Math 6802 Algebraic Topology II

Size: px
Start display at page:

Download "Math 6802 Algebraic Topology II"

Transcription

1 Math 6802 Algebraic Topology II Nathan Broaddus Ohio State University February 9, 2015

2 Theorem 1 (The Künneth Formula) If X and Y are spaces then there is a natural exact sequence 0 i H i (X ) H n i (Y ) H n (X Y ) i Tor(H i (X ), H n i 1 (Y )) 0 This sequence splits (unnaturally). In particular H n (X Y ) = i H i (X ) H n i (Y ) Tor(H i (X ), H n i 1 (Y ))

3 Proof of the Künneth Formula follows from two results: Theorem 2 (The Künneth Formula for Chain Complexes) For free abelian chain complexes C and D there is a natural short exact sequence 0 i H i (C) H n i (D) H n (C D) i Tor(H i (C), H n i 1 (D)) 0 Theorem 3 (Eilenberg-Zilber Theorem) For spaces X and Y there is a chain homotopy equivalence C(X ) C(Y ) C(X Y )

4 The cross product for singular simplicial chains To prove the Eilenberg-Zilber Theorem we need a chain map from C(X ) C(Y ) to C(X Y ) which induces the desired chain homotopy. This chain map will be called the cross product : C p (X ) C q (Y ) C p+q (X Y ) Given a singular p-simplex σ : p X and q-simplex η : q Y We want (p + q)-chain in X Y. Key point is to triangulate p q.

5 Definition 4 (Poset) A poset is a pair (S, ) where S is a set and is a binary relation on S satisfying: 1. Reflexivity (a a) 2. Antisymmetry (a b and b a implies a = b) 3. Transitivity (a b and b c implies a c) Two elements of a poset s, t S are comparable if s t or t s. A subset L of a poset S is linearly ordered if the elements of L are pairwise comparable. Definition 5 (Geometric realization of a poset) If S is a poset then the geometric realization of S is the simplicial complex S with 1. 0-skeleton S 0 = S 2. And an n-simplex joining the vertices s 0, s 1,, s n S for each finite, linearly ordered subset {s 0, s 1,, s n } S.

6 Note that the n-simplex n is the geometric realization of the linearly ordered poset {x 0 < x 1 < < x n }. We turn to the definition of the cross product : C p (X ) C q (Y ) C p+q (X Y ) Recall our triangulation of n I = n 1 from the proof of Homotopy Axiom of homology: Let S = {s0 < s 1 < < s n} and T = {t 0 < t 1}. Then n = S and 1 = T Vertex set of n 1 is S T We triangulated n 1 with maximal simplices of form {(s 0, t 0), (s 1, t 0),, (s i, t 0), (s i, t 1), (s n, t 1)} Notice that this is exactly the geometric realization of the poset S T with the product order (s, t) (u, v) if s u and t v.

7 Let X and Y spaces with singular simplices σ : p X and η : q Y Let S = {s 0 < s 1 < < s p } so that p = S. Let T = {t 0 < t 1 < < t q } so that q = T. We may identify each maximal linearly ordered subset L = {l 0 = (s 0, t 0 ) < < l p+q = (s p, t q )} S T with a path in the p q grid moving from (0, 0) to (p, q) monotonically upwards and rightwards. Define sgn L = ( 1) b L where b L is number of boxes in p q grid below path for L. We may view L as a subset of the affine space S T = p q

8 Definition 6 (Cross product of for singular simplicial chains) The cross product is the chain map : C(X ) C(Y ) C(X Y ) where σ η = (sgn L)σ η [l0,,l p+q] L = {l 0 < < l p+q} S T maximal linearly ordered Note that we are defining the symbol on the LHS and writing σ η on the RHS to denote the product of the continuous maps σ and η. Lemma 7 The cross product is a chain map.

9 Proof of Lemma 7. ( )(σ η) = (σ η) = M = {m 0 < < m p+q} maximal linearly ordered subset of S T (sgn M) ( ) σ η [m0,,m p+q] For a linearly ordered set L = {l 0 < < l k } S T let θ L = σ η [l0,,l k ] be the singular simplex. After applying we get a formal linear combination of maps of the form θ L where L = {l 0 < < l p+q 1 } S T is one term short of being maximal.

10 Proof of Lemma 7(continued). There are two possibilities for such a linearly ordered L S T : 1. L is a subset of precisely two maximal linearly ordered sets M, M S T. 2. L is a subset of precisely one maximal linearly ordered set M S T. If L is of the first type then sgn M = sgn M and θ L terms of (sgn M) θ M and (sgn M ) θ M cancel. Hence θ L does not appear in ( )(σ η). If L is of second type then L = M {m i } for some unique maximal linearly ordered M = {m 0 < < m p+q }. Set k L = i. Thus we see that ( )(σ η) = L = {l 0 < < l p+q 1 }! maximal linear M with L M S T (sgn M)( 1) k L θ L

11 Proof of Lemma 7 (continued). Now apply the cross product and boundary map in the reverse order. ( ) (σ η) = ( )( σ η + ( 1) p σ η) = ( σ) η + ( 1) p σ ( η) = (sgn L)( 1) i θ L L = {l 0 < < l p+q 1 } maximal linearly ordered subset of (S {s i }) T + L = {l 0 < < l p+q 1 } maximal linearly ordered subset of S (T {t i }) ( 1) p (sgn L)( 1) i θ L

12 Proof of Lemma 7 (continued). The maximal linearly ordered sets M (S {s i }) T or M S (T {t i }) in the two sums above are exactly the linearly ordered subsets of S T which extend uniquely to a maximal linearly ordered subset of S T. Thus nonzero terms agree. It remains to show that signs agree.

