6 Axiomatic Homology Theory

Size: px
Start display at page:

Download "6 Axiomatic Homology Theory"

Transcription

1 MATH41071/MATH61071 Algebraic topology 6 Axiomatic Homology Theory Autumn Semester The basic ideas of homology go back to Poincaré in 1895 when he defined the Betti numbers and torsion numbers of a complex. The idea of defining homology groups was developed from about 1925 by Heinz Hopf in Göttingen under the influence of Emmy Noether. Subsequently, various different way of defining homology groups were developed in order to extend their application to non-triangulable spaces. One can in fact define the homology groups of any topological space using what is called singular homology. This is defined as follows. 6.1 Definition. Given a topological space X, a singular n-simplex in X is a continuous map σ : n X where n 0. The singular n-chain group of X, denoted S n (X), is the free abelian group on the set of all singular n-simplices in X. So a singular n-chain is a finite sum i λ iσ i where λ i Z and σ i : n X. We define S n (X) = 0 for n < 0. For 0 i n, define δ i : n 1 n by mapping ε j ε j for 1 j i and ε j ε j+1 for i < j n and extending linearly. (So δ i maps n 1 to the ith face ε 1, ε 2,..., ˆε i+1,..., ε n+1 of n.) We now define, for n > 0, the boundary homomorphism on generators by d n : S n (X) S n 1 (X) d n (σ) = n ( 1) i σ δ i i=0 and extend linearly to the whole of S n (X). Of course, d n = 0 for n 0. The singular homology groups of X are then defined just like the simplicial ones. Thus the singular n-cycle group Z n (X) = Ker ( d n : S n (X) S n 1 (X) ) and the singular n-boundary group B n (X) = Im ( d n+1 : S n+1 (X) S n (X) ). We can prove that d n d n+1 = 0: S n+1 (X) S n 1 (X) so that B n (X) Z n (X) and then the singular n-homology group H n (X) is defined to be the quotient group Z n (X)/B n (X). 6.2 Remark. First of all notice that these groups are obviously topological invariants since a homeomorphism f : X Y induces group isomorphisms S n (X) S n (Y ) given on generators by σ f σ and so isomorphisms 1

2 Z n (X) Z n (Y ), B n (X) B n (Y ), H n (X) H n (Y ). (They are in fact homotopy invariants but this is harder to prove.) This excellent result is counterbalanced by the fact that it is not all clear how to compute any of these homology groups since for most spaces X the singular n-chain group is uncountably generated. It is possible to calculate the homology groups of very simple spaces from the definition. For example, if P is a one-point space then (Exercise) { H n (P ) Z for n = 0, = 0 for n 0. In the same sort of way we can prove (Exercise) that { H n (S 0 ) Z 2 for n = 0, = 0 for n 0. Calculations for other spaces are then carried out by deriving various properties of these groups and then using these properties to compute the homology groups from those of the above simple spaces. There are in fact several ways of defining homology groups but for some spaces they do not necessarily give the same groups. However, it turns out that for the underlying spaces of a simplicial complex (these spaces are usually called polyhedra) they do always give the same answer. This was first proved by Samuel Eilenberg and Norman Steenrod in their fundamental book Foundations of Algebraic Topology published in They showed that for polyhedra (and in fact for spaces homotopy equivalent to polyhedra) homology groups are characterized by certain axioms. They then showed that simplicial homology groups and singular homology groups satisfy these axioms. The axioms they state are for homology groups of a general topological space and require some awkward technical details. To avoid these technical details these notes do two things. The material below restricts attention to the homology groups of triangulable spaces. The notes below are couched in terms of reduced homology groups which allow for a slightly simpler statement of the axioms. 2

3 6.3 Definition. Suppose that X is a topological space. Let P be a onepoint space and c: X P the constant function. Then the reduced singular homology groups of X, denoted H n (X) are defined by H n (X) = Ker ( c : H n (X) H n (P ) ). 6.4 Proposition. The reduced homology groups of X are related to the usual (unreduced) homology groups by { H0 (X) Z if n = 0, H n (X) = H n (X) if n 0. Proof. For n 0, H n (P ) = 0 and so Ker ( c : H n (X) H n (P ) ) = Ker(c : H n (X) 0) = H n (X). For n = 0, H 0 (P ) = Z and so we have the following short exact sequence. 0 H 0 (X) i H 0 (X) c Z 0 From this it follows (Exercise) that H 0 (X) = H 0 (X) Z. 6.5 Remark. This means in particular from the calculations in Remarks?? that we have the following reduced homology groups. H n (P ) = 0 for all n. H n (S 0 ) = { Z for n = 1, 0 for n 0. The second of these results is one of the axioms. Basically you have to know the homology groups of one space in order to get started with calculations. The other axioms are the functorial properties of homology (see Theorem 5.25), the homotopy property (see Theorem 5.26) and one further property known as the exactness property which is the key to relating the homology groups of different spaces. In order to state the exactness property we need to introduce the idea of a triangulable pair of spaces. 6.6 Definition. A triangulable pair of spaces (X, A) is a topological space X with a subspace A such that there is a homeomorphism h: X K, the underlying space of a simplicial complex K, with h(a) = L the underlying space of a subcomplex L of K. 6.7 Proposition. If (X, A) is a pair of triangulable spaces then the quotient space X/A is a triangulable space. 3

