CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD

Size: px
Start display at page:

Download "CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD"

Transcription

1 CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD M. AHMETOGLU (AFRAILOV) 1, G. GULYAMOV 2, S. H. SHAMIRZAEV 2, A. G. GULYAMOV 2, M. G. DADAMIRZAEV 2, N. APRAILOV 2, F. KOÇAK 1 1 Deparmen of Physics, Uludag Universiy, 16059, Görukle, Bursa, Turkey, afrailov@uludag.edu.r 2 Deparmen of Physics, Namangan Sae Engineering and Technology Insiue, Namangan, Uzbekisan Received Sepember 12, 2006 In his work he influence of variable deformaion on concenraion of nonequilibrium carriers and resisance chances of he semiconducor have been invesigaed. The phase shif define by frequency of deformaion and life ime of nonequilibrium carriers, have been shown beween variable deformaion and semiconducor resisance change. I is esablished ha, in a plane resisance-deformaion he phase rajecory forms hyseresis loop. When conduciviy varies only due o elecronic processes hen he hyseresis loop remains smooh. A he consan frequency and ampliude, he form of he flucuaion does no change. I is shown ha, he srucural changes in he sample leads he hyseresis loop movemen in phase space. Key words: semiconducor, deformaion, hyseresis loop. A influence of deformaion changing of he energy band srucures leads o change of concenraion of carriers and redisribuion of carriers beween he energy valleys [1]. These changes in urn leads o change of resisance of he sample [2]. If exernal deformaion is variable, change of he resisance of he sample on ime occurs o some backlog from he enclosed mechanical influence. Le's consider he response of excess concenraion of elecrons n e on variable deformaion. Deformaion can induce generaion of he elecrons wih a speed g e besides, excess elecrons can ac from oher area of he sample [3]. Concenraion can be deermined by he equaion of a coninuiy n e ne = g + 1 e Jn (1) τ e Where J n densiy of a curren of elecrons, τ is a lifeime of elecrons. For he homogeneous sample he equaion of a coninuiy is Paper presened a he 7 h Inernaional Balkan Workshop on Applied Physics, 5 7 July 2006, Consanþa, Romania. Rom. Journ. Phys., Vol. 52, Nos. 3 4, P , Buchares, 2007

2 344 M. Ahmeoglu (Afrailov) e al. 2 ne ne = ge (2) τ Thus, he reasons of change of resisance can be he diversified. Generaions speed g e, caused by changing of widh of a band or heighs of a barrier, raher quickly adaps o exernal pressure, i.e. pracically repeas dependence of pressure on ime. However, concenraion of nonequilibrium carriers is defined no by insan value of he generaions speed, and all previous values g e. If during he ime = T 1 speed of generaion of excess carriers is zero, his ime he consan deformaion ε 1 is applied (g(ε 1 ) also will be a consan). The decision of Eq. (2) for boundary condiions n e = 0 a = T 1 is T1 ( ) ne = ge () ε τ 1 exp ( > T 1) (3) τ If deformaion is sopped a momen T 2, ha n e is reduce as T2 T1 ( ) ( ) ( ) ne = ge () ε τ exp exp exp ( > T 2 ) (4) τ τ τ The decision of he Eq. (2) for a case when he deformaion is any funcion of ime as [3] 0 ne() = ge( 0)exp( τ ) d 0 (5) Expression (5) can be used o define how he value of nonequilibrium concenraion reacs on varying deformaion. We shall assume, ha deformaion is varies as ε=ε sin( ω ) (6) 0 0 Then he widh of he forbidden zone changes under he same law Δ E =Δε (7) g Where Δε is he deformaion poenial [2]. Speed of hermal generaion has exponenial dependence on widh of he forbidden zone and emperaure of a laice [4]. In his case from he general hermodynamic reasons, generaion speed of nonequilibrium carriers can be presened as Δε( 0 ) ( kt ) g () = g e 1 (8) Then from expression (5) and (8) we have e 0

