GRAVITY LAB. This procedure takes you through the law of gravitation to Black Holes in a series of problems you are supposed to solve. Enjoy!

Size: px
Start display at page:

Download "GRAVITY LAB. This procedure takes you through the law of gravitation to Black Holes in a series of problems you are supposed to solve. Enjoy!"

Transcription

1 GRAVITY LAB This procedure takes you through the law of gravitation to Black Holes in a series of problems you are supposed to solve. Enjoy! 1. Gravitational law of attraction: The gravitational force F g between two spherically symmetric objects of mass m 1 and m 2 is proportional to the product of their masses, and falls off inversely as the square of the distance r between their centers of masses: F = G Nm 1 m 2 r 2 where G N is the Gravitational (or Newton s) Constant. (a) Find the physical dimensions of G N (in terms of [M], [L] & [T]). (b) What is the value for G N? Include proper SI units. (c) Two objects are moved twice their distance apart. The gravitational force between them diminishes by a factor of. They are moved back to a third of their original distance apart. Now the gravitational force between them increases by a factor of.

2 2. The gravitational force between a body of mass m 1 and the Earth, m 2 = M E, is called the weight of the body m 1. But the weight of the body on Earth s surface is also given by F = m 1 g E, where the value with units of g E =. By equating the two expressions for force, find g E in terms of G N, M E, R E. (Thus, knowing the size of the Earth and the acceleration due to gravity, it is possible to weigh the Earth i.e., find its mass. This is how we know the Earth s mass!) As a balloon ascends into the atmosphere, it surface, the smaller the value of. weight, because the higher we go from Earth s 3. The average density ρ E of the Earth is defined to be its mass M E divided by its total volume. Find an expression relating g E to average density and radius of the Earth.

3 Given that g E = 9.8 m/s 2, R E = m, and using the value of G N from Q.1, part(b), find the average density of the Earth. A planet half the radius of the Earth, R P = 1 2 R E, is determined to have (using a pendulum) a g P = 4g E. How does its average density compare to that of Earth s?

4 4. The gravitational force of the Earth causes a Gravitational potential energy on an object of mass m a distance r from the center, where r R E, given by U g (r) = G NM E m. r Derive the (approximate) expression for potential energy at a height h above Earth s surface by evaluating the difference between the gravitational PE at the two places; that is, show that when h << R E, then U g (R E + h) U g (R E ) = G NM E m R E + h ( G NM E m R E ) mg E h. Hint: you would want to employ the Binomial Theorem Approximation, (1 + x) n 1 + nx, provided that x << 1. When you use U g = mg E h in physics problems, you are assuming that height h is compared with R E, and that for this height, g E is.

5 5. The total energy of a body is the sum of its gravitational potential energy and its kinetic energy. Write an expression for the total energy of a satellite orbiting the Earth in a circular orbit at a distance R from Earth s center, where R R E, assuming its orbit speed to be v. Find the satellite s orbit speed v as follows: equate the centripetal force needed for going in a circular orbit to the gravitational force between the satellite and the Earth.

6 Suppose the orbit is completed in time T ; find an expression relating T and R (Kepler s third law of motion!). Geostationary Orbits: When the period of orbit of a satellite coincides with the earth s rotational period, then it is said to be in an orbit that s stationary with respect to earth. (Such a satellite will remain in a fixed location in the sky.) Find the relationship between R and R E for this to happen. Evaluate the height above the earth s surface in kilometers.

7 Ground-hugging Orbits: Find the period of a satellite which barely clears the ground as it orbits the Earth. Determine the speed of such a satellite, and give the answer in both m/s and mph. Substitute back the expression for satellite speed v into the expression for its total energy. You should find that the total energy is always negative, a universal property of gravitating systems. The orbit is called a bound state orbit. The satellite will be trapped in this orbit unless enough extra kinetic energy is given to it to escape.

8 6. Escape velocity. If enough KE is given to an object on Earth s surface to equal its gravitational PE with respect to the Earth, then the body would escape into space without ever falling back. The total energy of the body is zero, and at infinity, its speed will eventually be zero as well. Find escape speed ve e in terms of G N, M E and R E. Find an expression for the velocity of escape, v E e in terms of g E at the surface, & R E. Does the escape velocity depend on the mass of the ejected object? Circle: Y / N Knowing g E & R E compute v E e the escape speed for Earth, in both km/s and miles per second. How long at this speed will an object take to go across continental USA?