13 The Alexander-Whitney map We wish to show that the cross product : C(X ) C(Y ) C(X Y ) induces a chain homotopy equivalence. It will be convenient to define its chain homotopy inverse the Alexander-Whitney map A : C(X Y ) C(X ) C(Y ) Let S = {s 0 < < s n } be the linearly ordered set and let n = S. Define the front p-face map of the simplex n to be the inclusion where p = {s 0,, s p } S. f p : p n Define the back q-face map of the simplex n to be the inclusion b q : q n where q = {s n q,, s n } S.

14 Definition 8 (The Alexander-Whitney map) Let σ : n X Y be a singular n-simplex of X Y. We define the Alexander-Whitney map on σ with the formula: A(σ) = A : C(X Y ) C(X ) C(Y ) n (π X σ f i ) (π Y σ b n i ). i=0 Lemma 9 The Alexander-Whitney map is a chain map.

15 Proof of Lemma 9. n Aσ = (σ f i ) (σ b n i ). = = = i=0 n [ (σ f i ) (σ b n i ) ] i=0 n ( (σ f i )) (σ b n i ) + ( 1) i (σ f i ) ( (σ b n i )) ] i=0 ( n i ( 1) j (σ f i [s0,,ŝ j,,s i ])) (σ b n i ) i=0 + j=0 ) n ( 1) i ( 1) j i (σ f i ) (σ b n i [si,,ŝ j,,s n]) j=i

16 Proof of Lemma 9 (continued). ( n i = ( 1) j (σ f i [s0,,ŝ j,,s i ])) (σ b n i ) i=0 + j=0 ) n ( 1) j (σ f i ) (σ b n i [si,,ŝ j,,s n]) j=i = ( 1) j (σ f i [s0,,ŝ j,,s i ])) (σ b n i ) 0 j<i n + ( 1) j (σ f i ) (σ b n i [si,,ŝ j,,s n]) 0 i<j n

17 Proof of Lemma 9 (continued). n A σ = A ( 1) j σ [s0,,ŝ j,,s n] j=0 = ( 1) j (σ f i [s0,,ŝ j,,s i ])) (σ b n i ) 0 j<i n + ( 1) j (σ f i ) (σ b n i [si,,ŝ j,,s n]) 0 i<j n

EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY

EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY CHRIS KOTTKE 1. The Eilenberg-Zilber Theorem 1.1. Tensor products of chain complexes. Let C and D be chain complexes. We define

More information

Math 757 Homology theory

Math 757 Homology theory Math 757 Homology theory March 3, 2011 (for spaces). Given spaces X and Y we wish to show that we have a natural exact sequence 0 i H i (X ) H n i (Y ) H n (X Y ) i Tor(H i (X ), H n i 1 (Y )) 0 By Eilenberg-Zilber

More information

SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS

SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS In this section we will prove the Künneth theorem which in principle allows us to calculate the (co)homology of product spaces as soon

More information

DISCRETIZED CONFIGURATIONS AND PARTIAL PARTITIONS

DISCRETIZED CONFIGURATIONS AND PARTIAL PARTITIONS DISCRETIZED CONFIGURATIONS AND PARTIAL PARTITIONS AARON ABRAMS, DAVID GAY, AND VALERIE HOWER Abstract. We show that the discretized configuration space of k points in the n-simplex is homotopy equivalent

More information

ON AXIOMATIC HOMOLOGY THEORY

ON AXIOMATIC HOMOLOGY THEORY ON AXIOMATIC HOMOLOGY THEORY J. MlLNOR A homology theory will be called additive if the homology group of any topological sum of spaces is equal to the direct sum of the homology groups of the individual

More information

110:615 algebraic topology I

110:615 algebraic topology I 110:615 algebraic topology I Topology is the newest branch of mathematics. It originated around the turn of the twentieth century in response to Cantor, though its roots go back to Euler; it stands between

More information

HOMOLOGY THEORIES INGRID STARKEY

HOMOLOGY THEORIES INGRID STARKEY HOMOLOGY THEORIES INGRID STARKEY Abstract. This paper will introduce the notion of homology for topological spaces and discuss its intuitive meaning. It will also describe a general method that is used

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

7. Homology of Tensor Products.

7. Homology of Tensor Products. 7. Homology of Tensor Products. What is the homology H n (C D) of the tensor product of two chain complexes C and D? The answer is that this question is not quite well posed since there are various homology

