Circular Motion. Gravitation

Size: px
Start display at page:

Download "Circular Motion. Gravitation"

Transcription

1 Circular Motion Gravitation

2 Circular Motion Uniform circular motion is motion in a circle at constant speed. Centripetal force is the force that keeps an object moving in a circle. Centripetal acceleration, or radial acceleration, is the acceleration toward the center of the circular path. The period is the time it takes for one complete revolution.

3 Circular Motion A revolution is one trip around the path. A rotation is one turn on an axis. Circular motion can be described in linear terms or in rotational terms. Both are effective at describing the motion but the units are different.

4 Circular Motion Linear distance d m velocity v m/s acceleration a m/s 2 time t s Rotational distance θ rad velocity ω rad/s acceleration α rad/s 2 time t s

5 Conversions from linear to rotational Θ = d/r ω = v/r α = a/r

6 Linear Equations of Rotational Motion V = 2πr/T where T is the period. F c = ma c a c = v 2 /r Thus, F c = mv 2 /r And F c = m(4π 2 r/t 2)

7 Dynamics of Uniform Circular Motion Ball moving in a vertical circle. F T mg F T Ball moving in a horizontal circle. mg F c

8 Dynamics of Uniform Circular Motion For an object moving in a horizontal circle F T = F c. Gravity and tension provide the centripetal acceleration. For an object moving in a vertical circle At the top of the circle F T + mg = ma c At the bottom of the circle F T - mg = ma c Tension and gravity acting in opposite directions provide the centripetal acceleration. The minimum speed will be obtained when the tension is zero so (gr) 1/2 = v min

9 Dynamics of Uniform Circular Motion If the object is moving in a vertical circle then T = 2π(length/g) 1/2 If the object is moving in a horizontal circle then T = 2π(lcosθ/g) 1/2

10 A Car Rounding a Curve F N F f a F g

11 Car Rounding a Banked Curve y x F N F g

12 Nonuniform Circular Motion If the net force is not directed toward the center but is at an angle, the force has two components. The component directed toward the center gives the centripetal acceleration and keeps the object going in a circle. The component tangent to the circle acts to increase or decrease the speed and gives the tangential acceleration.

13 Changing Circular Motion Torque, τ, plays the role of force in circular motion. Torque is equal to the product of the force and the lever arm distance which is perpendicular to the applied force. In some respects, it is like work. The formula is τ = F x d

14 Newton s Law of Universal Gravitation According to the Greeks, objects have a builtin desire to fall. According to Galileo and Newton, a force called gravity exists. It is an attractive force between the Earth and other objects. Newton studied the motion of the planets and the moon. He wondered what kept the moon in its orbit around the Earth. The idea that gravity extends throughout the universe is credited to Newton who is said to thought of it when an apple fell on his head.

15 The Falling Moon Newton compared the falling apple to the falling moon. The moon falls in the sense that it falls below the straight line path that inertia would carry it on if no forces were acting on it. He used a cannonball example to prove his point. The cannonball eventually would have tangential velocity sufficient to carry it around the earth.

16 The Falling Moon Newton tested his hypothesis by reasoning that the mass of an object should not affect how it falls. How far an object falls should only relate to its distance from Earth s center. In fact, it is related to the square of the distance from Earth s center. The moon accelerates to the Earth at about 1/3600 g.

17 The Falling Earth Why does the earth not crash into the sun? Which attraction is greater, the sun for the earth or the earth for the sun? If there is an attraction for all objects, why do we not feel gravitated towards large buildings and other massive objects?

18 Newton s Law of Universal Gravitation Newton s Law states that every object attracts every other object with a force that is directly proportional to the mass of each object. He also deduced that the force decreases as the square of the distance between the objects increases. F = Gm 1 m 2 /d 2, where G is the universal gravitation constant, 6.67 x Nm 2 /kg 2. The gravitation constant was measured by Henry Cavendish.

19 Gravitational Interactions The value for g of a planet can be found by g = GM/r 2, where G is the universal gravitation constant, M is the mass of the planet, and r is the planet s radius. The acceleration of objects on the surface of the moon is only 1/6 of 9.8 m/s 2. Is it correct to say that the mass of the moon is therefore 1/6 the mass of Earth? The value of v for an object can be found by v = (Gm/r) 1/2

20 Newton s Law of Universal Gravitation The force between you and any object is usually very small. The force of attraction between you and the earth is. Your weight depends on your distance from the center of the earth. The closer you are to the center, the smaller will be your weight. This is due to the change in the mass and radius of the planet. Cavendish went so far as to mass the earth. Its mass is 5.98 x kg.