9 The Moon is such that R M = 0.27 R E & g M = 1 6 g E. Find the ratio of the escape velocity from the Moon, v M e to that from the Earth v e E. Knowing v E e from the previous question, find v M e in miles/sec.

10 7. An object that is such that even light v e = c = m/s cannot escape from its grasp is called a Black Hole, abbreviated henceforth BH. Take a beam of light of mass m and equate its escape KE to its gravitational PE on the BH surface. This gives a relationship between R BH & M BH that involves in it constants c & G. The spherical surface of radius R BH is called the event horizon of the BH. The more massive a black hole, the is its size. Find R BH for (i) the Earth (ii) the Sun, (iii) the entire Universe. In each case, look up the data for mass M BH of the object as it exists now. Note that the BH radius of the Universe is also the radius of the observable Universe! We live in a big black hole.

11 8. Find a relation between density of BH material and the mass of a black hole. The more massive a black hole, the is its BH material. Evaluate solar BH density. Use M = kg, and R BH as determined in the previous page.

12 For fun, let us find the volume of a rectangular lake with the same mass of water as the mass of one teaspoonful (= 5 cm 3 ) of solar black hole material. If the lake is one mile by one mile square, find its depth. Water density is ρ W = 1.0 gm/cm 3. Show that the surface (i.e., event horizon radius) value of the acceleration due to gravity of a BH is given by g BH = c2 2R BH. Evaluate the radius of a BH for which this is equal to g E = 9.8 m/s 2. Find also its mass in terms of M. The existence of such supermassive black holes proves that statements such as as you enter a black hole, you will be torn apart are not always true. That only applies if the black holes are small. The End. Submit at the rate of 10 extra credit points per page!

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Newton s Gravitational Law

Newton s Gravitational Law 1 Newton s Gravitational Law Gravity exists because bodies have masses. Newton s Gravitational Law states that the force of attraction between two point masses is directly proportional to the product of

More information

PHYSICS 12 NAME: Gravitation

PHYSICS 12 NAME: Gravitation NAME: Gravitation 1. The gravitational force of attraction between the Sun and an asteroid travelling in an orbit of radius 4.14x10 11 m is 4.62 x 10 17 N. What is the mass of the asteroid? 2. A certain

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information

Gravitation. One mark questions.

Gravitation. One mark questions. One mark questions. Gravitation. 01. What is the ratio of force of attraction between two bodies kept in air and the same distance apart in water? Ans- 1:1, because gravitational force is independent of

More information

AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

Explanation: The escape velocity and the orbital velocity for a satellite are given by

Explanation: The escape velocity and the orbital velocity for a satellite are given by 1. A satellite orbits at a height h above the Earth's surface. Let R be the Earth's radius. If Ve is the escape velocity and Vo is the orbital velocity of the satellite orbiting at a height h

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

PHYSICS CLASS XI CHAPTER 8 GRAVITATION

PHYSICS CLASS XI CHAPTER 8 GRAVITATION PHYSICS CLASS XI CHAPTER 8 GRAVITATION Q.1. Can we determine the mass of a satellite by measuring its time period? Ans. No, we cannot determine the mass of a satellite by measuring its time period. Q.2.

More information

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness Chapter 5 Part 2 Newton s Law of Universal Gravitation, Satellites, and Weightlessness Newton s ideas about gravity Newton knew that a force exerted on an object causes an acceleration. Most forces occurred

More information

07. GRAVITATION. Questions and Answers

07. GRAVITATION. Questions and Answers CLASS-09 07. GRAVITATION Questions and Answers PHYSICAL SCIENCES 1. A car moves with a constant speed of 10 m/s in a circular path of radius 10 m. The mass of the car is 1000 Kg. Who or What is providing

More information

Name. Satellite Motion Lab

Name. Satellite Motion Lab Name Satellite Motion Lab Purpose To experiment with satellite motion using an interactive simulation in order to gain an understanding of Kepler s Laws of Planetary Motion and Newton s Law of Universal

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 13. Newton s Theory of Gravity The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under the influence of gravity. Chapter Goal: To use Newton