More information

11.1 Vectors in the plane

11.1 Vectors in the plane 11.1 Vectors in the plane What is a vector? It is an object having direction and length. Geometric way to represent vectors It is represented by an arrow. The direction of the arrow is the direction of

More information

121B: ALGEBRAIC TOPOLOGY. Contents. 6. Poincaré Duality

121B: ALGEBRAIC TOPOLOGY. Contents. 6. Poincaré Duality 121B: ALGEBRAIC TOPOLOGY Contents 6. Poincaré Duality 1 6.1. Manifolds 2 6.2. Orientation 3 6.3. Orientation sheaf 9 6.4. Cap product 11 6.5. Proof for good coverings 15 6.6. Direct limit 18 6.7. Proof

More information

Equivalence of the Combinatorial Definition (Lecture 11)

Equivalence of the Combinatorial Definition (Lecture 11) Equivalence of the Combinatorial Definition (Lecture 11) September 26, 2014 Our goal in this lecture is to complete the proof of our first main theorem by proving the following: Theorem 1. The map of simplicial

More information

Topological Data Analysis - Spring 2018

Topological Data Analysis - Spring 2018 Topological Data Analysis - Spring 2018 Simplicial Homology Slightly rearranged, but mostly copy-pasted from Harer s and Edelsbrunner s Computational Topology, Verovsek s class notes. Gunnar Carlsson s

More information

AN APPROACH TO THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE. 1. Introduction

AN APPROACH TO THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE. 1. Introduction AN APPROACH TO THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE DONALD M. DAVIS Abstract. Recently, Cohen and Vandembroucq proved that the reduced topological complexity of the Klein bottle is 4. Simultaneously

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

Rational homotopy theory

Rational homotopy theory Rational homotopy theory Alexander Berglund November 12, 2012 Abstract These are lecture notes for a course on rational homotopy theory given at the University of Copenhagen in the fall of 2012. Contents

More information

CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA. Contents 1. Introduction 1

CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA. Contents 1. Introduction 1 CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA PAOLO DEGIORGI Abstract. This paper will first go through some core concepts and results in homology, then introduce the concepts of CW complex, subcomplex

More information

Sheaf theory August 23, 2016

Sheaf theory August 23, 2016 Sheaf theory August 23, 216 Chapter 1 The statement of de Rham s theorem Before doing anything fancy, let s start at the beginning. Let U R 3 be an open set. In calculus class, we learn about operations

More information

Generalized Moment-Angle Complexes, Lecture 3

Generalized Moment-Angle Complexes, Lecture 3 Generalized Moment-Angle Complexes, Lecture 3 Fred Cohen 1-5 June 2010 joint work with Tony Bahri, Martin Bendersky, and Sam Gitler Outline of the lecture: This lecture addresses the following points.

More information

THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE. 1. Introduction. Theorem 1.1. The topological complexity of the Klein bottle K equals 5.

THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE. 1. Introduction. Theorem 1.1. The topological complexity of the Klein bottle K equals 5. THE TOPOLOGICAL COMPLEXITY OF THE KLEIN BOTTLE DONALD M. DAVIS Abstract. We use obstruction theory to determine the topological complexity of the Klein bottle. The same result was obtained by Cohen and

More information

On Eilenberg-MacLanes Spaces (Term paper for Math 272a)

On Eilenberg-MacLanes Spaces (Term paper for Math 272a) On Eilenberg-MacLanes Spaces (Term paper for Math 272a) Xi Yin Physics Department Harvard University Abstract This paper discusses basic properties of Eilenberg-MacLane spaces K(G, n), their cohomology

More information

Homology theory. Lecture 29-3/7/2011. Lecture 30-3/8/2011. Lecture 31-3/9/2011 Math 757 Homology theory. March 9, 2011

Homology theory. Lecture 29-3/7/2011. Lecture 30-3/8/2011. Lecture 31-3/9/2011 Math 757 Homology theory. March 9, 2011 Math 757 Homology theory March 9, 2011 Theorem 183 Let G = π 1 (X, x 0 ) then for n 1 h : π n (X, x 0 ) H n (X ) factors through the quotient map q : π n (X, x 0 ) π n (X, x 0 ) G to π n (X, x 0 ) G the

More information

6 Axiomatic Homology Theory

6 Axiomatic Homology Theory MATH41071/MATH61071 Algebraic topology 6 Axiomatic Homology Theory Autumn Semester 2016 2017 The basic ideas of homology go back to Poincaré in 1895 when he defined the Betti numbers and torsion numbers

More information

Nonabelian Poincare Duality (Lecture 8)

Nonabelian Poincare Duality (Lecture 8) Nonabelian Poincare Duality (Lecture 8) February 19, 2014 Let M be a compact oriented manifold of dimension n. Then Poincare duality asserts the existence of an isomorphism H (M; A) H n (M; A) for any