4 Proof. The proof of this result is omitted. In general you cannot form a quotient simplicial complex K/L when L is a subcomplex of K but you can construct a triangulation of X/A by using an appropriate barycentric subdivision of K and collapsing an appropriate subcomplex. These remarks are intended to motivate the statement of the exactness axiom. They present an outline of some ideas which it would take quite a bit of work to develop in detail. For a simplicial complex K we set C r (K) = C r (K) for r > 0 and C 0 (K) C 0 (K) the subgroup generated by differences of two points. Starting with (X, A) and K and L as above, after moving to a barycentric subdivision K and subcomplex L of K, such that L and L = L are homotopy equivalent we obtain for all r short exact sequences 0 C r ( L) i C r (K ) q C n (K /L ) 0. Note, that at position r = 0 this statement would be false for the unreduced chain groups C 0 ( ). The maps q and i also commute with the boundary maps. Hence, we obtain a complex of commutative diagrams. Now, we may define a homomorphism H n (K /L ) H n 1 ( L) as follows. Consider an elment z Z r (K /L ), i.e. d(z) = 0. Since the chain map q is surjective, there is a y C r (K ) with q (y) = z. Because of the mentioned commutativity we obtain q (d(y)) = d(q (y)) = d(z) = 0. Hence, d(y) ker q = im i and we find a (unique because of injectivity of i ) element x C r (L ) with i (x) = d(y). Because i (d(x)) = d(i (x)) = d(d(y)) = 0 we have d(x) = 0, since i is injective. Therefore, [x] defines an element of Hr 1 (A) and we set (z) = x. By chasing through the commutative diagrams one checks that is indeed well defined and we obtain a long exact sequence... H n (A) i H n (X) q H n (X/A) H n 1 (A) i H n 1 (X)... This sequence is the statement of the exactness axiom for homology. These considerations lead to the following definition. 6.8 Definition. A reduced homology theory assigns to each non-empty triangulable space X a sequence of abelian groups H n (X) (for n Z) and for each continuous map of triangulable spaces f : X Y a sequence of homomorphisms f : Hn (X) H n (Y ) such that the following axioms hold. (i) [Functorial Axiom 1] Given continuous functions f : X Y g : Y Z, it follows that g f = (g f) : Hn (X) H n (Z) for all i. and 4

5 (ii) [Functorial Axiom 2] For the identity map id X : X X, (id X ) = id: Hn (X) H n (X) (the identity map) for all i. (iii) [Homotopy Axiom] For homotopic maps f g : X Y, f = g : Hn (X) H n (Y ) for all i. (iv) [Exactness Axiom] For any triangulable pair (X, A) there are boundary homomorphisms : Hn (X/A) H n 1 (A) for all i which fit into a long exact sequence as follows.... H n (A) i H n (X) q H n (X/A) H n 1 (A) i H n 1 (X)... Furthermore, given any continuous function of triangulable pairs f : (X, A) (Y, B) (i.e. f : X Y such that f(a) B) this induces a continuous function of quotient spaces f : X/A Y/B. Then the following diagram commutes for all n. H n (X/A) Hn 1 (A) f H n (Y/B) f Hn 1 (B) (v) [Dimension Axiom] H0 (S 0 ) = Z and H n (S 0 ) = 0 for all n Theorem. The properties in Definition 6.8 are satisfied by the reduced singular homology groups. Moreover, it can be shown that the properties in Definition 6.8 uniquely determine the homology groups of a triangulable space and the homomorphisms induced by continuous functions between triangulable spaces. In particular, for a triangulable spaces simplicial and singular homology coincide Theorem. A homotopy equivalence of triangulable spaces f : X Y induces isomorphisms f : Hn (X) H n (Y ) of their reduced homology groups. Proof. Exercise. 5

6 6.11 Proposition. The reduced homology groups of a contractible triangulable space are all trivial. Proof. First of all we calculate the homology groups of a one point space P. Let id: P P be the identity map. Then by (ii) id = id: Hn (P ) H n (P ) is an isomorphism for all n. Now consider the homology exact sequence coming from the pair (P, P ). This gives the following exact sequence.... H n (P ) id H n (P ) q H n (P/P ) H n 1 (P ) id H n 1 (P )... Since the homomorphisms id are all isomorphisms it follows that the homomorphisms q and are trivial and so H i (P/P ) = H i (P ) = 0 for all i Theorem. The reduced homology groups of the n-sphere S n are given by H i (S n ) = { Z for i = n, 0 for i n. Proof. The proof is by induction on n. The result for n = 0 is the Dimension Axiom. For the inductive step, consider the exact sequence coming from the pair (D k+1, S k ) (Exercise) Theorem. Given a finite wedge sum of triangulable spaces X = n i=1 X i. Then one has H k (X) = n i=1 H k (X i ). Proof. We prove the claim by induction. Consider X = n i=1 X i and the inclusions ι : X n X and ῑ : n 1 i=1 X i X and the two projections p : X X/X n ( n 1 = i=1 X n 1 i and p : X X/ i=1 i) X = Xn. It is easy to see that p ι = id Xn and p ῑ = id n 1 i=1 X. It follows by the axioms i that p ῑ and p ι both give the identity on the corresponding homology groups. In particular p and p must be surjective and ι and ῑ must both be injective. Hence, we obtain exactness on the left and one the right of the following sequence ( 0 H k (X n+1 ) ι H k (X) p H n k i=1 X i ) 0 But exactness in the middle follows from the long exact sequence for the pair (X, X n ). Now, Exercise 3 implies the claim. (Why exactly?) 6

