CS 4204 Computer Graphics

Size: px
Start display at page:

Download "CS 4204 Computer Graphics"

Transcription

1 CS 4204 Computer Graphics Vector and Matrix Yong Cao Virginia Tech

2 Vectors N-tuple:

3 Vectors N-tuple tuple: Magnitude: Unit vectors Normalizing a vector

4 Operations with vectors Addition Multiplication with scalar (scaling) Properties

5 Visualization for 2D and 3D vectors Addition Scaling

6 Subtraction Adding the negatively scaled vector

7 Linear combination of vectors Definition A linear combination of the m vectors v 1,,v is a m vector of the form: w = a 1 v 1 + a m v m, a 1,,a m in R

8 Special cases Linear combination w = a 1 v 1 + a m v m, a 1,,a m in R Affine combination: A linear combination for which a 1 + +a m = 1 Convex combination An affine combination for which a i 0 for i = 1,,m,m

9 Linear Independence For vectors v 1,, v m If a 1 v 1 + a m v m = 0 iff a 1 =a 2 = =a=a m =0 then the vectors are linearly independent.

10 Generators and Base vectors How many vectors are needed to generate a vector space? Any set of vectors that generate a vector space is called a generator set. Given a vector space R n we can prove that we need minimum n vectors to generate all vectors v in R n. A generator set with minimum size is called a base for the given vector space.

11 Standard unit vectors

12 Standard unit vectors For any vector space R n : The elements of a vector v in R n are the scalar coefficients of the linear combination of the base vectors.

13 Standard unit vectors in 3D i = (1,0,0) j = (0,1,0) k = (0,0,1) Right handed Left handed

14 Representation of vectors through basis vectors Given a vector space R n, a set of basis vectors B {b{ i in R n, i=1, n} and a vector v in R n we can always find scalar coefficients such that: v = a 1 b 1 + +a n b n So, v with respect to B is: v B = (a( 1,,a n )

15 Dot Product Definition: Properties

16 Dot product and perpendicularity From Property 5: b c > 0 b c = 0 b c < 0

17 Perpendicular vectors Definition Vectors b and c are perpendicular iff b c = 0 Also called normal or orthogonal It is easy to see that the standard unit vectors form an orthogonal basis: i j = 0, j k = 0, i k = 0

18 Cross product Defined only for 3D Vectors and with respect to the standard unit vectors Definition

19 Properties of the cross product

20 Geometric interpretation of the cross product

21 Recap Vector spaces Operations with vectors Representing vectors through a basis v = a 1 b 1 + a n b n, v B = (a 1,,a,a n ) Standard unit vectors Dot product Perpendicularity Cross product Normal to both vectors

22 Points vs Vectors What is the difference?

23 Points vs Vectors What is the difference? Points have location but no size or direction. Vectors have size and direction but no location. Problem: we represent both as triplets!

24 Relationship between points and vectors A difference between two points is a vector: Q P = v Q P v We can consider a point as a point plus an offset Q = P + v

25 Coordinate systems Defined by: (a,b,c, )

26 The homogeneous representation of points and vectors

27 Switching coordinates Normal to homegeneous: Vector: append as fourth coordinate 0 Point: append as fourth coordinate 1

28 Switching coordinates Homegeneous to normal: Vector: remove fourth coordinate (0) Point: remove fourth coordinate (1)

29 Does the homogeneous representation support operations? Operations : v + w = (v 1,v 2,v 3,0) +(w 1,w 2,w 3,0)= (v 1 +w 1, v 2 +w 2, v 3 +w 3, 0) Vector! av = a(v 1,v 2,v 3,0) = (av 1, av 2, av 3, 0), Vector! av + bw = a(v 1,v 2,v 3,0) +b(w 1,w 2,w 3,0)= (av 1 +bw 1, av 2 +bw 2, av 3 +bw 3, 0) Vector! P+v = (p 1,p 2,p 3,1) +(v 1,v 2,v 3,0)= = (p 1 +v 1, p 2 +v 2, p 3 +v 3, 1) Point!

30 Linear combination of points Points P, R scalars f,g: fp+gr = f(p 1,p 2,p 3,1) +g(r 1,r 2,r 3,1) = (fp 1 +gr 1, fp 2 +gr 2, fp 3 +gr 3, f+g) What is this?