3 3 Resisance of he semiconducor in variable deformaion field 345 Δε( ) ( ) ( kt ) 0 0 τ 0 τ 0 n () = g exp e 1e d (9) e Seing an obvious kind of ime dependence of deformaion ε(), i is possible o receive he ime dependence of he concenraion n e (). Then having excluded ime from hese equaions, i is possible o ge a phase rajecory of process on a plane n e ε or he equaions connecing n e and ε: f ( n, ε ) = 0. The equaion (9) in enough wide area of deformaions for funcion ε( 0 ) allows o describe change of concenraion of carriers. To show a mehod of recepion n e ε dependences we shall consider, Δε << 1 (weak deformaion) kt Then expression (9) can be presened in he form of ( ) 0 Δε 0 0 kt τ n () = g exp e d τ (10) e Le he deformaion enclosed o he sample is ε=ε sin( ω ) (0 < 0 < π/ω) 0 0 And oher momens of deformaion are no presen. Then from (10) i is had ( ) 0 = Δε ω τ 0 = τ 0 0 kt 0 Δε ωτ2 sin( ω) g0 2 2 n () g exp sin e d e ( ) = ω + cos exp +ω τ ωτ τ, kt 1 (0 < 0 < π/ω) (11) Afer he erminaion of deformaion in he Eq. 10 op limi of inegral should be π/ω Δε ωτ2 n π e() = g0 1+ exp( ) exp( π kt 2 2 ) ( 1 ) 1+ω τ ωτ τ > (12) ω The response of concenraion excess elecrons on deformaion in case ωτ = 1 is shown in Fig. 1. I is possible o show ha, he densiy of he nonequilibrium elecrons, arising a sinus wave deformaion, conains consan and variable componens. Thus, he variable componen of concenraion lags behind from he sinus wave deformaion on a phase on a θ = arcg(ωτ). Hence, beween variable deformaion and change of resisance of he semiconducor here is some always shif of a phase.

4 346 M. Ahmeoglu (Afrailov) e al. 4 Fig. 1 a) Dependence of concenraion on ime (coninuous curves), dependence of deformaion on ime (dashed lines); b) The phase rajecory of process of deformaion forms he hyseresis loop. Fig. 2 a) Dependence of ε on ime for recangular impulses; b) he phase rajecory of dependence he concenraion n e versus deformaion ε for a recangular impulse. Any periodic deformaion can be decomposed in he Fourier series, which are phase displacemen beween he componens of Fourier series for each frequency, and he deformaion and he concenraion. The form of he dependence of deformaion on he ime srongly influences he phase porrai of he flucuaing moion of a change in he resisance of model from he deformaion. We analyze he qualiaive dependence of he form of he phase rajecories of he concenraion of he excess carriers n e on he ampliude ε 0 and he periods T of he square pulses of deformaion. The square pulse of deformaions has an ampliude ε 0 and a period T moreover T = T i + T 0, here T i is he period of he pulse of deformaion and T 0 is he period of he pause beween he pulses. If we increase pulse frequency, and he ampliude o leave of consan he area of loop decreases under he influence of he square pulse of he deformaions.

5 5 Resisance of he semiconducor in variable deformaion field 347 Wih he ampliude reducion he hyseresis loop decreases as along he heigh, hus he widh, moreover simulaneously i displaces o he origin of coordinaes (Fig. 3a, b, c). If he ampliude of deformaion decreases he concenraions of minoriy carriers also decreases. The area of hyseresis loop increases in he lower frequencies. This increase in he area of loop relaes only wih he recangular volage pulse. If he shape of pulse is smooher, ha wih an increase in he oscillaory period he area of loop can again will decrease. Fig. 3 A phase porrai of dependence of concenraion from duraion of deformaion (a) for various recangular impulses of deformaion (b, c). Thus, he phase rajecories n e ε srongly depend on he frequency of he deformaion of ha applied o he model. Therefore i will convenienly presen phase rajecories for differen frequencies in he phase space, moreover as he hird of axis i is convenien o ake pulse frequency ν or is period T = 1/ν. As he example o phase rajecory in phase space n e ε ν (n e concenraion, ε 0 deformaion, ν frequency) le us examine a change in he concenraion of minoriy carriers under he acion of he square pulses of deformaion (Fig. 4). In he hree-dimensional space (n e ε ν) he phase rajecories for differen frequencies will be deermined by he secions of he curved surface of prism. (Fig. 5). If deformaion no recangular and smooher wih he specific period T, in his case phase he rajecory of he flucuaing moion of he concenraion of excess carriers will draw he curvilinear conical surface (Fig. 6). Wih a change in he parameers of projecion sysem of phase rajecory on he phase plane n e forms spiral (Fig. 7). Wih an increase in he ime he concenraion of equilibrium carriers, i also slowly changes. This change in carrier concenraion affecs he resisance of film and he period of he life of nonequilibrium elecrons. This indicaes, ha