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

Gravitational Potential Energy. The Gravitational Field. Grav. Potential Energy Work. Grav. Potential Energy Work

Gravitational Potential Energy. The Gravitational Field. Grav. Potential Energy Work. Grav. Potential Energy Work The Gravitational Field Exists at every point in space The gravitational force experienced by a test particle placed at that point divided by the mass of the test particle magnitude of the freefall acceleration

More information

Circular Motion and Gravitation

Circular Motion and Gravitation Chapter 6 Circular Motion and Gravitation To understand the dynamics of circular motion. To study the application of circular motion as it applies to Newton's law of gravitation. To examine the idea of

More information

Steve Smith Tuition: Physics Notes

Steve Smith Tuition: Physics Notes Steve Smith Tuition: Physics Notes E = mc 2 F = GMm sin θ m = mλ d hν = φ + 1 2 mv2 Static Fields IV: Gravity Examples Contents 1 Gravitational Field Equations 3 1.1 adial Gravitational Field Equations.................................

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force.

Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force. Lesson 9: Universal Gravitation and Circular Motion Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force.

More information

Questions Chapter 13 Gravitation

Questions Chapter 13 Gravitation Questions Chapter 13 Gravitation 13-1 Newton's Law of Gravitation 13-2 Gravitation and Principle of Superposition 13-3 Gravitation Near Earth's Surface 13-4 Gravitation Inside Earth 13-5 Gravitational

More information

Slide 1 / The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank Christian Huygens

Slide 1 / The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank Christian Huygens Slide 1 / 22 1 The discovery of Universal Gravitation is associated with: Robert Hook Isaac Newton James Joule Max Plank hristian Huygens Slide 2 / 22 2 Two objects with equal masses of 1 kg each are separated

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Chapter 6 Gravitation and Newton s Synthesis

Chapter 6 Gravitation and Newton s Synthesis Chapter 6 Gravitation and Newton s Synthesis If the force of gravity is being exerted on objects on Earth, what is the origin of that force? Newton s realization was that the force must come from the Earth.

More information

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello!

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello! PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant.

Explain how it is possible for the gravitational force to cause the satellite to accelerate while its speed remains constant. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Universal Law of Gravitation in words (b) A satellite of mass (m) moves in orbit of a planet with mass (M).

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

GRAVITATION CONCEPTUAL PROBLEMS

GRAVITATION CONCEPTUAL PROBLEMS GRAVITATION CONCEPTUAL PROBLEMS Q-01 Gravitational force is a weak force but still it is considered the most important force. Why? Ans Gravitational force plays an important role for initiating the birth

More information

Physics 201, Lecture 23

Physics 201, Lecture 23 Physics 201, Lecture 23 Today s Topics n Universal Gravitation (Chapter 13) n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (13.4) n Gravitational Potential Energy (13.5)

More information

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height Physics 01, Lecture Today s Topics n Universal Gravitation (Chapter 1 n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (1.4 n Gravitational Potential Energy (1.5 n Escape

More information

Science Unit Test Grade: 8 Unit 6: Gravity

Science Unit Test Grade: 8 Unit 6: Gravity Science Unit Test Grade: 8 Unit 6: Gravity Name Date 1. Which of these is best used to measure weight in newtons? a. Spring scale b. Triple beam balance c. Double pan balance d. Simple lever 2. Which of

More information

Chapter 6: Circular Motion and Gravitation

Chapter 6: Circular Motion and Gravitation Chapter 6 Lecture Chapter 6: Circular Motion and Gravitation Goals for Chapter 6 To understand the dynamics of circular motion. To study the unique application of circular motion as it applies to Newton's

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

9.2 Worksheet #3 - Circular and Satellite Motion

9.2 Worksheet #3 - Circular and Satellite Motion 9.2 Worksheet #3 - Circular and Satellite Motion 1. A car just becomes airborne as it comes off the crest of a bridge that has circular cross section of radius 78.0 m. What is the speed of the car? 2.

More information

Part I Multiple Choice (4 points. ea.)