7 6.14 Remark. Note, that it also follows from the proof that the inclusions ι l : X l X on the level of homology induces the natural inclusions H k (X l ) n i=1 H k (X i ) and the projections p l : X X/ ( i l X i) = Xl the natural projections n i=1 H k (X i ) H k (X l ) Remark. Calculating the homology groups of spheres from the axioms is of course just the beginning. But it turns out that the spheres are the key spaces in building up most standard spaces. So, for example, to compute the homology groups of projective n-space P n = S n /(x ±x), we can observe that the inclusion map S k S k+1, given by x (x, 0), induces an inclusion map P k P k+1 such that the quotient space P k+1 /P k = S k+1. So the Exactness Axiom gives an exact sequence as follows.... H n (P k ) i H n (P k+1 ) q H n (S k+1 ) H n 1 (P k ) i H n 1 (P k+1 )... This leads to a calculation of the homology groups of P n by induction on n with the base case given by the fact that P 1 = S 1 and using the above sequence and our knowledge of the homology of S k+1 and for the inductive step. The only difficulty in the calculation is identifying the homomorphism : Hn (S k+1 ) H n 1 (P k ) in the case n = k + 1 (the only non-trivial case) and this does require further analysis of the topology of P n which would take us too long. 7

10 Excision and applications

10 Excision and applications 22 CHAPTER 1. SINGULAR HOMOLOGY be a map of short exact sequences of chain complexes. If two of the three maps induced in homology by f, g, and h are isomorphisms, then so is the third. Here s an application.

More information

7.3 Singular Homology Groups

7.3 Singular Homology Groups 184 CHAPTER 7. HOMOLOGY THEORY 7.3 Singular Homology Groups 7.3.1 Cycles, Boundaries and Homology Groups We can define the singular p-chains with coefficients in a field K. Furthermore, we can define the

More information

LECTURE 3: RELATIVE SINGULAR HOMOLOGY

LECTURE 3: RELATIVE SINGULAR HOMOLOGY LECTURE 3: RELATIVE SINGULAR HOMOLOGY In this lecture we want to cover some basic concepts from homological algebra. These prove to be very helpful in our discussion of singular homology. The following

More information

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture:

Solution: We can cut the 2-simplex in two, perform the identification and then stitch it back up. The best way to see this is with the picture: Samuel Lee Algebraic Topology Homework #6 May 11, 2016 Problem 1: ( 2.1: #1). What familiar space is the quotient -complex of a 2-simplex [v 0, v 1, v 2 ] obtained by identifying the edges [v 0, v 1 ]

More information

CW-complexes. Stephen A. Mitchell. November 1997

CW-complexes. Stephen A. Mitchell. November 1997 CW-complexes Stephen A. Mitchell November 1997 A CW-complex is first of all a Hausdorff space X equipped with a collection of characteristic maps φ n α : D n X. Here n ranges over the nonnegative integers,

More information

Math Homotopy Theory Hurewicz theorem

Math Homotopy Theory Hurewicz theorem Math 527 - Homotopy Theory Hurewicz theorem Martin Frankland March 25, 2013 1 Background material Proposition 1.1. For all n 1, we have π n (S n ) = Z, generated by the class of the identity map id: S

More information

MATH 215B HOMEWORK 5 SOLUTIONS

MATH 215B HOMEWORK 5 SOLUTIONS MATH 25B HOMEWORK 5 SOLUTIONS. ( marks) Show that the quotient map S S S 2 collapsing the subspace S S to a point is not nullhomotopic by showing that it induces an isomorphism on H 2. On the other hand,

More information

CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA. Contents 1. Introduction 1

CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA. Contents 1. Introduction 1 CELLULAR HOMOLOGY AND THE CELLULAR BOUNDARY FORMULA PAOLO DEGIORGI Abstract. This paper will first go through some core concepts and results in homology, then introduce the concepts of CW complex, subcomplex

More information

Part II. Algebraic Topology. Year

Part II. Algebraic Topology. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section II 18I The n-torus is the product of n circles: 5 T n = } S 1. {{.. S } 1. n times For all n 1 and 0

More information

Exercises for Algebraic Topology

Exercises for Algebraic Topology Sheet 1, September 13, 2017 Definition. Let A be an abelian group and let M be a set. The A-linearization of M is the set A[M] = {f : M A f 1 (A \ {0}) is finite}. We view A[M] as an abelian group via

More information

From singular chains to Alexander Duality. Jesper M. Møller

From singular chains to Alexander Duality. Jesper M. Møller From singular chains to Alexander Duality Jesper M. Møller Matematisk Institut, Universitetsparken 5, DK 21 København E-mail address: moller@math.ku.dk URL: http://www.math.ku.dk/~moller Contents Chapter

More information

Course notes in algebraic topology

Course notes in algebraic topology Course notes in algebraic topology Benson Farb CLASS NOTES, Fall 2012 Comments/corrections/suggestions welcome November 11, 2012 2 Contents 1 Homology 5 1.1 Construction of simplicial homology....................