6 348 M. Ahmeoglu (Afrailov) e al. 6 Fig. 4 A phase porrai changes of concenraion n a consan ampliude ε 0 (a) and for hree various on duraion of recangular impulses T 1 > T 2 > T 3 (b, c, d). Fig. 5 The phase rajecory (n e ε ν). Fig. 6 The phase rajecory of excess carriers in (ε n ν) space, lies on he conical surface.

7 7 Resisance of he semiconducor in variable deformaion field 349 Fig. 7 Wih an increase in he oscillaory period he helix increases is ampliude. he parameers of he sysem slowly changes and herefore hyseresis loop sails in phase he space of ΔR ε and rajecory in he experimens is no locked by phase. Evidenly, floaing hyseresis loop ino ΔR ε o plane i is possible o explain wih a change in he parameers of film wih repeaed he applicaion of cyclic deformaion. From oher side here is a phase shif beween he sress and he srain which i is deermined by Debye's losses. In his case, i is necessary o use Debye's formulas for he pliabiliy, which mus be conneced wih he processes of relaxaion [5]. Evidenly, he hermodynamic heory of ordering [5] can explain he shifs of hyseresis loop in he phase plane of ΔR ε resisancedeformaion. Possibly, change and shif of hyseresis loop wih an increase in he number of cyclic deformaions i is conneced wih he srucural changes in he film may be conneced wih he faigue of maerial. However, his is no sill accuraely esablished. One should separaely emphasize ha, he form of hyseresis loop srongly depends on he emporary dependence of he deformaion of ε(). For example, wih a very slow change in he pressure he resisance of model compleely manages afer changes in he pressure and phase displacemen beween he deformaion and he resisance is absen. In his case, he area of hyseresis loop is urned ino nul. If here are no changes in he laice a slow change in he deformaion hyseresis is no observed. Wih an increase in he rae of change in he deformaion line of he dependence of resisance on he pressure phase rajecory is convered ino he hyseresis loop or he helix (Fig. 8). Wih he high frequencies of a change in he pressure again he area of loop approaches zero. Evidenly, when he ime of a change in he deformaion of he order of he characerisic of he relaxaion ime of resisance τ, ha he area of hyseresis loop is maximum. A change in he hyseresis loop wih he frequency i mus conain imporan informaion abou he relaxaion processes in he films. If hyseresis loop

8 350 M. Ahmeoglu (Afrailov) e al. 8 Fig. 8 Wih an increase in he frequency firs he area of hyseresis loop grows wih he high frequencies he hyseresis loop i will become he horizonal secion (ν 1 0 < ν 2 < ν 3 < ν 4 ). was formed only due o he elecronic processes and he srucural changes in he film, his does no occur, hen he hyseresis loop should be closed and i in due course in ΔR ε plane should no moves. Really due o mechanical pressure here are irreversible changes in a crysal laice subsequenly i he characerisics of a sample wih ime are slowly vary. As a rule elecronic processes in he model, i flows considerably more rapid, han change in he crysal srucure. For he analysis of experimenal resuls and heoreical sudies convenienly inroduces wo characerisic ime τ e he ime of elecronic processes and τ i ime caused wih he change in he laice. Moreover τ e << τ i. Thus, rapid processes are caused elecronic by processes, and slow wih he changes in crysal laice. Changes in crysal laice mus give disrupion in he hyseresis line and wih he periodic repeiion hyseresis loop i mus i will become he helix (Fig. 9).

