CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence

Size: px
Start display at page:

Download "CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence"

Transcription

1 CHEMICL KINETICS: Rae Order Rae law Rae consan Half-life Temperaure Dependence

2 Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence of he change in he concenraion of reacans and producs. Chemical Reacion involve he forming and breaing of chemical bonds Reacan Molecules (H, I ) approach one anoher and collide and inerac wih appropriae energy and orienaion. Bonds are sreched, broen, and formed and finally produc molecules (HI) move away from one anoher. How can we describe he rae a which such a chemical ransformaion aes place?

3 Chemical Reacion Kineics H (g) + I (g) HI(g) Reacans producs Thermodynamics ell us all abou he energeic feasibiliy of a reacion: we measure he Gibbs energy G for he chemical reacion. Thermodynamics does no ell us how quicly he reacion will proceed: i does no provide ineic informaion. 3

4 Basic Ideas in Reacion Kineics Chemical reacion ineics deals wih he rae of velociy of chemical reacions. We wish o quanify: The velociy a which reacans are ransformed o producs The deailed molecular pahway by which a reacion proceed (he reacion mechanism) 4

5 Basic Ideas in Reacion Kineics Chemical reacions are said o be acivaed processes: energy (usually hermal (hea) energy) mus be inroduced ino he sysem so ha chemical ransformaion occur more rapidly when emperaure of he sysem is increased. In simple erms an acivaion energy barrier mus be overcome before reacans can be ransformed ino producs. 5

6 Rae of reacion Wha do we mean by erm reacion rae? The erm rae implies ha somehing changes wih respec o somehing else. How many reacion raes can be deermined? The reacion rae is quanified in erms of he change in concenraion of a reacan or produc species wih respec o ime. This requires an experimenal measuremen of he manner in which he concenraion changes wih ime of reacion. We can monior eiher he concenraion change direcly, or monior changes in some physical quaniy which is direcly proporional o he concenraion. 6

7 Rae of reacion The reacan concenraion decreases wih increasing ime, and he produc concenraion increases wih increasing ime. The rae of a chemical reacion depends on he concenraion of each of he paricipaing reacan species. The manner in which he rae changes in magniude wih changes in he magniude of each of paricipaing reacans is ermed he reacion order. 7

8 Rae of reacion Symbol: R, n Soichiomeric equaion: m + n B p X + q Y Rae: R m d d n db d p dx d q dy d 8

9 Unis of, rae consan concenraion ime d R m B m d (concenraion) m no reacion coeff. n (concenraion) n Rae Law Order Unis of R = R = R = R= B in, B overall R = / / R m B (concenraion) ime n mn

10 Facors Tha ffec Reacion Raes Concenraion of Reacans s he concenraion of reacans increases, so does he lielihood ha reacan molecules will collide. Temperaure higher emperaures, reacan molecules have more ineic energy, move faser, and collide more ofen and wih greaer energy. Caalyss Speed rxn by changing mechanism.

11 Rae Law How does he rae depend upon s? Find ou by experimen The Rae Law equaion R = a B b (for many reacions) order, n = a + b + (dimensionless) rae consan, (unis depend on rxn rder) Rae = when each conc = uniy

12 Rae laws can be complicaed ) H (g) + I (g) HI (g) R HI ) H (g) + Br (g) HBr (g) R H Br HBrBr / These rae laws sugges ha hese wo reacions occur via differen mechanisms (ses of individual seps). The firs may be a elemenary reacion (one sep) whereas he laer is cerainly a mulisep process. We will soon explore how o obain complicaed rae laws from suggesed mechanisms.

13 Finding rae laws experimenally There are wo common mehods for deermining rae laws: Mehod of isolaion Se up reacion so one reacan is in excess. ny change in rae will be due o changes in oher reacan. Repea for oher reacan. R B n where m Mehod of iniial raes Measure concenraion change as a funcion of ime, ~v(), for a series of experimenal condiions. (Condiions mus include ses where he reacan has he same iniial concenraion bu B changes and vice versa).

14 Inegraion of rae laws Order of reacion For a reacion a producs he rae law is: d R a d d a d defining a d R d or jus wrien as : d R d n n n n rae of change in he concenraion of 4

15 5 Firs-order reacion ) ( ) ln( d d d d d d R

16 Firs-order reacion ln ln ( ) ln ln plo of ln versus gives a sraigh line of slope - if r = 6

17 7 e e ln ) ( ln ln Firs-order reacion Firs order reacions decay exponenially.