More information

1.2 Posets and Zorn s Lemma

1.2 Posets and Zorn s Lemma 1.2 Posets and Zorn s Lemma A set Σ is called partially ordered or a poset with respect to a relation if (i) (reflexivity) ( σ Σ) σ σ ; (ii) (antisymmetry) ( σ,τ Σ) σ τ σ = σ = τ ; 66 (iii) (transitivity)

More information

CW-complexes. Stephen A. Mitchell. November 1997

CW-complexes. Stephen A. Mitchell. November 1997 CW-complexes Stephen A. Mitchell November 1997 A CW-complex is first of all a Hausdorff space X equipped with a collection of characteristic maps φ n α : D n X. Here n ranges over the nonnegative integers,

More information

Coxeter Groups and Artin Groups

Coxeter Groups and Artin Groups Chapter 1 Coxeter Groups and Artin Groups 1.1 Artin Groups Let M be a Coxeter matrix with index set S. defined by M is given by the presentation: A M := s S sts }{{ } = tst }{{ } m s,t factors m s,t The

More information

Chapter 3: Homology Groups Topics in Computational Topology: An Algorithmic View

Chapter 3: Homology Groups Topics in Computational Topology: An Algorithmic View Chapter 3: Homology Groups Topics in Computational Topology: An Algorithmic View As discussed in Chapter 2, we have complete topological information about 2-manifolds. How about higher dimensional manifolds?

More information

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim.

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim. 0.1. Stratified spaces. References are [7], [6], [3]. Singular spaces are naturally associated to many important mathematical objects (for example in representation theory). We are essentially interested

More information

THE MAYER-VIETORIS SPECTRAL SEQUENCE

THE MAYER-VIETORIS SPECTRAL SEQUENCE THE MAYER-VIETORIS SPECTRAL SEQUENCE MENTOR STAFA Abstract. In these expository notes we discuss the construction, definition and usage of the Mayer-Vietoris spectral sequence. We make these notes available

More information

7.3 Singular Homology Groups

7.3 Singular Homology Groups 184 CHAPTER 7. HOMOLOGY THEORY 7.3 Singular Homology Groups 7.3.1 Cycles, Boundaries and Homology Groups We can define the singular p-chains with coefficients in a field K. Furthermore, we can define the

More information

Algebraic Topology exam

Algebraic Topology exam Instituto Superior Técnico Departamento de Matemática Algebraic Topology exam June 12th 2017 1. Let X be a square with the edges cyclically identified: X = [0, 1] 2 / with (a) Compute π 1 (X). (x, 0) (1,

More information

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion: Date: July 15, 2015.

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion: Date: July 15, 2015. 07-13-2015 Contents 1. Dimension 1 2. The Mayer-Vietoris Sequence 3 2.1. Suspension and Spheres 4 2.2. Direct Sums 4 2.3. Constuction of the Mayer-Vietoris Sequence 6 2.4. A Sample Calculation 7 As we

More information

LECTURE 3 Matroids and geometric lattices

LECTURE 3 Matroids and geometric lattices LECTURE 3 Matroids and geometric lattices 3.1. Matroids A matroid is an abstraction of a set of vectors in a vector space (for us, the normals to the hyperplanes in an arrangement). Many basic facts about

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 11

18.312: Algebraic Combinatorics Lionel Levine. Lecture 11 18.312: Algebraic Combinatorics Lionel Levine Lecture date: March 15, 2011 Lecture 11 Notes by: Ben Bond Today: Mobius Algebras, µ( n ). Test: The average was 17. If you got < 15, you have the option to

More information

(G; A B) βg Tor ( K top

(G; A B) βg Tor ( K top GOING-DOWN FUNCTORS, THE KÜNNETH FORMULA, AND THE BAUM-CONNES CONJECTURE. JÉRÔME CHABERT, SIEGFRIED ECHTERHOFF, AND HERVÉ OYONO-OYONO Abstract. We study the connection between the Baum-Connes conjecture

More information

FORMALITY OF THE COMPLEMENTS OF SUBSPACE ARRANGEMENTS WITH GEOMETRIC LATTICES

FORMALITY OF THE COMPLEMENTS OF SUBSPACE ARRANGEMENTS WITH GEOMETRIC LATTICES FORMALITY OF THE COMPLEMENTS OF SUBSPACE ARRANGEMENTS WITH GEOMETRIC LATTICES EVA MARIA FEICHTNER AND SERGEY YUZVINSKY Abstract. We show that, for an arrangement of subspaces in a complex vector space

More information

58 CHAPTER 2. COMPUTATIONAL METHODS

58 CHAPTER 2. COMPUTATIONAL METHODS 58 CHAPTER 2. COMPUTATIONAL METHODS 23 Hom and Lim We will now develop more properties of the tensor product: its relationship to homomorphisms and to direct limits. The tensor product arose in our study

More information

CSC Discrete Math I, Spring Relations

CSC Discrete Math I, Spring Relations CSC 125 - Discrete Math I, Spring 2017 Relations Binary Relations Definition: A binary relation R from a set A to a set B is a subset of A B Note that a relation is more general than a function Example:

More information

Homotopy and homology groups of the n-dimensional Hawaiian earring

Homotopy and homology groups of the n-dimensional Hawaiian earring F U N D A M E N T A MATHEMATICAE 165 (2000) Homotopy and homology groups of the n-dimensional Hawaiian earring by Katsuya E d a (Tokyo) and Kazuhiro K a w a m u r a (Tsukuba) Abstract. For the n-dimensional

More information

Derived Algebraic Geometry I: Stable -Categories

Derived Algebraic Geometry I: Stable -Categories Derived Algebraic Geometry I: Stable -Categories October 8, 2009 Contents 1 Introduction 2 2 Stable -Categories 3 3 The Homotopy Category of a Stable -Category 6 4 Properties of Stable -Categories 12 5

More information

BERTRAND GUILLOU. s G q+r

BERTRAND GUILLOU. s G q+r STABLE A 1 -HOMOTOPY THEORY BERTRAND GUILLOU 1. Introduction Recall from the previous talk that we have our category pointed A 1 -homotopy category Ho A 1, (k) over a field k. We will often refer to an

More information

A multiperversity generalization of intersection homology

A multiperversity generalization of intersection homology A multiperversity generalization of intersection homology Greg Friedman Gil Kalai November 28, 2005 Abstract We define a generalization of intersection homology based on considering a set of perversities

More information

Topology of Nonarchimedean Analytic Spaces

Topology of Nonarchimedean Analytic Spaces Topology of Nonarchimedean Analytic Spaces AMS Current Events Bulletin Sam Payne January 11, 2013 Complex algebraic geometry Let X C n be an algebraic set, the common solutions of a system of polynomial

More information

Math 530 Lecture Notes. Xi Chen

Math 530 Lecture Notes. Xi Chen Math 530 Lecture Notes Xi Chen 632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA E-mail address: xichen@math.ualberta.ca 1991 Mathematics Subject Classification. Primary

More information

38 CHAPTER 2. COMPUTATIONAL METHODS. f n. n 1. X n 1. g n. X n

38 CHAPTER 2. COMPUTATIONAL METHODS. f n. n 1. X n 1. g n. X n 38 CHAPTER 2. COMPUTATIONAL METHODS 15 CW-complexes II We have a few more general things to say about CW complexes. Suppose X is a CW complex, with skeleton filtration = X 1 X 0 X 1 X and cell structure

More information

Neural Codes and Neural Rings: Topology and Algebraic Geometry

Neural Codes and Neural Rings: Topology and Algebraic Geometry Neural Codes and Neural Rings: Topology and Algebraic Geometry Ma191b Winter 2017 Geometry of Neuroscience References for this lecture: Curto, Carina; Itskov, Vladimir; Veliz-Cuba, Alan; Youngs, Nora,

More information

Evgeniy V. Martyushev RESEARCH STATEMENT

Evgeniy V. Martyushev RESEARCH STATEMENT Evgeniy V. Martyushev RESEARCH STATEMENT My research interests lie in the fields of topology of manifolds, algebraic topology, representation theory, and geometry. Specifically, my work explores various

More information

Bruhat-Tits Buildings

Bruhat-Tits Buildings Katerina Hristova University of Warwick October 2016 The set up Let (W, S) be a Coxeter system, where S is a set indexed by I = {1,.., n}. So W is of the form W = s 1,..., s n (s i ) 2 = 1, (s i s j )

More information

Intersections of Leray Complexes and Regularity of Monomial Ideals

Intersections of Leray Complexes and Regularity of Monomial Ideals Intersections of Leray Complexes and Regularity of Monomial Ideals Gil Kalai Roy Meshulam Abstract For a simplicial complex X and a field K, let h i X) = dim H i X; K). It is shown that if X,Y are complexes

More information

THE LEFSCHETZ NUMBER OF AN

THE LEFSCHETZ NUMBER OF AN THE LEFSCHETZ NUMBER OF AN n-valued MULTIMAP Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095-1555 e-mail: rfb@math.ucla.edu January 12, 2007 Abstract An n-valued

More information

6. Lecture cdh and Nisnevich topologies. These are Grothendieck topologies which play an important role in Suslin-Voevodsky s approach to not

6. Lecture cdh and Nisnevich topologies. These are Grothendieck topologies which play an important role in Suslin-Voevodsky s approach to not 6. Lecture 6 6.1. cdh and Nisnevich topologies. These are Grothendieck topologies which play an important role in Suslin-Voevodsky s approach to not only motivic cohomology, but also to Morel-Voevodsky

More information

Contents. 1. Introduction

Contents. 1. Introduction THE DIFFERENTIABLE CHAIN FUNCTOR IS NOT HOMOTOPY EQUIVALENT TO THE CONTINUOUS CHAIN FUNCTOR F. GUILLÉN, V. NAVARRO, P. PASCUAL, AND AGUSTÍ ROIG Abstract. Let S and S be the functors of continuous and differentiable