More information

The Hurewicz theorem by CW approximation

The Hurewicz theorem by CW approximation The Hurewicz theorem by CW approximation Master s thesis, University of Helsinki Student: Jonas Westerlund Supervisor: Erik Elfving December 11, 2016 Tiedekunta/Osasto Fakultet/Sektion Faculty Faculty

More information

Homework 3 MTH 869 Algebraic Topology

Homework 3 MTH 869 Algebraic Topology Homework 3 MTH 869 Algebraic Topology Joshua Ruiter February 12, 2018 Proposition 0.1 (Exercise 1.1.10). Let (X, x 0 ) and (Y, y 0 ) be pointed, path-connected spaces. Let f : I X y 0 } and g : I x 0 }

More information

HOMOLOGY AND COHOMOLOGY. 1. Introduction

HOMOLOGY AND COHOMOLOGY. 1. Introduction HOMOLOGY AND COHOMOLOGY ELLEARD FELIX WEBSTER HEFFERN 1. Introduction We have been introduced to the idea of homology, which derives from a chain complex of singular or simplicial chain groups together

More information

Equivalence of the Combinatorial Definition (Lecture 11)

Equivalence of the Combinatorial Definition (Lecture 11) Equivalence of the Combinatorial Definition (Lecture 11) September 26, 2014 Our goal in this lecture is to complete the proof of our first main theorem by proving the following: Theorem 1. The map of simplicial

More information

Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2

Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2 Topology Hmwk 6 All problems are from Allen Hatcher Algebraic Topology (online) ch 2 Andrew Ma August 25, 214 2.1.4 Proof. Please refer to the attached picture. We have the following chain complex δ 3

More information

Math 530 Lecture Notes. Xi Chen

Math 530 Lecture Notes. Xi Chen Math 530 Lecture Notes Xi Chen 632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA E-mail address: xichen@math.ualberta.ca 1991 Mathematics Subject Classification. Primary

More information

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1 ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP HONG GYUN KIM Abstract. I studied the construction of an algebraically trivial, but topologically non-trivial map by Hopf map p : S 3 S 2 and a

More information

A Primer on Homological Algebra

A Primer on Homological Algebra A Primer on Homological Algebra Henry Y Chan July 12, 213 1 Modules For people who have taken the algebra sequence, you can pretty much skip the first section Before telling you what a module is, you probably

More information

HOMOTOPY THEORY ADAM KAYE

HOMOTOPY THEORY ADAM KAYE HOMOTOPY THEORY ADAM KAYE 1. CW Approximation The CW approximation theorem says that every space is weakly equivalent to a CW complex. Theorem 1.1 (CW Approximation). There exists a functor Γ from the

More information

An Outline of Homology Theory

An Outline of Homology Theory An Outline of Homology Theory Stephen A. Mitchell June 1997, revised October 2001 Note: These notes contain few examples and even fewer proofs. They are intended only as an outline, to be supplemented

More information

Homology theory. Lecture 29-3/7/2011. Lecture 30-3/8/2011. Lecture 31-3/9/2011 Math 757 Homology theory. March 9, 2011

Homology theory. Lecture 29-3/7/2011. Lecture 30-3/8/2011. Lecture 31-3/9/2011 Math 757 Homology theory. March 9, 2011 Math 757 Homology theory March 9, 2011 Theorem 183 Let G = π 1 (X, x 0 ) then for n 1 h : π n (X, x 0 ) H n (X ) factors through the quotient map q : π n (X, x 0 ) π n (X, x 0 ) G to π n (X, x 0 ) G the

More information

L E C T U R E N O T E S O N H O M O T O P Y T H E O R Y A N D A P P L I C AT I O N S

L E C T U R E N O T E S O N H O M O T O P Y T H E O R Y A N D A P P L I C AT I O N S L A U R E N T I U M A X I M U N I V E R S I T Y O F W I S C O N S I N - M A D I S O N L E C T U R E N O T E S O N H O M O T O P Y T H E O R Y A N D A P P L I C AT I O N S i Contents 1 Basics of Homotopy

More information

2.5 Excision implies Simplicial = Singular homology

2.5 Excision implies Simplicial = Singular homology 2.5 Excision implies Simplicial = Singular homology 1300Y Geometry and Topology 2.5 Excision implies Simplicial = Singular homology Recall that simplicial homology was defined in terms of a -complex decomposition

More information

ALGEBRAIC TOPOLOGY IV. Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by

ALGEBRAIC TOPOLOGY IV. Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by ALGEBRAIC TOPOLOGY IV DIRK SCHÜTZ 1. Cochain complexes and singular cohomology Definition 1.1. Let A, B be abelian groups. The set of homomorphisms ϕ: A B is denoted by Hom(A, B) = {ϕ: A B ϕ homomorphism}

More information

SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS

SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS In this section we will prove the Künneth theorem which in principle allows us to calculate the (co)homology of product spaces as soon

More information

Topological Data Analysis - Spring 2018

Topological Data Analysis - Spring 2018 Topological Data Analysis - Spring 2018 Simplicial Homology Slightly rearranged, but mostly copy-pasted from Harer s and Edelsbrunner s Computational Topology, Verovsek s class notes. Gunnar Carlsson s

More information

A duality on simplicial complexes

A duality on simplicial complexes A duality on simplicial complexes Michael Barr 18.03.2002 Dedicated to Hvedri Inassaridze on the occasion of his 70th birthday Abstract We describe a duality theory for finite simplicial complexes that

More information

HOMOLOGY THEORIES INGRID STARKEY

HOMOLOGY THEORIES INGRID STARKEY HOMOLOGY THEORIES INGRID STARKEY Abstract. This paper will introduce the notion of homology for topological spaces and discuss its intuitive meaning. It will also describe a general method that is used

More information

The Hurewicz Theorem

The Hurewicz Theorem The Hurewicz Theorem April 5, 011 1 Introduction The fundamental group and homology groups both give extremely useful information, particularly about path-connected spaces. Both can be considered as functors,

More information

Homology of a Cell Complex

Homology of a Cell Complex M:01 Fall 06 J. Simon Homology of a Cell Complex A finite cell complex X is constructed one cell at a time, working up in dimension. Each time a cell is added, we can analyze the effect on homology, by

More information

THE INFINITE SYMMETRIC PRODUCT AND HOMOLOGY THEORY

THE INFINITE SYMMETRIC PRODUCT AND HOMOLOGY THEORY THE INFINITE SYMMETRIC PRODUCT AND HOMOLOGY THEORY ANDREW VILLADSEN Abstract. Following the work of Aguilar, Gitler, and Prieto, I define the infinite symmetric product of a pointed topological space.

