these slides) Fourier analysis of discrete-time signals (Lathi Chapt. 10 and these slides) Towards the discrete-time Fourier transform How we will get there? Periodic discrete-time signal representation by Discrete-time

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 00 Dec 27, 2014.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 00 Dec 27, 2014. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim100887@aol.com rev 00 Dec 27, 2014 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

E The Fast Fourier Transform

E The Fast Fourier Transform Fourier Transform Methods in Finance By Umberto Cherubini Giovanni Della Lunga Sabrina Mulinacci Pietro Rossi Copyright 2010 John Wiley & Sons Ltd E The Fast Fourier Transform E.1 DISCRETE FOURIER TRASFORM

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

Lecture 6: Vector Spaces II - Matrix Representations

Lecture 6: Vector Spaces II - Matrix Representations 1 Key points Lecture 6: Vector Spaces II - Matrix Representations Linear Operators Matrix representation of vectors and operators Hermite conjugate (adjoint) operator Hermitian operator (self-adjoint)

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Filtering and Edge Detection

Filtering and Edge Detection Filtering and Edge Detection Local Neighborhoods Hard to tell anything from a single pixel Example: you see a reddish pixel. Is this the object s color? Illumination? Noise? The next step in order of complexity

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT. March 11, 2015

EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT. March 11, 2015 EDISP (NWL2) (English) Digital Signal Processing Transform, FT, DFT March 11, 2015 Transform concept We want to analyze the signal represent it as built of some building blocks (well known signals), possibly

More information

Thinking in Frequency

Thinking in Frequency 09/05/17 Thinking in Frequency Computational Photography University of Illinois Derek Hoiem Administrative Matlab/linear algebra tutorial tomorrow, planned for 6:30pm Probably 1214 DCL (will send confirmation

More information

Fourier Transform 2D

Fourier Transform 2D Image Processing - Lesson 8 Fourier Transform 2D Discrete Fourier Transform - 2D Continues Fourier Transform - 2D Fourier Properties Convolution Theorem Eamples = + + + The 2D Discrete Fourier Transform

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Review of Concepts from Fourier & Filtering Theory. Fourier theory for finite sequences. convolution/filtering of infinite sequences filter cascades

Review of Concepts from Fourier & Filtering Theory. Fourier theory for finite sequences. convolution/filtering of infinite sequences filter cascades Review of Concepts from Fourier & Filtering Theory precise definition of DWT requires a few basic concepts from Fourier analysis and theory of linear filters will start with discussion/review of: basic

More information

2D Discrete Fourier Transform (DFT)

2D Discrete Fourier Transform (DFT) 2D Discrete Fourier Transform (DFT) Outline Circular and linear convolutions 2D DFT 2D DCT Properties Other formulations Examples 2 2D Discrete Fourier Transform Fourier transform of a 2D signal defined

More information

Math 21b. Review for Final Exam

Math 21b. Review for Final Exam Math 21b. Review for Final Exam Thomas W. Judson Spring 2003 General Information The exam is on Thursday, May 15 from 2:15 am to 5:15 pm in Jefferson 250. Please check with the registrar if you have a

More information

Lecture4 INF-MAT : 5. Fast Direct Solution of Large Linear Systems

Lecture4 INF-MAT : 5. Fast Direct Solution of Large Linear Systems Lecture4 INF-MAT 4350 2010: 5. Fast Direct Solution of Large Linear Systems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 16, 2010 Test Matrix

More information

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA Review for Exam Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 0003 March 26, 204 Abstract Here are some things you need to know for the in-class

More information

Review of some mathematical tools

Review of some mathematical tools MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING Fall 2016 Benjamín Béjar Haro, Mihailo Kolundžija, Reza Parhizkar, Adam Scholefield Teaching assistants: Golnoosh Elhami, Hanjie Pan Review of some mathematical