31 Linear combination of points Points P, R scalars f,g: fp+gr = f(p 1,p 2,p 3,1) +g(r 1,r 2,r 3,1) = (fp 1 +gr 1, fp 2 +gr 2, fp 3 +gr 3, f+g) What is this? If (f+g( f+g) ) = 0 then vector! If (f+g( f+g) ) = 1 then point!

32 Affine combinations of points Definition: Points P i : i = 1,,n,n Scalars f i : i = 1,,n,n f 1 P f n P n iff f 1 + +f n = 1 Example: 0.5P P 2

33 Geometric explanation

34 Recap Vector spaces Dot product Cross product Coordinate systems Homogeneous representations of points and vectors

35 Matrices Rectangular arrangement of elements:

36 Special square matrices Symmetric: (A( ij ) n x n = (A( ji ) n x n Zero: A ij = 0, for all i,j Identity: I n = I ii = 1, for all i I ij = 0 for i j

37 Operations with matrices Addition: Properties:

38 Multiplication Definition: Properties:

39 Inverse of a square matrix Definition MM -1 = M -1 M = I Important property (AB) -1 = B -1-1 A -1

40 Convention Vectors and points are represented as column matrices.

41 Dot product as a matrix multiplication A vector is a column matrix

42 Lines and Planes

43 Lines Line (in 2D) Explicit Implicit Parametric (extends to 3D)

44 Planes Plane equations Implicit F(x, y,z) = Ax + By + Cz + D = N P + D Points on Plane F(x, y,z) = 0 Parametric Plane(s,t) = P 0 + s(p 1 P 0 ) + t(p 2 P 0 ) P 0,P 1,P 2 not colinear or Plane(s,t) = (1 s t)p 0 + sp 1 + tp 2 Plane(s,t) = P 0 + sv 1 + tv 2 where V 1,V 2 basis vectors Explicit z = - (A/C)x - (B/C)y - D/C, C 0

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces Graphics 2008/2009, period 1 Lecture 2 Vectors, curves, and surfaces Computer graphics example: Pixar (source: http://www.pixar.com) Computer graphics example: Pixar (source: http://www.pixar.com) Computer

More information

CSC 470 Introduction to Computer Graphics. Mathematical Foundations Part 2

CSC 470 Introduction to Computer Graphics. Mathematical Foundations Part 2 CSC 47 Introduction to Computer Graphics Mathematical Foundations Part 2 Vector Magnitude and Unit Vectors The magnitude (length, size) of n-vector w is written w 2 2 2 w = w + w2 + + w n Example: the

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Lecture 5 3D polygonal modeling Part 1: Vector graphics Yong-Jin Liu.

Lecture 5 3D polygonal modeling Part 1: Vector graphics Yong-Jin Liu. Fundamentals of Computer Graphics Lecture 5 3D polygonal modeling Part 1: Vector graphics Yong-Jin Liu liuyongjin@tsinghua.edu.cn Material by S.M.Lea (UNC) Introduction In computer graphics, we work with

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33 Linear Algebra 1/33 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct

More information

Vectors and Matrices

Vectors and Matrices Vectors and Matrices Scalars We often employ a single number to represent quantities that we use in our daily lives such as weight, height etc. The magnitude of this number depends on our age and whether

More information

Introduction. Introduction (2) Easy Problems for Vectors 7/13/2011. Chapter 4. Vector Tools for Graphics

Introduction. Introduction (2) Easy Problems for Vectors 7/13/2011. Chapter 4. Vector Tools for Graphics Introduction Chapter 4. Vector Tools for Graphics In computer graphics, we work with objects defined in a three dimensional world (with 2D objects and worlds being just special cases). All objects to be

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 1: Vectors, Representations Algebra and Linear Algebra Algebra: numbers and operations on numbers 2 + 3 = 5 3 7 = 21 Linear Algebra: tuples, triples... of numbers

More information

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes

Kevin James. MTHSC 206 Section 12.5 Equations of Lines and Planes MTHSC 206 Section 12.5 Equations of Lines and Planes Definition A line in R 3 can be described by a point and a direction vector. Given the point r 0 and the direction vector v. Any point r on the line

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

4.3 Equations in 3-space

4.3 Equations in 3-space 4.3 Equations in 3-space istance can be used to define functions from a 3-space R 3 to the line R. Let P be a fixed point in the 3-space R 3 (say, with coordinates P (2, 5, 7)). Consider a function f :

More information

POLI270 - Linear Algebra

POLI270 - Linear Algebra POLI7 - Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and