18 Firs-order reacion: example Ozone decays via firs order ineics O ( g) O ( g) O( g) 3 O e 3 O3 =.78-5 s - a 3 K O ln O 3 3 Wha is slope?

19 Wha happens as increases? e ln =.5 s - =.5 s - =.5 s - =. s -

20 Firs-order reacion: example Consider he process in which mehyl isonirile is convered o aceonirile. CH 3 NC CH 3 CN How do we now his is a firs order rxn?

21 Firs-order reacion: example CH 3 NC CH 3 CN This daa was colleced for his reacion a 98.9 C. Does rae=ch 3 NC for all ime inervals?

22 Firs-order reacion When ln P is ploed as a funcion of ime, a sraigh line resuls. The process is firs-order. is he negaive slope: s -.

23 Half life: firs-order reacion The ime aen for o drop o half is original value is called he reacion s half-life, /. Seing = ½ and = / in: ln ln / 3

24 Half life: firs-order reacion ln / / or / 4

25 When is a reacion over? = e - Technically = only afer infinie ime 5

26 Second-order reacion Similarly, inegraing he rae law for a process ha is second-order in reacan : R d d d d d d 6

27 7 ) ( plo of / versus gives a sraigh line of slope if r = Second-order reacion also in he form y = mx + b

28 Deermining rxn order The decomposiion of NO a 3 C is described by he equaion NO (g) NO (g) + / O (g) and yields hese daa: Time (s) NO, M

29 Deermining rxn order Graphing ln NO vs. yields: The plo is no a sraigh line, so he process is no firsorder in. Time (s) NO, M ln NO Does no fi:

30 Second-Order Processes graph of /NO vs. gives his plo. Time (s) NO, M /NO This is a sraigh line. Therefore, he process is secondorder in NO.

31 Half-Life Half-life is defined as he ime required for one-half of a reacan o reac. Because a / is one-half of he original, =.5.

32 Half life: second-order reacion For a second-order process, se =.5 in nd order equaion. o / or / / 3

33 Ouline: Kineics Rae Laws Inegraed Rae Laws Firs order Second order Second order (Bimoleculer) complicaed (discussed laer) Half-life Complicaed (discussed laer)

34 Problems: Define/derive Inegraed Rae Laws and Half-life of 3 rd -order and n h -order reacions whose rae laws are given below: 3 R B where R n 34

35 Ouline: Kineics Third order n h -order Rae Laws Inegraed Rae Laws Half-life 3 R n R n n n ) ( ) ( ) ( n n o n () 3 o

36 Oher order reacions Second order reacion: producs B producs Second order rae: R d d R d d B Inegraed rae law: B ln B B Zero order reacion: producs Zero order rae: R d d Inegraed rae law:

37 Temperaure Dependence of The rae consan can vary in differen ways wih T. Svane rrhenius Winner of he 3 rd Nobel Prize in Chemisry

38 rrhenius Parameers Inegraed forms of rrhenius equaion: d ln dt E RT a ln ln e E a Ea RT / RT E a is he acivaion energy. This is he energy required o ge over a barrier (a he acivaed or ransiion sae) beween he reacans and producs. E a has unis of energy and is T independen. is he pre-exponenial or rrhenius facor and is T dependen. is a measure of rae a which collisions occur (and aes los of hings ino acc such as orienaion, molecular size, number of molecules per volume, molecular velociy, ec). civaed (or ransiion) sae HI(g) I (g) + H (g)

39 Temperaure dependence of The rae consan can vary in differen ways wih T. Svane rrhenius Winner of he 3 rd Nobel Prize in Chemisry C H 5 Cl C H 4 + HCl Rule of humb: rae doubles for a K rise No T /K - /s x x x -5

40 Rae consan expression ln exp ) ( ) ( exp T T R E T T R E RT E RT E ln mol J E E E E RT E a e /

41 Relaing E a o hermodynamics! rrhenius Equaion: Differeniae wr T: ln d ln dt Ea ln RT Ea RT or Necessary Pieces E a RT d ln dt From Eyring Equaion: d ln dt T d ln K dt C van Hoff Equaion (for K c ): d ln KC U dt RT Puing i all ogeher E a RT T d ln K dt C or E a RT U

CHEMICAL KINETICS Rate Order Rate law Rate constant Half-life Molecularity Elementary. Complex Temperature dependence, Steady-state Approximation