Part I Multiple Choice (4 points. ea.) ach xam usually consists of 10 ultiple choice questions which are conceptual in nature. They are often based upon the assigned thought questions from the homework. There are also 4 problems in each exam,

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Orbits. Objectives. Orbits and unbalanced forces. Equations 4/7/14

Orbits. Objectives. Orbits and unbalanced forces. Equations 4/7/14 Orbits Objectives Describe and calculate how the magnitude of the gravitational force between two objects depends on their masses and the distance between their centers. Analyze and describe orbital circular

More information

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes 1. Use Law of Universal Gravitation to solve problems involving different masses. 2. Determine changes in gravitational and kinetic

More information

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Unit 5 Gravitation Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion Into to Gravity Phet Simulation Today: Make sure to collect all data. Finished lab due tomorrow!! Universal Law

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

review of angle measure in degrees and radians; remember that the radian is a "unitless" unit

review of angle measure in degrees and radians; remember that the radian is a unitless unit Ch6 Page 1 Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, 2013 10:00 PM Circular Motion rotational kinematics angular position measured in degrees or radians review of angle measure

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

Gravitation_AHL_P1. 1. [1 mark]

Gravitation_AHL_P1. 1. [1 mark] Gravitation_AHL_P1 1. [1 mark] The diagram shows 5 gravitational equipotential lines. The gravitational potential on each line is indicated. A point mass m is placed on the middle line and is then released.

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

7 - GRAVITATION Page 1 ( Answers at the end of all questions )

7 - GRAVITATION Page 1 ( Answers at the end of all questions ) 7 - GRAVITATION Page 1 1 ) The change in the value of g at a height h above the surface of the earth is the same as at a depth d below the surface of earth. When both d and h are much smaller than the

More information

Weightlessness and satellites in orbit. Orbital energies

Weightlessness and satellites in orbit. Orbital energies Weightlessness and satellites in orbit Orbital energies Review PE = - GMm R v escape = 2GM E R = 2gR E Keppler s law: R3 = GM s T 2 4π 2 Orbital Motion Orbital velocity escape velocity In orbital motion

More information

CHAPTER 7 GRAVITATION

CHAPTER 7 GRAVITATION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 7 GRAVITATION Day Plans for the day Assignments for the day 1 7.1 Planetary Motion & Gravitation Assignment

More information

Gravity. The Universal Force

Gravity. The Universal Force Gravity The Universal Force Universal Gravitation What is gravity? Gravity makes things fall Gravity makes bubbles rise Gravity made the earth round, and makes the stars shine, but WHAT IS GRAVITY??? Universal

More information

Fig Explain how the lift force L maintains the aeroplane flying in a horizontal circle [2]

Fig Explain how the lift force L maintains the aeroplane flying in a horizontal circle [2] 1 (a) Fig. 2.1 shows an aeroplane flying in a horizontal circle at constant speed. The weight of the aeroplane is W and L is the lift force acting at right angles to the wings. L centre of circle aeroplane

More information

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf =

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf = PHY 302 K. Solutions for problem set #9. Non-textbook problem #1: (a) Rotation frequency of 1 Hz means one revolution per second, or 60 revolutions per minute (RPM). The pre-lp vinyl disks rotated at 78

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation e = c/a A note about eccentricity For a circle c = 0 à e = 0 a Orbit Examples Mercury has the highest eccentricity of any planet (a) e Mercury = 0.21 Halley s comet has an orbit

More information

Physics Mechanics Lecture 30 Gravitational Energy

Physics Mechanics Lecture 30 Gravitational Energy Physics 170 - Mechanics Lecture 30 Gravitational Energy Gravitational Potential Energy Gravitational potential energy of an object of mass m a distance r from the Earth s center: Gravitational Potential

More information

9.2 GRAVITATIONAL FIELD, POTENTIAL, AND ENERGY 9.4 ORBITAL MOTION HW/Study Packet

9.2 GRAVITATIONAL FIELD, POTENTIAL, AND ENERGY 9.4 ORBITAL MOTION HW/Study Packet 9.2 GRAVITATIONAL FIELD, POTENTIAL, AND ENERGY 9.4 ORBITAL MOTION HW/Study Packet Required: READ Hamper pp 186-191 HL Supplemental: Cutnell and Johnson, pp 144-150, 169-170 Tsokos, pp 143-152 Tsokos Questions

More information

4.3 Conservation Laws in Astronomy

4.3 Conservation Laws in Astronomy 4.3 Conservation Laws in Astronomy Our goals for learning: Why do objects move at constant velocity if no force acts on them? What keeps a planet rotating and orbiting the Sun? Where do objects get their

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation 13.2 Newton s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G =6.67 x10 11 Nm 2 /kg 2

More information

Quest Chapter 12. What things did Newton bring together and what did he toss? Read the text or check your notes. How does the moon move?