More information

Computer Graphics MTAT Raimond Tunnel

Computer Graphics MTAT Raimond Tunnel Computer Graphics MTAT.03.015 Raimond Tunnel Points and Vectors In computer graphics we distinguish: Point a location in space (location vector, kohavektor) Vector a direction in space (direction vector,

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C =

BASIC NOTIONS. x + y = 1 3, 3x 5y + z = A + 3B,C + 2D, DC are not defined. A + C = CHAPTER I BASIC NOTIONS (a) 8666 and 8833 (b) a =6,a =4 will work in the first case, but there are no possible such weightings to produce the second case, since Student and Student 3 have to end up with

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: TA sessions for tutorial 1 start today Tutorial 2 will go online after lecture 3 Practicals: Make sure to find a team partner very soon

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

18.06 Problem Set 3 Due Wednesday, 27 February 2008 at 4 pm in

18.06 Problem Set 3 Due Wednesday, 27 February 2008 at 4 pm in 8.6 Problem Set 3 Due Wednesday, 27 February 28 at 4 pm in 2-6. Problem : Do problem 7 from section 2.7 (pg. 5) in the book. Solution (2+3+3+2 points) a) False. One example is when A = [ ] 2. 3 4 b) False.

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34 Linear Algebra /34 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct axes)

More information

1. Vectors.

1. Vectors. 1. Vectors 1.1 Vectors and Matrices Linear algebra is concerned with two basic kinds of quantities: vectors and matrices. 1.1 Vectors and Matrices Scalars and Vectors - Scalar: a numerical value denoted

More information

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix Matrix Operations Matrix Addition and Matrix Scalar Multiply Matrix Multiply Matrix

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.4 The Projection Matrix 1 Chapter 6. Orthogonality 6.4 The Projection Matrix Note. In Section 6.1 (Projections), we projected a vector b R n onto a subspace W of R n. We did so by finding a basis for

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

Introduction. Chapter Points, Vectors and Coordinate Systems

Introduction. Chapter Points, Vectors and Coordinate Systems Chapter 1 Introduction Computer aided geometric design (CAGD) concerns itself with the mathematical description of shape for use in computer graphics, manufacturing, or analysis. It draws upon the fields

More information

MTAEA Vectors in Euclidean Spaces

MTAEA Vectors in Euclidean Spaces School of Economics, Australian National University January 25, 2010 Vectors. Economists usually work in the vector space R n. A point in this space is called a vector, and is typically defined by its

More information

MATH 22A: LINEAR ALGEBRA Chapter 1

MATH 22A: LINEAR ALGEBRA Chapter 1 MATH 22A: LINEAR ALGEBRA Chapter 1 Steffen Borgwardt, UC Davis original version of these slides: Jesús De Loera, UC Davis January 10, 2015 Vectors and Matrices (1.1-1.3). CHAPTER 1 Vectors and Linear Combinations

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

CMSC427 Geometry and Vectors

CMSC427 Geometry and Vectors CMSC427 Geometry and Vectors Review: where are we? Parametric curves and Hw1? Going beyond the course: generative art https://www.openprocessing.org Brandon Morse, Art Dept, ART370 Polylines, Processing

More information

CONVERSION OF COORDINATES BETWEEN FRAMES

CONVERSION OF COORDINATES BETWEEN FRAMES ECS 178 Course Notes CONVERSION OF COORDINATES BETWEEN FRAMES Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview Frames

More information

Mathematical Foundations: Intro

Mathematical Foundations: Intro Mathematical Foundations: Intro Graphics relies on 3 basic objects: 1. Scalars 2. Vectors 3. Points Mathematically defined in terms of spaces: 1. Vector space 2. Affine space 3. Euclidean space Math required:

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

Matrix & Linear Algebra

Matrix & Linear Algebra Matrix & Linear Algebra Jamie Monogan University of Georgia For more information: http://monogan.myweb.uga.edu/teaching/mm/ Jamie Monogan (UGA) Matrix & Linear Algebra 1 / 84 Vectors Vectors Vector: A

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

NOTES FOR LINEAR ALGEBRA 133

NOTES FOR LINEAR ALGEBRA 133 NOTES FOR LINEAR ALGEBRA 33 William J Anderson McGill University These are not official notes for Math 33 identical to the notes projected in class They are intended for Anderson s section 4, and are 2

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Solutions to Math 51 First Exam October 13, 2015

Solutions to Math 51 First Exam October 13, 2015 Solutions to Math First Exam October 3, 2. (8 points) (a) Find an equation for the plane in R 3 that contains both the x-axis and the point (,, 2). The equation should be of the form ax + by + cz = d.