9 9 Resisance of he semiconducor in variable deformaion field 351 Fig. 9 a) for he locked rajecories relaxaion is only elecronic; b) he disrupion of loop is caused by srucural changes in he model. On he basis of he lead (carried ou) researches, i is possible o draw he following conclusions: Exisence hyseresis loops of a phase rajecory in a plane resisance deformaion (R ε) i is caused relaxaion by processes in a sample; Closed relaxaion he loop is caused only by elecronic processes and change in a crysal laice do no occur. Open screw rajecory on (R ε) planes i is caused by irreversible srucural changes in a crysal laice. REFERENCES 1. G. L. Bar, G. E. Pikus, Symmery and deformaion effecs in semiconducors, Nauka, 1972, P. S. Kireev, Physics of semiconducors, VSH, 1975, J. Blekmor, The heory of he recombinaion speed in semiconducors. 4. Problems in hermodynamics and he saic physics, Edied by Lansberg, MIR, Moscow, 1974, B. Ridli, Quanum processes in semiconducors, MIR, Moscow, 1986, A. Nowick, W. Heller, Adv. Phys. 12, 251 (1963).

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

The Simulation of Electret Effect in Zn 0.7 Cd 0.3 S Layers

The Simulation of Electret Effect in Zn 0.7 Cd 0.3 S Layers Nonlinear Analysis: Modelling and Conrol, 2005, Vol. 10, No. 1, 77 82 The Simulaion of Elecre Effec in Zn 0.7 Cd 0.3 S Layers F. Kuliešius 1, S. Tamoši ūnas 2, A. Žindulis 1 1 Faculy of Physics, Vilnius

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Keywords: thermal stress; thermal fatigue; inverse analysis; heat conduction; regularization

Keywords: thermal stress; thermal fatigue; inverse analysis; heat conduction; regularization Proceedings Inverse Analysis for Esimaing Temperaure and Residual Sress Disribuions in a Pipe from Ouer Surface Temperaure Measuremen and Is Regularizaion Shiro Kubo * and Shoki Taguwa Deparmen of Mechanical

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

At the end of this lesson, the students should be able to understand

At the end of this lesson, the students should be able to understand Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress concenraion facor; experimenal and heoreical mehods.

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II Module 3: The Damped Oscillaor-II Lecure 3: The Damped Oscillaor-II 3. Over-damped Oscillaions. This refers o he siuaion where β > ω (3.) The wo roos are and α = β + α 2 = β β 2 ω 2 = (3.2) β 2 ω 2 = 2

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors

Determination of the Sampling Period Required for a Fast Dynamic Response of DC-Motors Deerminaion of he Sampling Period Required for a Fas Dynamic Response of DC-Moors J. A. GA'EB, Deparmen of Elecrical and Compuer Eng, The Hashemie Universiy, P.O.Box 15459, Posal code 13115, Zerka, JORDAN

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts? AP Chemisry Tes (Chaper 12) Muliple Choice (40%) 1) Which of he following is a kineic quaniy? A) Enhalpy B) Inernal Energy C) Gibb s free energy D) Enropy E) Rae of reacion 2) Of he following quesions,

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis TRANSPORTATION RESEARCH RECORD 155 35 Curling Sress Equaion for Transverse Join Edge of a Concree Pavemen Slab Based on Finie-Elemen Mehod Analysis TATSUO NISHIZAWA, TADASHI FUKUDA, SABURO MATSUNO, AND

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel,

Mechanical Fatigue and Load-Induced Aging of Loudspeaker Suspension. Wolfgang Klippel, Mechanical Faigue and Load-Induced Aging of Loudspeaker Suspension Wolfgang Klippel, Insiue of Acousics and Speech Communicaion Dresden Universiy of Technology presened a he ALMA Symposium 2012, Las Vegas

More information

A quantum method to test the existence of consciousness

A quantum method to test the existence of consciousness A quanum mehod o es he exisence of consciousness Gao Shan The Scieniss Work Team of Elecro-Magneic Wave Velociy, Chinese Insiue of Elecronics -0, NO.0 Building, YueTan XiJie DongLi, XiCheng Disric Beijing

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

( ) = b n ( t) n " (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2.