More information

Homology and Cohomology

Homology and Cohomology Homology and Cohomology Name : Tanushree Shah Student ID: 20131065 Supervised by Tejas Kalelkar Indian Institute of Science Education and Research Department of Mathematics November 23, 2016 1 Contents

More information

Simplicial Homology. Simplicial Homology. Sara Kališnik. January 10, Sara Kališnik January 10, / 34

Simplicial Homology. Simplicial Homology. Sara Kališnik. January 10, Sara Kališnik January 10, / 34 Sara Kališnik January 10, 2018 Sara Kališnik January 10, 2018 1 / 34 Homology Homology groups provide a mathematical language for the holes in a topological space. Perhaps surprisingly, they capture holes

More information

Math 752 Week s 1 1

Math 752 Week s 1 1 Math 752 Week 13 1 Homotopy Groups Definition 1. For n 0 and X a topological space with x 0 X, define π n (X) = {f : (I n, I n ) (X, x 0 )}/ where is the usual homotopy of maps. Then we have the following

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY

EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY EILENBERG-ZILBER VIA ACYCLIC MODELS, AND PRODUCTS IN HOMOLOGY AND COHOMOLOGY CHRIS KOTTKE 1. The Eilenberg-Zilber Theorem 1.1. Tensor products of chain complexes. Let C and D be chain complexes. We define

More information

The Ordinary RO(C 2 )-graded Cohomology of a Point

The Ordinary RO(C 2 )-graded Cohomology of a Point The Ordinary RO(C 2 )-graded Cohomology of a Point Tiago uerreiro May 27, 2015 Abstract This paper consists of an extended abstract of the Master Thesis of the author. Here, we outline the most important

More information

From singular chains to Alexander Duality. Jesper M. Møller

From singular chains to Alexander Duality. Jesper M. Møller From singular chains to Alexander Duality Jesper M. Møller Matematisk Institut, Universitetsparken 5, DK 2100 København E-mail address: moller@math.ku.dk URL: http://www.math.ku.dk/~moller Contents Chapter

More information

Rational homotopy theory

Rational homotopy theory Rational homotopy theory Alexander Berglund November 12, 2012 Abstract These are lecture notes for a course on rational homotopy theory given at the University of Copenhagen in the fall of 2012. Contents

More information

MATH8808: ALGEBRAIC TOPOLOGY

MATH8808: ALGEBRAIC TOPOLOGY MATH8808: ALGEBRAIC TOPOLOGY DAWEI CHEN Contents 1. Underlying Geometric Notions 2 1.1. Homotopy 2 1.2. Cell Complexes 3 1.3. Operations on Cell Complexes 3 1.4. Criteria for Homotopy Equivalence 4 1.5.

More information

Manifolds and Poincaré duality

Manifolds and Poincaré duality 226 CHAPTER 11 Manifolds and Poincaré duality 1. Manifolds The homology H (M) of a manifold M often exhibits an interesting symmetry. Here are some examples. M = S 1 S 1 S 1 : M = S 2 S 3 : H 0 = Z, H

More information

for some n i (possibly infinite).

for some n i (possibly infinite). Homology with coefficients: The chain complexes that we have dealt with so far have had elements which are Z-linear combinations of basis elements (which are themselves singular simplices or equivalence

More information

0.1 Universal Coefficient Theorem for Homology

0.1 Universal Coefficient Theorem for Homology 0.1 Universal Coefficient Theorem for Homology 0.1.1 Tensor Products Let A, B be abelian groups. Define the abelian group A B = a b a A, b B / (0.1.1) where is generated by the relations (a + a ) b = a

More information

Some K-theory examples

Some K-theory examples Some K-theory examples The purpose of these notes is to compute K-groups of various spaces and outline some useful methods for Ma448: K-theory and Solitons, given by Dr Sergey Cherkis in 2008-09. Throughout

More information

MAT 530: Topology&Geometry, I Fall 2005

MAT 530: Topology&Geometry, I Fall 2005 MAT 530: Topology&Geometry, I Fall 2005 Problem Set 11 Solution to Problem p433, #2 Suppose U,V X are open, X =U V, U, V, and U V are path-connected, x 0 U V, and i 1 π 1 U,x 0 j 1 π 1 U V,x 0 i 2 π 1

More information

C n.,..., z i 1., z i+1., w i+1,..., wn. =,..., w i 1. : : w i+1. :... : w j 1 1.,..., w j 1. z 0 0} = {[1 : w] w C} S 1 { },

C n.,..., z i 1., z i+1., w i+1,..., wn. =,..., w i 1. : : w i+1. :... : w j 1 1.,..., w j 1. z 0 0} = {[1 : w] w C} S 1 { }, Complex projective space The complex projective space CP n is the most important compact complex manifold. By definition, CP n is the set of lines in C n+1 or, equivalently, CP n := (C n+1 \{0})/C, where

More information

Math 6510 Homework 10

Math 6510 Homework 10 2.2 Problems 9 Problem. Compute the homology group of the following 2-complexes X: a) The quotient of S 2 obtained by identifying north and south poles to a point b) S 1 (S 1 S 1 ) c) The space obtained

More information

Math 757 Homology theory

Math 757 Homology theory Math 757 Homology theory March 3, 2011 (for spaces). Given spaces X and Y we wish to show that we have a natural exact sequence 0 i H i (X ) H n i (Y ) H n (X Y ) i Tor(H i (X ), H n i 1 (Y )) 0 By Eilenberg-Zilber

More information

Algebraic Topology Final

Algebraic Topology Final Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Algebraic Topology Final Solutions 1. Let M be a simply connected manifold with the property that any map f : M M has a

More information

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim.