More information

Unit 2: Lines and Planes in 3 Space. Linear Combinations of Vectors

Unit 2: Lines and Planes in 3 Space. Linear Combinations of Vectors Lesson10.notebook November 28, 2012 Unit 2: Lines and Planes in 3 Space Linear Combinations of Vectors Today's goal: I can write vectors as linear combinations of each other using the appropriate method

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes 12.5 Equations of Lines and Planes Equation of Lines Vector Equation of Lines Parametric Equation of Lines Symmetric Equation of Lines Relation Between Two Lines Equations of Planes Vector Equation of

More information

Math113: Linear Algebra. Beifang Chen

Math113: Linear Algebra. Beifang Chen Math3: Linear Algebra Beifang Chen Spring 26 Contents Systems of Linear Equations 3 Systems of Linear Equations 3 Linear Systems 3 2 Geometric Interpretation 3 3 Matrices of Linear Systems 4 4 Elementary

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

Matrices. A matrix is a method of writing a set of numbers using rows and columns. Cells in a matrix can be referenced in the form.

Matrices. A matrix is a method of writing a set of numbers using rows and columns. Cells in a matrix can be referenced in the form. Matrices A matrix is a method of writing a set of numbers using rows and columns. 1 2 3 4 3 2 1 5 7 2 5 4 2 0 5 10 12 8 4 9 25 30 1 1 Reading Information from a Matrix Cells in a matrix can be referenced

More information

Lecture 3: Matrix and Matrix Operations

Lecture 3: Matrix and Matrix Operations Lecture 3: Matrix and Matrix Operations Representation, row vector, column vector, element of a matrix. Examples of matrix representations Tables and spreadsheets Scalar-Matrix operation: Scaling a matrix

More information

Linear Algebra: Homework 3

Linear Algebra: Homework 3 Linear Algebra: Homework 3 Alvin Lin August 206 - December 206 Section.2 Exercise 48 Find all values of the scalar k for which the two vectors are orthogonal. [ ] [ ] 2 k + u v 3 k u v 0 2(k + ) + 3(k

More information

MTH MTH Lecture 6. Yevgeniy Kovchegov Oregon State University

MTH MTH Lecture 6. Yevgeniy Kovchegov Oregon State University MTH 306 0 MTH 306 - Lecture 6 Yevgeniy Kovchegov Oregon State University MTH 306 1 Topics Lines and planes. Systems of linear equations. Systematic elimination of unknowns. Coe cient matrix. Augmented

More information

Vector equations of lines in the plane and 3-space (uses vector addition & scalar multiplication).

Vector equations of lines in the plane and 3-space (uses vector addition & scalar multiplication). Boise State Math 275 (Ultman) Worksheet 1.6: Lines and Planes From the Toolbox (what you need from previous classes) Plotting points, sketching vectors. Be able to find the component form a vector given

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

MAC Module 5 Vectors in 2-Space and 3-Space II

MAC Module 5 Vectors in 2-Space and 3-Space II MAC 2103 Module 5 Vectors in 2-Space and 3-Space II 1 Learning Objectives Upon completing this module, you should be able to: 1. Determine the cross product of a vector in R 3. 2. Determine a scalar triple

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

Solution to Homework 8, Math 2568

Solution to Homework 8, Math 2568 Solution to Homework 8, Math 568 S 5.4: No. 0. Use property of heorem 5 to test for linear independence in P 3 for the following set of cubic polynomials S = { x 3 x, x x, x, x 3 }. Solution: If we use

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates...

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates... Contents 1 Geometry of R 1.1 Conic Sections............................................ 1. Parametric Equations........................................ 3 1.3 More Parametric Equations.....................................

More information

MAT 1339-S14 Class 8

MAT 1339-S14 Class 8 MAT 1339-S14 Class 8 July 28, 2014 Contents 7.2 Review Dot Product........................... 2 7.3 Applications of the Dot Product..................... 4 7.4 Vectors in Three-Space.........................

More information

Linear Algebra Homework and Study Guide

Linear Algebra Homework and Study Guide Linear Algebra Homework and Study Guide Phil R. Smith, Ph.D. February 28, 20 Homework Problem Sets Organized by Learning Outcomes Test I: Systems of Linear Equations; Matrices Lesson. Give examples of

More information

On-Line Geometric Modeling Notes FRAMES

On-Line Geometric Modeling Notes FRAMES On-Line Geometric Modeling Notes FRAMES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis In computer graphics we manipulate objects.