( ) = b n ( t) n  (2.111) or a system with many states to be considered, solving these equations isn t. = k U I ( t,t 0 )! ( t 0 ) (2. Andrei Tokmakoff, MIT Deparmen of Chemisry, 3/14/007-6.4 PERTURBATION THEORY Given a Hamilonian H = H 0 + V where we know he eigenkes for H 0 : H 0 n = E n n, we can calculae he evoluion of he wavefuncion

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence CHEMICL KINETICS: Rae Order Rae law Rae consan Half-life Temperaure Dependence Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence of he change in he concenraion of reacans and producs.

More information

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN Inernaional Journal of Applied Economerics and Quaniaive Sudies. Vol.1-3(004) STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN 001-004 OBARA, Takashi * Absrac The

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Available online at I-SEEC Proceeding - Science and Engineering (2013)

Available online at   I-SEEC Proceeding - Science and Engineering (2013) Available online a www.iseec01.com I-SEEC 01 Proceeding - Science and Engineering (013) 471 478 Proceeding Science and Engineering www.iseec01.com Science and Engineering Symposium 4 h Inernaional Science,

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Polymer Engineering (MM3POE)

Polymer Engineering (MM3POE) Polymer Engineering (MM3POE) VISCOELASTICITY hp://www.noingham.ac.uk/~eazacl/mm3poe Viscoelasiciy 1 Conens Wha is viscoelasiciy? Fundamenals Creep & creep recovery Sress relaxaion Modelling viscoelasic

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

Multi-Frequency Sheath Dynamics

Multi-Frequency Sheath Dynamics Muli-Frequency Sheah Dynamics Seven Shannon, Alex Paerson, Theodoros Panagopoulos, Daniel Hoffman, John Holland, Dennis Grimard (Universiy of Michigan) Purpose of research RF plasmas wih muliple frequency

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

Analytic nonlinear elasto-viscosity of two types of BN and PI rubbers at large deformations

Analytic nonlinear elasto-viscosity of two types of BN and PI rubbers at large deformations Bulgarian Chemical Communicaions, Volume 48, Special Issue E (pp. 59-64) 016 Analyic nonlinear elaso-viscosiy of wo ypes of BN and PI rubbers a large deformaions K. B. Hadjov, A. S. Aleksandrov, M. P.

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

Nature of superconducting fluctuation in photo-excited systems

Nature of superconducting fluctuation in photo-excited systems Naure of superconducing flucuaion in phoo-excied sysems Ryua Iwazaki, Naoo suji and Shinaro Hoshino Deparmen of Physics, Saiama Universiy, Shimo-Okubo, Saiama 338-857, Japan RIKEN ener for Emergen Maer

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

Cumulative Damage Evaluation based on Energy Balance Equation

Cumulative Damage Evaluation based on Energy Balance Equation Cumulaive Damage Evaluaion based on Energy Balance Equaion K. Minagawa Saiama Insiue of Technology, Saiama S. Fujia Tokyo Denki Universiy, Tokyo! SUMMARY: This paper describes an evaluaion mehod for cumulaive

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3 The The rd rd Inernaional Conference on on Design Engineering and Science, ICDES 14 Pilsen, Czech Pilsen, Republic, Czech Augus Republic, 1 Sepember 1-, 14 In-plane and Ou-of-plane Deflecion of J-shaped