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim. 0.1. Stratified spaces. References are [7], [6], [3]. Singular spaces are naturally associated to many important mathematical objects (for example in representation theory). We are essentially interested

More information

FREUDENTHAL SUSPENSION THEOREM

FREUDENTHAL SUSPENSION THEOREM FREUDENTHAL SUSPENSION THEOREM TENGREN ZHANG Abstract. In this paper, I will prove the Freudenthal suspension theorem, and use that to explain what stable homotopy groups are. All the results stated in

More information

ALGEBRAIC TOPOLOGY

ALGEBRAIC TOPOLOGY 18.95 ALGEBRAIC TOPOLOGY TAUGHT BY HAYNES MILLER, NOTES BY SANATH DEVALAPURKAR Abstract. 18.95 is being taught by Professor Haynes Miller in Fall 216. I am planning on taking notes throughout the semester.

More information

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion: Date: July 15, 2015.

Exercise: Consider the poset of subsets of {0, 1, 2} ordered under inclusion: Date: July 15, 2015. 07-13-2015 Contents 1. Dimension 1 2. The Mayer-Vietoris Sequence 3 2.1. Suspension and Spheres 4 2.2. Direct Sums 4 2.3. Constuction of the Mayer-Vietoris Sequence 6 2.4. A Sample Calculation 7 As we

More information

Homotopy and homology groups of the n-dimensional Hawaiian earring

Homotopy and homology groups of the n-dimensional Hawaiian earring F U N D A M E N T A MATHEMATICAE 165 (2000) Homotopy and homology groups of the n-dimensional Hawaiian earring by Katsuya E d a (Tokyo) and Kazuhiro K a w a m u r a (Tsukuba) Abstract. For the n-dimensional

More information

Algebraic Topology, summer term Birgit Richter

Algebraic Topology, summer term Birgit Richter Algebraic Topology, summer term 2017 Birgit Richter Fachbereich Mathematik der Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany E-mail address: birgit.richter@uni-hamburg.de CHAPTER 1 Homology

More information

EQUIVARIANT ALGEBRAIC TOPOLOGY

EQUIVARIANT ALGEBRAIC TOPOLOGY EQUIVARIANT ALGEBRAIC TOPOLOGY JAY SHAH Abstract. This paper develops the introductory theory of equivariant algebraic topology. We first define G-CW complexes and prove some basic homotopy-theoretic results

More information

Homework 3: Relative homology and excision

Homework 3: Relative homology and excision Homework 3: Relative homology and excision 0. Pre-requisites. The main theorem you ll have to assume is the excision theorem, but only for Problem 6. Recall what this says: Let A V X, where the interior

More information

MATH 215B HOMEWORK 4 SOLUTIONS

MATH 215B HOMEWORK 4 SOLUTIONS MATH 215B HOMEWORK 4 SOLUTIONS 1. (8 marks) Compute the homology groups of the space X obtained from n by identifying all faces of the same dimension in the following way: [v 0,..., ˆv j,..., v n ] is

More information

Algebraic Topology Lecture Notes. Jarah Evslin and Alexander Wijns

Algebraic Topology Lecture Notes. Jarah Evslin and Alexander Wijns Algebraic Topology Lecture Notes Jarah Evslin and Alexander Wijns Abstract We classify finitely generated abelian groups and, using simplicial complex, describe various groups that can be associated to

More information

48 CHAPTER 2. COMPUTATIONAL METHODS

48 CHAPTER 2. COMPUTATIONAL METHODS 48 CHAPTER 2. COMPUTATIONAL METHODS You get a much simpler result: Away from 2, even projective spaces look like points, and odd projective spaces look like spheres! I d like to generalize this process

More information

Smith theory. Andrew Putman. Abstract

Smith theory. Andrew Putman. Abstract Smith theory Andrew Putman Abstract We discuss theorems of P. Smith and Floyd connecting the cohomology of a simplicial complex equipped with an action of a finite p-group to the cohomology of its fixed

More information

Chapter 3: Homology Groups Topics in Computational Topology: An Algorithmic View

Chapter 3: Homology Groups Topics in Computational Topology: An Algorithmic View Chapter 3: Homology Groups Topics in Computational Topology: An Algorithmic View As discussed in Chapter 2, we have complete topological information about 2-manifolds. How about higher dimensional manifolds?

More information

Hungry, Hungry Homology

Hungry, Hungry Homology September 27, 2017 Motiving Problem: Algebra Problem (Preliminary Version) Given two groups A, C, does there exist a group E so that A E and E /A = C? If such an group exists, we call E an extension of

More information

1 Whitehead s theorem.

1 Whitehead s theorem. 1 Whitehead s theorem. Statement: If f : X Y is a map of CW complexes inducing isomorphisms on all homotopy groups, then f is a homotopy equivalence. Moreover, if f is the inclusion of a subcomplex X in

More information

Lecture in the summer term 2017/18. Topology 2

Lecture in the summer term 2017/18. Topology 2 Ludwig-Maximilians-Universität München Prof. Dr. Thomas Vogel Lecture in the summer term 2017/18 Topology 2 Please note: These notes summarize the content of the lecture, many details and examples are