More information

How can we find the distance between a point and a plane in R 3? Between two lines in R 3? Between two planes? Between a plane and a line?

How can we find the distance between a point and a plane in R 3? Between two lines in R 3? Between two planes? Between a plane and a line? Overview Yesterday we introduced equations to describe lines and planes in R 3 : r = r 0 + tv The vector equation for a line describes arbitrary points r in terms of a specific point r 0 and the direction

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 CHAPTER 4 MATRICES 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 Matrices Matrices are of fundamental importance in 2-dimensional and 3-dimensional graphics programming

More information

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B Chapter 10 -S&B The Real Line: every real number is represented by exactly one point on the line. The plane (i.e., consumption bundles): Pairs of numbers have a geometric representation Cartesian plane

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 4: Changing Shapes: Linear Maps in 2D Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

AFFINE COMBINATIONS, BARYCENTRIC COORDINATES, AND CONVEX COMBINATIONS

AFFINE COMBINATIONS, BARYCENTRIC COORDINATES, AND CONVEX COMBINATIONS On-Line Geometric Modeling Notes AFFINE COMBINATIONS, BARYCENTRIC COORDINATES, AND CONVEX COMBINATIONS Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

ENGINEERING MATH 1 Fall 2009 VECTOR SPACES

ENGINEERING MATH 1 Fall 2009 VECTOR SPACES ENGINEERING MATH 1 Fall 2009 VECTOR SPACES A vector space, more specifically, a real vector space (as opposed to a complex one or some even stranger ones) is any set that is closed under an operation of

More information

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Lecture 3 Linear Algebra Background

Lecture 3 Linear Algebra Background Lecture 3 Linear Algebra Background Dan Sheldon September 17, 2012 Motivation Preview of next class: y (1) w 0 + w 1 x (1) 1 + w 2 x (1) 2 +... + w d x (1) d y (2) w 0 + w 1 x (2) 1 + w 2 x (2) 2 +...

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

Lesson 3. Perpendicularity, Planes, and Cross Products

Lesson 3. Perpendicularity, Planes, and Cross Products Lesson 3 Perpendicularity, Planes, and Cross Products Example 1: Equation for a Plane Let P (2,3, 1) be a point in space and let V (4, 2,5) be a vector. Find the xyz-equation of the plane containing P

More information

GEOMETRY OF MATRICES x 1

GEOMETRY OF MATRICES x 1 GEOMETRY OF MATRICES. SPACES OF VECTORS.. Definition of R n. The space R n consists of all column vectors with n components. The components are real numbers... Representation of Vectors in R n.... R. The

More information

A = u + V. u + (0) = u

A = u + V. u + (0) = u Recall: Last time we defined an affine subset of R n to be a subset of the form A = u + V = {u + v u R n,v V } where V is a subspace of R n We said that we would use the notation A = {u,v } to indicate

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Solving a system by back-substitution, checking consistency of a system (no rows of the form

Solving a system by back-substitution, checking consistency of a system (no rows of the form MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary

More information

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication. MATH 423/673 1 Curves Definition: The velocity vector of a curve α : I R 3 at time t is the tangent vector to R 3 at α(t), defined by α (t) T α(t) R 3 α α(t + h) α(t) (t) := lim h 0 h Note that the algebraic

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Appendix A: Matrices

Appendix A: Matrices Appendix A: Matrices A matrix is a rectangular array of numbers Such arrays have rows and columns The numbers of rows and columns are referred to as the dimensions of a matrix A matrix with, say, 5 rows

More information

Matrix Algebra: Summary

Matrix Algebra: Summary May, 27 Appendix E Matrix Algebra: Summary ontents E. Vectors and Matrtices.......................... 2 E.. Notation.................................. 2 E..2 Special Types of Vectors.........................

More information

Lecture 02: 2D Geometry. August 24, 2017

Lecture 02: 2D Geometry. August 24, 2017 Lecture 02: 2D Geometry August 24, 207 This Came Up Tuesday Know what radiosity computation does. Do not expect to implement nor see underlying equations this semester. 8/24/7 CSU CS40 Fall 207, Ross Beveridge

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors K. Behrend January 31, 008 Abstract An introduction to vectors in R and R 3. Lines and planes in R 3. Linear dependence. 1 Contents Introduction 3 1 Vectors 4 1.1 Plane vectors...............................

More information

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 2050 Linear Algebra I Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information