Quest Chapter 12. What things did Newton bring together and what did he toss? Read the text or check your notes. How does the moon move? 1 What is the Newtonian synthesis? 1. All objects near the Earth free-fall with the same acceleration. 2. The combination of forces on each planet directed towards the Sun 3. The combination of all forces

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

INTRODUCTION: Ptolemy geo-centric theory Nicolas Copernicus Helio-centric theory TychoBrahe Johannes Kepler

INTRODUCTION: Ptolemy geo-centric theory Nicolas Copernicus Helio-centric theory TychoBrahe Johannes Kepler INTRODUCTION: Ptolemy in second century gave geo-centric theory of planetary motion in which the Earth is considered stationary at the centre of the universe and all the stars and the planets including

More information

AP Physics 1 Multiple Choice Questions - Chapter 7

AP Physics 1 Multiple Choice Questions - Chapter 7 1 A grindstone increases in angular speed from 4.00 rad/sec to 12.00 rad/sec in 4.00 seconds. Through what angle does it turn during that time if the angular acceleration is constant? a 8.00 rad b 12.0

More information

Lecture 9 Chapter 13 Gravitation. Gravitation

Lecture 9 Chapter 13 Gravitation. Gravitation Lecture 9 Chapter 13 Gravitation Gravitation UNIVERSAL GRAVITATION For any two masses in the universe: F = Gm 1m 2 r 2 G = a constant evaluated by Henry Cavendish +F -F m 1 m 2 r Two people pass in a hall.

More information

Chapter 9. Gravitation

Chapter 9. Gravitation Chapter 9 Gravitation 9.1 The Gravitational Force For two particles that have masses m 1 and m 2 and are separated by a distance r, the force has a magnitude given by the same magnitude of force acts on

More information

Circular Motion. Gravitation

Circular Motion. Gravitation Circular Motion Gravitation Circular Motion Uniform circular motion is motion in a circle at constant speed. Centripetal force is the force that keeps an object moving in a circle. Centripetal acceleration,

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity Gravity and Orbits Objectives Clarify a number of basic concepts Speed vs. velocity Acceleration, and its relation to force Momentum and angular momentum Gravity Understand its basic workings Understand

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct

More information

/////// ///////////// Module ONE /////////////// ///////// Space

/////// ///////////// Module ONE /////////////// ///////// Space // // / / / / //// / ////// / /// / / // ///// ////// ////// Module ONE Space 1 Gravity Knowledge and understanding When you have finished this chapter, you should be able to: define weight as the force

More information

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units

Name Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units Example Problems 12.1 E1. Doc Fizzix, whose mass is 65.0 kg, is doing a physics demonstration at the front of the classroom. How much gravitational force does Doc Fizzix exert on Rob, whose mass is 55

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

Please turn on your clickers

Please turn on your clickers Please turn on your clickers HW #1, due 1 week from today Quiz in class Wednesday Sections meet in Planetarium Honors meeting tonight in my office Sterling 5520 at 5:30-6pm Newton s First Law An object

More information

5.24 Page 1. Universal gravitational constant. acceleration of apple. kgs

5.24 Page 1. Universal gravitational constant. acceleration of apple. kgs 5.24 Page 1 5.24 F N Force of gravity G 6.673 10 11 m 3 m 1 0.20 kg Mass of apple m earth 5.98 10 24 kg Mass of the earth r earth 6.38 10 6 m Radius of the earth a m s 2 acceleration of apple F = G m 1

More information

Advanced Higher Physics

Advanced Higher Physics Wallace Hall Academy Physics Department Advanced Higher Physics Astrophysics Problems Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration g 9.8 m s -2 Radius of Earth R E 6.4

More information

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle ics Tuesday, ember 9, 2004 Ch 12: Ch 15: Gravity Universal Law Potential Energy Kepler s Laws Fluids density hydrostatic equilibrium Pascal s Principle Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

Question 1. GRAVITATION UNIT H.W. ANS KEY

Question 1. GRAVITATION UNIT H.W. ANS KEY Question 1. GRAVITATION UNIT H.W. ANS KEY Question 2. Question 3. Question 4. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as

More information

Gravitation. Objectives. The apple and the Moon. Equations 6/2/14. Describe the historical development of the concepts of gravitational force.