More information

Math Algebraic Topology

Math Algebraic Topology Math 317 - Algebraic Topology Lectures by Benson Farb Notes by Zev Chonoles The University of Chicago, Fall 2012 Lecture 1 (2012-10-01) 1 Lecture 2 (2012-10-03) 3 Lecture 3 (2012-10-05) 7 Lecture 4 (2012-10-08)

More information

Algebraic Topology exam

Algebraic Topology exam Instituto Superior Técnico Departamento de Matemática Algebraic Topology exam June 12th 2017 1. Let X be a square with the edges cyclically identified: X = [0, 1] 2 / with (a) Compute π 1 (X). (x, 0) (1,

More information

DISCRETIZED CONFIGURATIONS AND PARTIAL PARTITIONS

DISCRETIZED CONFIGURATIONS AND PARTIAL PARTITIONS DISCRETIZED CONFIGURATIONS AND PARTIAL PARTITIONS AARON ABRAMS, DAVID GAY, AND VALERIE HOWER Abstract. We show that the discretized configuration space of k points in the n-simplex is homotopy equivalent

More information

EXT, TOR AND THE UCT

EXT, TOR AND THE UCT EXT, TOR AND THE UCT CHRIS KOTTKE Contents 1. Left/right exact functors 1 2. Projective resolutions 2 3. Two useful lemmas 3 4. Ext 6 5. Ext as a covariant derived functor 8 6. Universal Coefficient Theorem

More information

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a Q: What s purple and commutes? A: An abelian grape! Anonymous Group Theory Last lecture, we learned about a combinatorial method for characterizing spaces: using simplicial complexes as triangulations

More information

Pure Math 467/667, Winter 2013

Pure Math 467/667, Winter 2013 Compact course notes Pure Math 467/667, Winter 2013 Algebraic Topology Lecturer: A. Smith transcribed by: J. Lazovskis University of Waterloo April 24, 2013 Contents 0.0 Motivating remarks..........................................

More information

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS.

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ANDREW SALCH 1. Subgroups, conjugacy, normality. I think you already know what a subgroup is: Definition

More information

Algebraic Topology I Homework Spring 2014

Algebraic Topology I Homework Spring 2014 Algebraic Topology I Homework Spring 2014 Homework solutions will be available http://faculty.tcu.edu/gfriedman/algtop/algtop-hw-solns.pdf Due 5/1 A Do Hatcher 2.2.4 B Do Hatcher 2.2.9b (Find a cell structure)

More information

CW complexes. Soren Hansen. This note is meant to give a short introduction to CW complexes.

CW complexes. Soren Hansen. This note is meant to give a short introduction to CW complexes. CW complexes Soren Hansen This note is meant to give a short introduction to CW complexes. 1. Notation and conventions In the following a space is a topological space and a map f : X Y between topological

More information

ALGEBRAIC TOPOLOGY NOTES, PART I: HOMOLOGY

ALGEBRAIC TOPOLOGY NOTES, PART I: HOMOLOGY ALGEBRAIC TOPOLOGY NOTES, PART I: HOMOLOGY JONATHAN A. HILLMAN Abstract. The teaching material that forms this web site is copyright. Other than for the purposes of and subject to the conditions prescribed

More information

Study Guide Harvard Mathematics Qualification Exam. Atanas Atanasov Charmaine Sia

Study Guide Harvard Mathematics Qualification Exam. Atanas Atanasov Charmaine Sia Study Guide Harvard Mathematics Qualification Exam E-mail address: nasko@math.harvard.edu E-mail address: sia@math.harvard.edu Atanas Atanasov Charmaine Sia Contents Chapter 1. Notes 7 1. Algebraic Topology

More information

A TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor

A TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor A TALE OF TWO FUNCTORS Marc Culler 1. Hom and Tensor It was the best of times, it was the worst of times, it was the age of covariance, it was the age of contravariance, it was the epoch of homology, it

More information

On Eilenberg-MacLanes Spaces (Term paper for Math 272a)

On Eilenberg-MacLanes Spaces (Term paper for Math 272a) On Eilenberg-MacLanes Spaces (Term paper for Math 272a) Xi Yin Physics Department Harvard University Abstract This paper discusses basic properties of Eilenberg-MacLane spaces K(G, n), their cohomology

More information

NOTES ON CHAIN COMPLEXES

NOTES ON CHAIN COMPLEXES NOTES ON CHAIN COMPLEXES ANDEW BAKE These notes are intended as a very basic introduction to (co)chain complexes and their algebra, the intention being to point the beginner at some of the main ideas which

More information

GEOMETRY HW 12 CLAY SHONKWILER

GEOMETRY HW 12 CLAY SHONKWILER GEOMETRY HW 12 CLAY SHONKWILER 1 Let M 3 be a compact 3-manifold with no boundary, and let H 1 (M, Z) = Z r T where T is torsion. Show that H 2 (M, Z) = Z r if M is orientable, and H 2 (M, Z) = Z r 1 Z/2

More information

Algebraic Topology. Len Evens Rob Thompson

Algebraic Topology. Len Evens Rob Thompson Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy

More information

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015

Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Corrections to Introduction to Topological Manifolds (First edition) by John M. Lee December 7, 2015 Changes or additions made in the past twelve months are dated. Page 29, statement of Lemma 2.11: The

More information

Coxeter Groups and Artin Groups

Coxeter Groups and Artin Groups Chapter 1 Coxeter Groups and Artin Groups 1.1 Artin Groups Let M be a Coxeter matrix with index set S. defined by M is given by the presentation: A M := s S sts }{{ } = tst }{{ } m s,t factors m s,t The