CHEMICAL KINETICS Rate Order Rate law Rate constant Half-life Molecularity Elementary. Complex Temperature dependence, Steady-state Approximation CHEMICL KINETICS Rae Order Rae law Rae consan Half-life Moleculariy Elemenary Complex Temperaure dependence, Seady-sae pproximaion Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

Chapter 13 Homework Answers

Chapter 13 Homework Answers Chaper 3 Homework Answers 3.. The answer is c, doubling he [C] o while keeping he [A] o and [B] o consan. 3.2. a. Since he graph is no linear, here is no way o deermine he reacion order by inspecion. A

More information

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts? AP Chemisry Tes (Chaper 12) Muliple Choice (40%) 1) Which of he following is a kineic quaniy? A) Enhalpy B) Inernal Energy C) Gibb s free energy D) Enropy E) Rae of reacion 2) Of he following quesions,

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Advanced Organic Chemistry

Advanced Organic Chemistry Lalic, G. Chem 53A Chemisry 53A Advanced Organic Chemisry Lecure noes 1 Kineics: A racical Approach Simple Kineics Scenarios Fiing Experimenal Daa Using Kineics o Deermine he Mechanism Doughery, D. A.,

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics /5/4 Chaper 4 Chemical Kineics Chemical Kineics Raes of Reacions Chemical Kineics is he sudy of he rae of reacion. How fas does i ake place? Very Fas Reacions Very Slow Reacions Acid/Base Combusion Rusing

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chaper. Chemical Kineics Chemisry: The Sudy of Change FCT ORY Processes => Chemical Reacions (Redox, cid-base, Precipiaion in q. Soln) Two facors of chemical reacions How fas? => Chemical Kineics (Mechanism,

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Chapter 14 Homework Answers

Chapter 14 Homework Answers 4. Suden responses will vary. (a) combusion of gasoline (b) cooking an egg in boiling waer (c) curing of cemen Chaper 4 Homework Answers 4. A collision beween only wo molecules is much more probable han

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics # of paricles 5/9/4 Chemical Kineics Raes of Reacions Chemical Kineics is he sudy of he rae of reacion. How fas does i ae place? Very Fas Reacions Very Slow Reacions Chaper 4 Chemical Kineics Acid/Base

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, rrhenius

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Reaction Order Molecularity. Rate laws, Reaction Orders. Determining Reaction Order. Determining Reaction Order. Determining Reaction Order

Reaction Order Molecularity. Rate laws, Reaction Orders. Determining Reaction Order. Determining Reaction Order. Determining Reaction Order Rae laws, Reacion Orders The rae or velociy of a chemical reacion is loss of reacan or appearance of produc in concenraion unis, per uni ime d[p] d[s] The rae law for a reacion is of he form Rae d[p] k[a]

More information

Northern Arizona University Exam #1. Section 2, Spring 2006 February 17, 2006

Northern Arizona University Exam #1. Section 2, Spring 2006 February 17, 2006 Norhern Arizona Universiy Exam # CHM 52, General Chemisry II Dr. Brandon Cruickshank Secion 2, Spring 2006 February 7, 2006 Name ID # INSTRUCTIONS: Code he answers o he True-False and Muliple-Choice quesions

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

( ) is the stretch factor, and x the

( ) is the stretch factor, and x the (Lecures 7-8) Liddle, Chaper 5 Simple cosmological models (i) Hubble s Law revisied Self-similar srech of he universe All universe models have his characerisic v r ; v = Hr since only his conserves homogeneiy

More information

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18 A Firs ourse on Kineics and Reacion Engineering lass 19 on Uni 18 Par I - hemical Reacions Par II - hemical Reacion Kineics Where We re Going Par III - hemical Reacion Engineering A. Ideal Reacors B. Perfecly

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

2. For a one-point fixed time method, a pseudo-first order reaction obeys the equation 0.309

2. For a one-point fixed time method, a pseudo-first order reaction obeys the equation 0.309 Chaper 3. To derive an appropriae equaion we firs noe he following general relaionship beween he concenraion of A a ime, [A], he iniial concenraion of A, [A], and he concenraion of P a ime, [P] [ P] Subsiuing

More information

ME425/525: Advanced Topics in Building Science

ME425/525: Advanced Topics in Building Science ME425/525: Advanced Topics in Building Science Indoor environmenal qualiy for susainable buildings: Lecure 6 Dr. Ellio T. Gall, Ph.D. Lecure 6 Today s objecives o Error propagaion Apply o SS soluion (venilaion,