More information

Introduction to Linear Systems

Introduction to Linear Systems cfl David J Fleet, 998 Introduction to Linear Systems David Fleet For operator T, input I, and response R = T [I], T satisfies: ffl homogeniety: iff T [ai] = at[i] 8a 2 C ffl additivity: iff T [I + I 2

More information

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution Tim Roughgarden & Gregory Valiant May 8, 2015 1 Intro Thus far, we have seen a number of different approaches to

More information

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Lecture 4 Filtering in the Frequency Domain Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Outline Background From Fourier series to Fourier transform Properties of the Fourier

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1 IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1 Let Σ be the set of all symmetries of the plane Π. 1. Give examples of s, t Σ such that st ts. 2. If s, t Σ agree on three non-collinear points, then

More information

Anouncements. Assignment 3 has been posted!

Anouncements. Assignment 3 has been posted! Anouncements Assignment 3 has been posted! FFTs in Graphics and Vision Correlation of Spherical Functions Outline Math Review Spherical Correlation Review Dimensionality: Given a complex n-dimensional

More information

Computer Vision. Filtering in the Frequency Domain

Computer Vision. Filtering in the Frequency Domain Computer Vision Filtering in the Frequency Domain Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

CS 179: GPU Programming. Lecture 9 / Homework 3

CS 179: GPU Programming. Lecture 9 / Homework 3 CS 179: GPU Programming Lecture 9 / Homework 3 Recap Some algorithms are less obviously parallelizable : Reduction Sorts FFT (and certain recursive algorithms) Parallel FFT structure (radix-2) Bit-reversed

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

Image Registration Lecture 2: Vectors and Matrices

Image Registration Lecture 2: Vectors and Matrices Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this

More information

We have already seen that the main problem of linear algebra is solving systems of linear equations.

We have already seen that the main problem of linear algebra is solving systems of linear equations. Notes on Eigenvalues and Eigenvectors by Arunas Rudvalis Definition 1: Given a linear transformation T : R n R n a non-zero vector v in R n is called an eigenvector of T if Tv = λv for some real number

More information

Lesson U2.1 Study Guide

Lesson U2.1 Study Guide Lesson U2.1 Study Guide Sunday, June 3, 2018 2:05 PM Matrix operations, The Inverse of a Matrix and Matrix Factorization Reading: Lay, Sections 2.1, 2.2, 2.3 and 2.5 (about 24 pages). MyMathLab: Lesson

More information

PONDI CHERRY UNI VERSI TY

PONDI CHERRY UNI VERSI TY B.Sc. ALLIED MATHEMATICS SYLLABUS 2009-2010 onwards PONDI CHERRY UNI VERSI TY PUDUCHERRY 605 014 B.Sc. ALLIED MATHEMATICS Syllabus for Allied Mathematics for B.Sc. Physics Main/Chemistry Main/Electronics

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 13 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Michael T. Heath Parallel Numerical Algorithms

More information

Module 3. Convolution. Aim

Module 3. Convolution. Aim Module Convolution Digital Signal Processing. Slide 4. Aim How to perform convolution in real-time systems efficiently? Is convolution in time domain equivalent to multiplication of the transformed sequence?

More information

CS 179: GPU Programming. Lecture 9 / Homework 3

CS 179: GPU Programming. Lecture 9 / Homework 3 CS 179: GPU Programming Lecture 9 / Homework 3 Recap Some algorithms are less obviously parallelizable : Reduction Sorts FFT (and certain recursive algorithms) Parallel FFT structure (radix-2) Bit-reversed

More information

1. Vectors. notation. examples. vector operations. linear functions. complex vectors. complexity of vector computations

1. Vectors. notation. examples. vector operations. linear functions. complex vectors. complexity of vector computations L. Vandenberghe ECE133A (Winter 2018) 1. Vectors notation examples vector operations linear functions complex vectors complexity of vector computations 1-1 Vector a vector is an ordered finite list of

More information