More information

Division Algebras and Parallelizable Spheres, Part II

Division Algebras and Parallelizable Spheres, Part II Division Algebras and Parallelizable Spheres, Part II Seminartalk by Jerome Wettstein April 5, 2018 1 A quick Recap of Part I We are working on proving the following Theorem: Theorem 1.1. The following

More information

Algebraic Topology II Notes Week 12

Algebraic Topology II Notes Week 12 Algebraic Topology II Notes Week 12 1 Cohomology Theory (Continued) 1.1 More Applications of Poincaré Duality Proposition 1.1. Any homotopy equivalence CP 2n f CP 2n preserves orientation (n 1). In other

More information

Sheaf theory August 23, 2016

Sheaf theory August 23, 2016 Sheaf theory August 23, 216 Chapter 1 The statement of de Rham s theorem Before doing anything fancy, let s start at the beginning. Let U R 3 be an open set. In calculus class, we learn about operations

More information

INTRODUCTION TO ALGEBRAIC TOPOLOGY. (1) Let k < j 1 and 0 j n, where 1 n. We want to show that e j n e k n 1 = e k n e j 1

INTRODUCTION TO ALGEBRAIC TOPOLOGY. (1) Let k < j 1 and 0 j n, where 1 n. We want to show that e j n e k n 1 = e k n e j 1 INTRODUCTION TO ALGEBRAIC TOPOLOGY Exercise 7, solutions 1) Let k < j 1 0 j n, where 1 n. We want to show that e j n e k n 1 = e k n e j 1 n 1. Recall that the map e j n : n 1 n is defined by e j nt 0,...,

More information

AN INTRODUCTION TO A -ALGEBRAS

AN INTRODUCTION TO A -ALGEBRAS AN INTRODUCTION TO A -ALGEBRAS Nathan Menzies Supervisor: Dr. Daniel Chan School of Mathematics, The University of New South Wales. November 2007 Submitted in partial fulfillment of the requirements of

More information

Introduction to higher homotopy groups and obstruction theory

Introduction to higher homotopy groups and obstruction theory Introduction to higher homotopy groups and obstruction theory Michael Hutchings February 17, 2011 Abstract These are some notes to accompany the beginning of a secondsemester algebraic topology course.

More information

Lecture 4: Stabilization

Lecture 4: Stabilization Lecture 4: Stabilization There are many stabilization processes in topology, and often matters simplify in a stable limit. As a first example, consider the sequence of inclusions (4.1) S 0 S 1 S 2 S 3

More information

GLOBALIZING LOCALLY COMPACT LOCAL GROUPS

GLOBALIZING LOCALLY COMPACT LOCAL GROUPS GLOBALIZING LOCALLY COMPACT LOCAL GROUPS LOU VAN DEN DRIES AND ISAAC GOLDBRING Abstract. Every locally compact local group is locally isomorphic to a topological group. 1. Introduction In this paper a

More information

3. Prove or disprove: If a space X is second countable, then every open covering of X contains a countable subcollection covering X.

3. Prove or disprove: If a space X is second countable, then every open covering of X contains a countable subcollection covering X. Department of Mathematics and Statistics University of South Florida TOPOLOGY QUALIFYING EXAM January 24, 2015 Examiners: Dr. M. Elhamdadi, Dr. M. Saito Instructions: For Ph.D. level, complete at least

More information

QUALIFYING EXAM, Fall Algebraic Topology and Differential Geometry

QUALIFYING EXAM, Fall Algebraic Topology and Differential Geometry QUALIFYING EXAM, Fall 2017 Algebraic Topology and Differential Geometry 1. Algebraic Topology Problem 1.1. State the Theorem which determines the homology groups Hq (S n \ S k ), where 1 k n 1. Let X S

More information

arxiv: v1 [math.kt] 22 Nov 2010

arxiv: v1 [math.kt] 22 Nov 2010 COMPARISON OF CUBICAL AND SIMPLICIAL DERIVED FUNCTORS IRAKLI PATCHKORIA arxiv:1011.4870v1 [math.kt] 22 Nov 2010 Abstract. In this note we prove that the simplicial derived functors introduced by Tierney

More information

Math Homotopy Theory Spring 2013 Homework 13 Solutions

Math Homotopy Theory Spring 2013 Homework 13 Solutions Math 527 - Homotopy Theory Spring 2013 Homework 13 Solutions Definition. A space weakly equivalent to a product of Eilenberg-MacLane spaces is called a generalized Eilenberg-MacLane space, or GEM for short.

More information

38 CHAPTER 2. COMPUTATIONAL METHODS. f n. n 1. X n 1. g n. X n

38 CHAPTER 2. COMPUTATIONAL METHODS. f n. n 1. X n 1. g n. X n 38 CHAPTER 2. COMPUTATIONAL METHODS 15 CW-complexes II We have a few more general things to say about CW complexes. Suppose X is a CW complex, with skeleton filtration = X 1 X 0 X 1 X and cell structure

More information

Algebraic Topology Homework 4 Solutions

Algebraic Topology Homework 4 Solutions Algebraic Topology Homework 4 Solutions Here are a few solutions to some of the trickier problems... Recall: Let X be a topological space, A X a subspace of X. Suppose f, g : X X are maps restricting to

More information

Algebraic Topology: the Mayer-Vietoris Sequence

Algebraic Topology: the Mayer-Vietoris Sequence Algebraic Topology: the Mayer-Vietoris Sequence The Mayer-Vietoris sequence is use to fin information abuot the homology groups of a space in terms of those of its subspaces. More specifically, if K is

More information