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS A FAMIY OF THREE-EVE DC-DC CONVERTERS Anonio José Beno Boion, Ivo Barbi Federal Universiy of Sana Caarina - UFSC, Power Elecronics Insiue - INEP PO box 5119, ZIP code 88040-970, Florianópolis, SC, BRAZI

More information

Failure of the work-hamiltonian connection for free energy calculations. Abstract

Failure of the work-hamiltonian connection for free energy calculations. Abstract Failure of he work-hamilonian connecion for free energy calculaions Jose M. G. Vilar 1 and J. Miguel Rubi 1 Compuaional Biology Program, Memorial Sloan-Keering Cancer Cener, 175 York Avenue, New York,

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

arxiv:cond-mat/ May 2002

arxiv:cond-mat/ May 2002 -- uadrupolar Glass Sae in para-hydrogen and orho-deuerium under pressure. T.I.Schelkacheva. arxiv:cond-ma/5538 6 May Insiue for High Pressure Physics, Russian Academy of Sciences, Troisk 49, Moscow Region,

More information

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters

Dual Current-Mode Control for Single-Switch Two-Output Switching Power Converters Dual Curren-Mode Conrol for Single-Swich Two-Oupu Swiching Power Converers S. C. Wong, C. K. Tse and K. C. Tang Deparmen of Elecronic and Informaion Engineering Hong Kong Polyechnic Universiy, Hunghom,

More information

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. = " M z T 1. (1" e "t /T 1 ) M z. (t) = M 0

Relaxation. T1 Values. Longitudinal Relaxation. dm z dt. =  M z T 1. (1 e t /T 1 ) M z. (t) = M 0 Relaxaion Bioengineering 28A Principles of Biomedical Imaging Fall Quarer 21 MRI Lecure 2 An exciaion pulse roaes he magneiaion vecor away from is equilibrium sae (purely longiudinal). The resuling vecor

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn

ψ ( t) = c n ( t) t n ( )ψ( ) t ku t,t 0 ψ I V kn MIT Deparmen of Chemisry 5.74, Spring 4: Inroducory Quanum Mechanics II p. 33 Insrucor: Prof. Andrei Tokmakoff PERTURBATION THEORY Given a Hamilonian H ( ) = H + V ( ) where we know he eigenkes for H H

More information

Comparative study between two models of a linear oscillating tubular motor

Comparative study between two models of a linear oscillating tubular motor IOSR Journal of Elecrical and Elecronics Engineering (IOSR-JEEE) e-issn: 78-676,p-ISSN: 3-333, Volume 9, Issue Ver. IV (Feb. 4), PP 77-83 Comparaive sudy beween wo models of a linear oscillaing ubular

More information

Spintronics of Nanomechanical Shuttle

Spintronics of Nanomechanical Shuttle * Spinronics of Nanomechanical Shule Rober Shekher In collaboraion wih: D.Fedores,. Gorelik, M. Jonson Göeborg Universiy / Chalmers Universiy of Technology Elecromechanics of Coulomb Blockade srucures

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies Applicaion Noe AN-8004 Revision: Issue Dae: Prepared by: 00 2008-05-21 Dr. Arend Winrich Ke y Words: SemiSel, Semiconducor Selecion, Loss Calculaion Sofware release of SemiSel version 3.1 New semiconducor

More information

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology Risk and Saey in Engineering Pro. Dr. Michael Havbro Faber ETH Zurich, Swizerland Conens o Today's Lecure Inroducion o ime varian reliabiliy analysis The Poisson process The ormal process Assessmen o he

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Ecological Archives E A1. Meghan A. Duffy, Spencer R. Hall, Carla E. Cáceres, and Anthony R. Ives.

Ecological Archives E A1. Meghan A. Duffy, Spencer R. Hall, Carla E. Cáceres, and Anthony R. Ives. Ecological Archives E9-95-A1 Meghan A. Duffy, pencer R. Hall, Carla E. Cáceres, and Anhony R. ves. 29. Rapid evoluion, seasonaliy, and he erminaion of parasie epidemics. Ecology 9:1441 1448. Appendix A.

More information