More information

Face vectors of two-dimensional Buchsbaum complexes

Face vectors of two-dimensional Buchsbaum complexes Face vectors of two-dimensional Buchsbaum complexes Satoshi Murai Department of Mathematics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan murai@math.kyoto-u.ac.jp Submitted:

More information

Simplicial Complexes in Finite Groups. (Cortona. July 2000)

Simplicial Complexes in Finite Groups. (Cortona. July 2000) Simplicial Complexes in Finite Groups (Cortona. July 2000) Firenze, September 2000. These notes contain the material presented at a Scuola Matematica Interuniversitaria summer course held in Cortona in

More information

p,q H (X), H (Y ) ), where the index p has the same meaning as the

p,q H (X), H (Y ) ), where the index p has the same meaning as the There are two Eilenberg-Moore spectral sequences that we shall consider, one for homology and the other for cohomology. In contrast with the situation for the Serre spectral sequence, for the Eilenberg-Moore

More information

MATH8808: ALGEBRAIC TOPOLOGY

MATH8808: ALGEBRAIC TOPOLOGY MATH8808: ALGEBRAIC TOPOLOGY DAWEI CHEN Contents 1. Underlying Geometric Notions 2 1.1. Homotopy 2 1.2. Cell Complexes 3 1.3. Operations on Cell Complexes 3 1.4. Criteria for Homotopy Equivalence 4 1.5.

More information

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. CATEGORY THEORY PROFESSOR PETER JOHNSTONE Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. Definition 1.1. A category C consists

More information

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017 Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have

More information

THE BUCHBERGER RESOLUTION ANDA OLTEANU AND VOLKMAR WELKER

THE BUCHBERGER RESOLUTION ANDA OLTEANU AND VOLKMAR WELKER THE BUCHBERGER RESOLUTION ANDA OLTEANU AND VOLKMAR WELKER arxiv:1409.2041v2 [math.ac] 11 Sep 2014 Abstract. We define the Buchberger resolution, which is a graded free resolution of a monomial ideal in

More information

UNIVERSAL DERIVED EQUIVALENCES OF POSETS

UNIVERSAL DERIVED EQUIVALENCES OF POSETS UNIVERSAL DERIVED EQUIVALENCES OF POSETS SEFI LADKANI Abstract. By using only combinatorial data on two posets X and Y, we construct a set of so-called formulas. A formula produces simultaneously, for

More information

On the digital homology groups of digital images

On the digital homology groups of digital images On the digital homology groups of digital images arxiv:1109.3850v1 [cs.cv] 18 Sep 2011 Dae-Woong Lee 1 Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University,

More information

Math 6510 Homework 10

Math 6510 Homework 10 2.2 Problems 9 Problem. Compute the homology group of the following 2-complexes X: a) The quotient of S 2 obtained by identifying north and south poles to a point b) S 1 (S 1 S 1 ) c) The space obtained

More information

HOMOLOGY AND COHOMOLOGY. 1. Introduction

HOMOLOGY AND COHOMOLOGY. 1. Introduction HOMOLOGY AND COHOMOLOGY ELLEARD FELIX WEBSTER HEFFERN 1. Introduction We have been introduced to the idea of homology, which derives from a chain complex of singular or simplicial chain groups together

More information

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture:

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture: Samuel Lee Algebraic Topology Homework #6 May 11, 2016 Problem 1: ( 2.1: #1). What familiar space is the quotient -complex of a 2-simplex [v 0, v 1, v 2 ] obtained by identifying the edges [v 0, v 1 ]

More information

An introduction to Hodge algebras

An introduction to Hodge algebras An introduction to Hodge algebras Federico Galetto May 28, 2009 The Grassmannian Let k be a field, E a k-vector space of dimension m Define Grass(n, E) := {V E dim V = n} If {e 1,, e m } is a basis of

More information

MATH 215B HOMEWORK 5 SOLUTIONS

MATH 215B HOMEWORK 5 SOLUTIONS MATH 25B HOMEWORK 5 SOLUTIONS. ( marks) Show that the quotient map S S S 2 collapsing the subspace S S to a point is not nullhomotopic by showing that it induces an isomorphism on H 2. On the other hand,

More information

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley Chap. 2 AN ALGEBRAIC FIELD To introduce the notion of an abstract algebraic structure we consider (algebraic) fields. (These should not to

More information

A Z q -Fan theorem. 1 Introduction. Frédéric Meunier December 11, 2006

A Z q -Fan theorem. 1 Introduction. Frédéric Meunier December 11, 2006 A Z q -Fan theorem Frédéric Meunier December 11, 2006 Abstract In 1952, Ky Fan proved a combinatorial theorem generalizing the Borsuk-Ulam theorem stating that there is no Z 2-equivariant map from the

More information

Combinatorial Models for M (Lecture 10)

Combinatorial Models for M (Lecture 10) Combinatorial Models for M (Lecture 10) September 24, 2014 Let f : X Y be a map of finite nonsingular simplicial sets. In the previous lecture, we showed that the induced map f : X Y is a fibration if