Gravitation. Objectives. The apple and the Moon. Equations 6/2/14. Describe the historical development of the concepts of gravitational force. Gravitation Objectives Describe the historical development of the concepts of gravitational force. Describe and calculate how the magnitude of the gravitational force between two objects depends on their

More information

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out Why Doesn t the oon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out of the equation for the force of gravity? ii. How does

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

CHAPTER 10 TEST REVIEW

CHAPTER 10 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 10 TEST REVIEW 1. A spacecraft travels away from Earth in a straight line with its motors shut

More information

Momentum and Impulse. Prefixes. Impulse F * t = delta(mv) / t OR area under Force time graph

Momentum and Impulse. Prefixes. Impulse F * t = delta(mv) / t OR area under Force time graph Momentum and Impulse 2 of 20 How do we calculate momentum (P)? P = m * v Newton's first and second laws: An object remains at rest or in uniform motion unless acted on by a force Rate of change of momentum

More information

Today. Laws of Motion. Conservation Laws. Gravity. tides

Today. Laws of Motion. Conservation Laws. Gravity. tides Today Laws of Motion Conservation Laws Gravity tides Newton s Laws of Motion Our goals for learning: Newton s three laws of motion Universal Gravity How did Newton change our view of the universe? He realized

More information

Question 8.1: the following: (a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting

More information

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives:

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives: AP Physics-B Universal Gravitation Introduction: Astronomy is the oldest science. Practical needs and imagination acted together to give astronomy an early importance. For thousands of years, the motions

More information

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Special Relativity: The laws of physics must be the same in all inertial reference frames. Special Relativity: The laws of physics must be the same in all inertial reference frames. Inertial Reference Frame: One in which an object is observed to have zero acceleration when no forces act on it

More information

Chapter 3 Celestial Sphere Movie

Chapter 3 Celestial Sphere Movie Chapter 3 Celestial Sphere Movie Gravity and Motion Projects I moved due-date for Part 1 to 10/21 I added a descriptive webpage about the projects. Preview Ch 1 Ch 2 Galileo Movie Essay 1: Backyard Astronomy

More information

[2] Explain why values of gravitational potential near to an isolated mass are all negative [3]

[2] Explain why values of gravitational potential near to an isolated mass are all negative [3] 1 (a) Define gravitational potential.... [2] (b) Explain why values of gravitational potential near to an isolated mass are all negative.... [3] (c) The Earth may be assumed to be an isolated sphere of

More information

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Newton s Law of Universal Gravitation

More information

Lecture 23 (Gravitation, Potential Energy and Gauss s Law; Kepler s Laws) Physics Spring 2017 Douglas Fields

Lecture 23 (Gravitation, Potential Energy and Gauss s Law; Kepler s Laws) Physics Spring 2017 Douglas Fields Lecture 23 (Gravitation, Potential Energy and Gauss s Law; Kepler s Laws) Physics 160-02 Spring 2017 Douglas Fields Gravitational Force Up until now, we have said that the gravitational force on a mass

More information

Algebra Based Physics Newton's Law of Universal Gravitation

Algebra Based Physics Newton's Law of Universal Gravitation Algebra Based Physics Newton's Law of Universal Gravitation 2016 01 19 www.njctl.org Newton's Law of Universal Gravitation Gravitational Force Click on the topic to go to that section Gravitational Field

More information

Rotational Motion Examples:

Rotational Motion Examples: Rotational Motion Examples: 1. A 60. cm diameter wheel rotates through 50. rad. a. What distance will it move? b. How many times will the wheel rotate in this time? 2. A saw blade is spinning at 2000.

More information

Acceleration in Uniform Circular Motion

Acceleration in Uniform Circular Motion Acceleration in Uniform Circular Motion The object in uniform circular motion has a constant speed, but its velocity is constantly changing directions, generating a centripetal acceleration: a c v r 2

More information

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

More information