More information

המחלקה : ביולוגיה מולקולרית הפקולטה למדעי הטבע

המחלקה : ביולוגיה מולקולרית הפקולטה למדעי הטבע טל : 03-9066345 פקס : 03-9374 ראש המחלקה: ד"ר אלברט פנחסוב המחלקה : ביולוגיה מולקולרית הפקולטה למדעי הטבע Course Name: Physical Chemisry - (for Molecular Biology sudens) כימיה פיזיקאלית )לסטודנטים לביולוגיה

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

y = (y 1)*(y 3) t

y = (y 1)*(y 3) t MATH 66 SPR REVIEW DEFINITION OF SOLUTION A funcion = () is a soluion of he differenial equaion d=d = f(; ) on he inerval ff < < fi if (d=d)() =f(; ()) for each so ha ff

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

Suggested Problem Solutions Associated with Homework #5

Suggested Problem Solutions Associated with Homework #5 Suggesed Problem Soluions Associaed wih Homework #5 431 (a) 8 Si has proons and neurons (b) 85 3 Rb has 3 proons and 48 neurons (c) 5 Tl 81 has 81 proons and neurons 43 IDENTIFY and SET UP: The ex calculaes

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

CHAPTER 13 CHEMICAL KINETICS

CHAPTER 13 CHEMICAL KINETICS CHAPTER 3 CHEMICAL KINETICS 3.5 In general for a reacion aa + bb cc + dd rae Δ[A] Δ[B] Δ[C] Δ[D] a Δ b Δ c Δ d Δ (a) rae rae Δ[H ] Δ[I ] Δ[HI] Δ Δ Δ + Δ 3 Δ Δ Δ[Br ] [BrO ] [H ] [Br ] 5 Δ Δ 6 Δ 3 Δ Noe

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Initial Value Problems

Initial Value Problems Iniial Value Problems ChEn 2450 d d f(, ) (0) 0 6 ODE.key - November 26, 2014 Example - Cooking a Lobser Assumpions: The lobser remains a a uniform emperaure. This implies ha he hermal conduciviy of he

More information

6.003 Homework 1. Problems. Due at the beginning of recitation on Wednesday, February 10, 2010.

6.003 Homework 1. Problems. Due at the beginning of recitation on Wednesday, February 10, 2010. 6.003 Homework Due a he beginning of reciaion on Wednesday, February 0, 200. Problems. Independen and Dependen Variables Assume ha he heigh of a waer wave is given by g(x v) where x is disance, v is velociy,

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

Assignment 6. Tyler Shendruk December 6, 2010

Assignment 6. Tyler Shendruk December 6, 2010 Assignmen 6 Tyler Shendruk December 6, 1 1 Harden Problem 1 Le K be he coupling and h he exernal field in a 1D Ising model. From he lecures hese can be ransformed ino effecive coupling and fields K and

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

CHAPTER 16 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 16 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 6 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS FOLLOW UP PROBLEMS 6.A Plan: Balance he equaion. The rae in ers of he change in concenraion wih ie for each subsance is [ A] expressed as,

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

PHYS 1401 General Physics I Test 3 Review Questions

PHYS 1401 General Physics I Test 3 Review Questions PHYS 1401 General Physics I Tes 3 Review Quesions Ch. 7 1. A 6500 kg railroad car moving a 4.0 m/s couples wih a second 7500 kg car iniially a res. a) Skech before and afer picures of he siuaion. b) Wha

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

APPM 2360 Homework Solutions, Due June 10

APPM 2360 Homework Solutions, Due June 10 2.2.2: Find general soluions for he equaion APPM 2360 Homework Soluions, Due June 10 Soluion: Finding he inegraing facor, dy + 2y = 3e µ) = e 2) = e 2 Muliplying he differenial equaion by he inegraing

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation Mahcad Lecure #8 In-class Workshee Curve Fiing and Inerpolaion A he end of his lecure, you will be able o: explain he difference beween curve fiing and inerpolaion decide wheher curve fiing or inerpolaion

More information

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves

Wavelet Methods for Time Series Analysis. What is a Wavelet? Part I: Introduction to Wavelets and Wavelet Transforms. sines & cosines are big waves Wavele Mehods for Time Series Analysis Par I: Inroducion o Waveles and Wavele Transforms waveles are analysis ools for ime series and images as a subjec, waveles are relaively new (983 o presen) a synhesis

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information