More information

C n.,..., z i 1., z i+1., w i+1,..., wn. =,..., w i 1. : : w i+1. :... : w j 1 1.,..., w j 1. z 0 0} = {[1 : w] w C} S 1 { },

C n.,..., z i 1., z i+1., w i+1,..., wn. =,..., w i 1. : : w i+1. :... : w j 1 1.,..., w j 1. z 0 0} = {[1 : w] w C} S 1 { }, Complex projective space The complex projective space CP n is the most important compact complex manifold. By definition, CP n is the set of lines in C n+1 or, equivalently, CP n := (C n+1 \{0})/C, where

More information

The Hurewicz Theorem

The Hurewicz Theorem The Hurewicz Theorem April 5, 011 1 Introduction The fundamental group and homology groups both give extremely useful information, particularly about path-connected spaces. Both can be considered as functors,

More information

GK-SEMINAR SS2015: SHEAF COHOMOLOGY

GK-SEMINAR SS2015: SHEAF COHOMOLOGY GK-SEMINAR SS2015: SHEAF COHOMOLOGY FLORIAN BECK, JENS EBERHARDT, NATALIE PETERNELL Contents 1. Introduction 1 2. Talks 1 2.1. Introduction: Jordan curve theorem 1 2.2. Derived categories 2 2.3. Derived

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries 1.1 Conventions and Notations Throughout the book we use the following notations for standard sets of numbers: N the set {1, 2,...} of natural numbers Z the set of integers Q the

More information

Math.3336: Discrete Mathematics. Chapter 9 Relations

Math.3336: Discrete Mathematics. Chapter 9 Relations Math.3336: Discrete Mathematics Chapter 9 Relations Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

On the exponential map on Riemannian polyhedra by Monica Alice Aprodu. Abstract

On the exponential map on Riemannian polyhedra by Monica Alice Aprodu. Abstract Bull. Math. Soc. Sci. Math. Roumanie Tome 60 (108) No. 3, 2017, 233 238 On the exponential map on Riemannian polyhedra by Monica Alice Aprodu Abstract We prove that Riemannian polyhedra admit explicit

More information

arxiv: v1 [math.co] 25 Jun 2014

arxiv: v1 [math.co] 25 Jun 2014 THE NON-PURE VERSION OF THE SIMPLEX AND THE BOUNDARY OF THE SIMPLEX NICOLÁS A. CAPITELLI arxiv:1406.6434v1 [math.co] 25 Jun 2014 Abstract. We introduce the non-pure versions of simplicial balls and spheres

More information

LECTURE 3: RELATIVE SINGULAR HOMOLOGY

LECTURE 3: RELATIVE SINGULAR HOMOLOGY LECTURE 3: RELATIVE SINGULAR HOMOLOGY In this lecture we want to cover some basic concepts from homological algebra. These prove to be very helpful in our discussion of singular homology. The following

More information

Homework 4: Mayer-Vietoris Sequence and CW complexes

Homework 4: Mayer-Vietoris Sequence and CW complexes Homework 4: Mayer-Vietoris Sequence and CW complexes Due date: Friday, October 4th. 0. Goals and Prerequisites The goal of this homework assignment is to begin using the Mayer-Vietoris sequence and cellular

More information

From singular chains to Alexander Duality. Jesper M. Møller

From singular chains to Alexander Duality. Jesper M. Møller From singular chains to Alexander Duality Jesper M. Møller Matematisk Institut, Universitetsparken 5, DK 21 København E-mail address: moller@math.ku.dk URL: http://www.math.ku.dk/~moller Contents Chapter

More information

ALGEBRAIC TOPOLOGY IV. Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by

ALGEBRAIC TOPOLOGY IV. Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by ALGEBRAIC TOPOLOGY IV DIRK SCHÜTZ 1. Cochain complexes and singular cohomology Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by Hom(A, B) = {ϕ: A B ϕ homomorphism}

More information

Rigid monomial ideals

Rigid monomial ideals Rigid monomial ideals Timothy B.P. Clark and Sonja Mapes February 10, 011 Abstract In this paper we investigate the class of rigid monomial ideals. We give a characterization of the minimal free resolutions

More information

On the Homological Dimension of Lattices

On the Homological Dimension of Lattices On the Homological Dimension of Lattices Roy Meshulam August, 008 Abstract Let L be a finite lattice and let L = L {ˆ0, ˆ1}. It is shown that if the order complex L satisfies H k L 0 then L k. Equality

More information

Part II. Algebraic Topology. Year

Part II. Algebraic Topology. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section II 18I The n-torus is the product of n circles: 5 T n = } S 1. {{.. S } 1. n times For all n 1 and 0

More information

Simplicial Homology. Simplicial Homology. Sara Kališnik. January 10, Sara Kališnik January 10, / 34

Simplicial Homology. Simplicial Homology. Sara Kališnik. January 10, Sara Kališnik January 10, / 34 Sara Kališnik January 10, 2018 Sara Kališnik January 10, 2018 1 / 34 Homology Homology groups provide a mathematical language for the holes in a topological space. Perhaps surprisingly, they capture holes

More information

1. THE CONSTRUCTIBLE DERIVED CATEGORY

1. THE CONSTRUCTIBLE DERIVED CATEGORY 1. THE ONSTRUTIBLE DERIVED ATEGORY DONU ARAPURA Given a family of varieties, we want to be able to describe the cohomology in a suitably flexible way. We describe with the basic homological framework.

More information

On a cohomology of digraphs and Hochschild cohomology

On a cohomology of digraphs and Hochschild cohomology On a cohomology of digraphs and Hochschild cohomology Alexander Grigor yan Department of Mathematics University of Bielefeld 33613 Bielefeld, Germany Yuri Muranov Department of Mathematics University of

More information

Lecture 2: Addition (and free abelian groups)

Lecture 2: Addition (and free abelian groups) Lectur: Addition (and free abelian groups) of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic

More information

2.5 Excision implies Simplicial = Singular homology

2.5 Excision implies Simplicial = Singular homology 2.5 Excision implies Simplicial = Singular homology 1300Y Geometry and Topology 2.5 Excision implies Simplicial = Singular homology Recall that simplicial homology was defined in terms of a -complex decomposition

More information

THE COMPLEX OF FREE FACTORS OF A FREE GROUP Allen Hatcher* and Karen Vogtmann*

THE COMPLEX OF FREE FACTORS OF A FREE GROUP Allen Hatcher* and Karen Vogtmann* THE COMPLEX OF FREE FACTORS OF A FREE GROUP Allen Hatcher* and Karen Vogtmann* ABSTRACT. We show that the geometric realization of the partially ordered set of proper free factors in a finitely generated

More information

A short introduction to arrangements of hyperplanes

A short introduction to arrangements of hyperplanes A short introduction to arrangements of hyperplanes survey Sergey Yuzvinsky University of Oregon Pisa, May 2010 Setup and notation By a hyperplane arrangement we understand the set A of several hyperplanes

More information

A CLOSED MODEL CATEGORY FOR (n 1)-CONNECTED SPACES

A CLOSED MODEL CATEGORY FOR (n 1)-CONNECTED SPACES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 11, November 1996 A CLOSED MODEL CATEGORY FOR (n 1)-CONNECTED SPACES J. IGNACIO EXTREMIANA ALDANA, L. JAVIER HERNÁNDEZ PARICIO, AND M.

More information

A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE

A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE KOJI FUJIWARA AND KEVIN WHYTE Abstract. Let X be a geodesic metric space with H 1(X) uniformly generated. If X has asymptotic dimension one then X is quasi-isometric

More information

Deligne s Mixed Hodge Structure for Projective Varieties with only Normal Crossing Singularities

Deligne s Mixed Hodge Structure for Projective Varieties with only Normal Crossing Singularities Deligne s Mixed Hodge Structure for Projective Varieties with only Normal Crossing Singularities B.F Jones April 13, 2005 Abstract Following the survey article by Griffiths and Schmid, I ll talk about

More information

Intersection Alexander polynomials

Intersection Alexander polynomials Intersection Alexander polynomials Greg Friedman Yale University Dept. of Mathematics 10 Hillhouse Ave PO Box 208283 New Haven, CT 06520 friedman@math.yale.edu Tel. 203-432-6473 Fax: 203-432-7316 April

More information

Math Homotopy Theory Hurewicz theorem

Math Homotopy Theory Hurewicz theorem Math 527 - Homotopy Theory Hurewicz theorem Martin Frankland March 25, 2013 1 Background material Proposition 1.1. For all n 1, we have π n (S n ) = Z, generated by the class of the identity map id: S

More information

Foundations of Mathematics

Foundations of Mathematics Foundations of Mathematics L. Pedro Poitevin 1. Preliminaries 1.1. Sets We will naively think of a set as a collection of mathematical objects, called its elements or members. To indicate that an object

More information

PROPAGATION OF RESONANCE. Alex Suciu. Northeastern University. Joint work with Graham Denham and Sergey Yuzvinsky

PROPAGATION OF RESONANCE. Alex Suciu. Northeastern University. Joint work with Graham Denham and Sergey Yuzvinsky COMBINATORIAL COVERS, ABELIAN DUALITY, AND PROPAGATION OF RESONANCE Alex Suciu Northeastern University Joint work with Graham Denham and Sergey Yuzvinsky Algebra, Topology and Combinatorics Seminar University

More information

32 Proof of the orientation theorem

32 Proof of the orientation theorem 88 CHAPTER 3. COHOMOLOGY AND DUALITY 32 Proof of the orientation theorem We are studying the way in which local homological information gives rise to global information, especially on an n-manifold M.

More information

Combinatorial and topological models for spaces of schedule

Combinatorial and topological models for spaces of schedule Combinatorial and topological models for spaces of schedules Department of Mathematical Sciences, Aalborg University, Denmark 9 July, 2015 ACAT Final Project Meeting Outline Acknowledgements TOC A concurrency

More information