21 Newton s Law of Universal Gravitation The distance that an object is from the center of the Earth affects its acceleration due to gravity. Earth s radius is 6.38 x 10 6 m. That is the average radius. If one is on a mountain that is very high, its height must be taken into consideration.

22 Gravitational Interactions A force field exerts a force on objects in its vicinity. A field is represented by field lines. Where the lines are closer together, the field is stronger. A gravitational field for a planet is represented by vectors which point to the center of mass.

23 Weight and Weightlessness Suppose you weighed in an elevator. What would be your weight if the elevator accelerated downward? What would be your weight if the elevator accelerated upward? What would be your weight if the elevator was not accelerating? What would be your weight if the elevator cable broke and the elevator fell freely?

24 Weight and Weightlessness Weight then is the force that you exert against a support. Weightlessness then becomes the absence of a supporting force.

25 History Tycho Brahe spent his life accurately predicting astronomical events. He believed that the Earth was the center of the universe. His protege Johannes Kepler believed that the sun was the center of the universe. He formulated 3 laws based on his observations of the motions of the planets.

26 Kepler s Laws First Law: The paths of the planets are ellipses with the center of the sun at one focus. Second Law: An imaginary line from the sun to a planet sweeps out equal areas in equal time intervals. Thus planets move fastest when they are closest to the sun. Third Law: The ratio of the squares of the periods of any two planets revolving about the sun is equal to the ratio of the cubes of their average distances from the sun.

27 Types of Forces Four fundamental forces Gravitational force Electromagnetic force Strong nuclear force Weak nuclear force Grand Unification Theory So far the electromagnetic force and the weak nuclear force have been united into the electroweak force.

28 Simple Harmonic Motion If the restoring force varies linearly with the displacement, the motion is said to be SHM. Period and amplitude are used to describe this motion. Period is the time required for one complete cycle. Amplitude is the maximum displacement an object moves from its equilibrium position.

29 Springs F = kx KE = 1/2 k x 2

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Newton s Law of Universal Gravitation

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness Chapter 5 Part 2 Newton s Law of Universal Gravitation, Satellites, and Weightlessness Newton s ideas about gravity Newton knew that a force exerted on an object causes an acceleration. Most forces occurred

More information

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

7.4 Universal Gravitation

7.4 Universal Gravitation Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 11 Last Lecture Angular velocity, acceleration " = #$ #t = $ f %$ i t f % t i! = " f # " i t!" #!x $ 0 # v 0 Rotational/ Linear analogy "s = r"# v t = r" $ f

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that

More information

12/1/2014. Chapter 5 Circular Motion; Gravitation. Contents of Chapter 5. Contents of Chapter Kinematics of Uniform Circular Motion

12/1/2014. Chapter 5 Circular Motion; Gravitation. Contents of Chapter 5. Contents of Chapter Kinematics of Uniform Circular Motion Lecture PowerPoints Chapter 5 Physics: Principles with Applications, 7 th edition Giancoli Chapter 5 Circular Motion; Gravitation This work is protected by United States copyright laws and is provided

More information

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives:

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives: AP Physics-B Universal Gravitation Introduction: Astronomy is the oldest science. Practical needs and imagination acted together to give astronomy an early importance. For thousands of years, the motions

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

Chapter 9. Gravitation

Chapter 9. Gravitation Chapter 9 Gravitation 9.1 The Gravitational Force For two particles that have masses m 1 and m 2 and are separated by a distance r, the force has a magnitude given by the same magnitude of force acts on

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration 3. Going around a curve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac 2. Slowing down v velocity and acceleration

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration! Δv! aavg t 3. Going around urve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac. Slowing down v velocity and

More information

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Nonuniform Circular Motion Centrifugation

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

Chapter 8 - Gravity Tuesday, March 24 th

Chapter 8 - Gravity Tuesday, March 24 th Chapter 8 - Gravity Tuesday, March 24 th Newton s law of gravitation Gravitational potential energy Escape velocity Kepler s laws Demonstration, iclicker and example problems We are jumping backwards to

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

CH 8. Universal Gravitation Planetary and Satellite Motion

CH 8. Universal Gravitation Planetary and Satellite Motion CH 8 Universal Gravitation Planetary and Satellite Motion Sir Isaac Newton UNIVERSAL GRAVITATION Newton: Universal Gravitation Newton concluded that earthly objects and heavenly objects obey the same physical

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

This Week. 2/3/14 Physics 214 Fall

This Week. 2/3/14 Physics 214 Fall This Week Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The tides, Dark matter, Space Elevator 2/3/14 Physics 214 Fall

More information

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

Chapter 5 Review : Circular Motion; Gravitation

Chapter 5 Review : Circular Motion; Gravitation Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration

More information

Circular Motion 1

Circular Motion 1 --------------------------------------------------------------------------------------------------- Circular Motion 1 ---------------------------------------------------------------------------------------------------

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The tides, Dark matter, Space Elevator 7/29/2010 Physics 214

More information

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation LEARNING OBJECTIVES Topic 6 The Killers 1. Centripetal Force 2. Newton s Law of Gravitation 3. Gravitational Field Strength ROOKIE MISTAKE! Always remember. the

More information

University Physics 226N/231N Old Dominion University. More Circular Motion, then Newton s Laws

University Physics 226N/231N Old Dominion University. More Circular Motion, then Newton s Laws University Physics 226N/231N Old Dominion University More Circular Motion, then Newton s Laws Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-odu Wednesday, September

More information

Newton s Gravitational Law

Newton s Gravitational Law 1 Newton s Gravitational Law Gravity exists because bodies have masses. Newton s Gravitational Law states that the force of attraction between two point masses is directly proportional to the product of

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17 Lesson 9 Physics 168 1 Static Equilibrium 2 Conditions for Equilibrium An object with forces acting on it but that is not moving is said to be in equilibrium 3 Conditions for Equilibrium (cont d) First

More information

Gravitation. Objectives. The apple and the Moon. Equations 6/2/14. Describe the historical development of the concepts of gravitational force.

Gravitation. Objectives. The apple and the Moon. Equations 6/2/14. Describe the historical development of the concepts of gravitational force. Gravitation Objectives Describe the historical development of the concepts of gravitational force. Describe and calculate how the magnitude of the gravitational force between two objects depends on their

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

7 Study Guide. Gravitation Vocabulary Review

7 Study Guide. Gravitation Vocabulary Review Date Period Name CHAPTER 7 Study Guide Gravitation Vocabulary Review Write the term that correctly completes the statement. Use each term once. Kepler s second law Newton s law of universal gravitation

More information

4 th week of Lectures Jan. 29. Feb

4 th week of Lectures Jan. 29. Feb 4 th week of Lectures Jan. 29. Feb. 02. 2018. Circular motion Going around the bend Riding in a Ferris wheel Gravitation Our solar system, satellites The tides 1/31/2018 Physics 214 Spring 2018 1 The Greatest

More information

Acceleration in Uniform Circular Motion

Acceleration in Uniform Circular Motion Acceleration in Uniform Circular Motion The object in uniform circular motion has a constant speed, but its velocity is constantly changing directions, generating a centripetal acceleration: a c v r 2

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Johannes Kepler Johannes Kepler was a German mathematician, astronomer and astrologer, and key figure in the 17th century Scientific revolution. He is best known for his laws of planetary

More information

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

More information

Physics Test 7: Circular Motion page 1

Physics Test 7: Circular Motion page 1 Name Physics Test 7: Circular Motion page 1 hmultiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. The SI unit of angular speed

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

Lecture 7 Jan

Lecture 7 Jan Lecture 7 Jan. 27.2016. Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The tides, Dark matter, Space Elevator 1/27/2016

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

Exercises The Falling Apple (page 233) 13.2 The Falling Moon (pages )

Exercises The Falling Apple (page 233) 13.2 The Falling Moon (pages ) Exercises 13.1 The Falling Apple (page 233) 1. Describe the legend of Newton s discovery that gravity extends throughout the universe. 2. Newton understood the concept of, developed by Galileo, that without

More information

Important: This test consists of 15 multiple choice problems, each worth points.

Important: This test consists of 15 multiple choice problems, each worth points. Physics 214 Practice Exam 1 C Fill in on the OPSCAN sheet: 1) Name 2) Student identification number 3) Exam number as 01 4) Sign the OPSCAN sheet Important: This test consists of 15 multiple choice problems,

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Topic 6: Circular motion and gravitation 6.2 Newton s law of gravitation

Topic 6: Circular motion and gravitation 6.2 Newton s law of gravitation Topic 6: Circular motion and gravitation 6.2 Newton s law of gravitation Essential idea: The Newtonian idea of gravitational force acting between two spherical bodies and the laws of mechanics create a

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lecture 1a: Satellite Orbits Meteorological Satellite Orbits LEO view GEO view Two main orbits of Met Satellites: 1) Geostationary Orbit (GEO) 1) Low Earth Orbit (LEO) or polar orbits Orbits of meteorological

More information

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy When something changes its velocity The rate of change of velocity of a moving object. Can result from a change in speed and/or a change in direction On surface of earth, value is 9.8 ms-²; increases nearer

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity Welcome back to Physics 211 Today s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 211 Spring 2014 Lecture 14-1 1 Gravity Before 1687, large amount of data collected

More information

Lecture PowerPoints. Chapter 6 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 6 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

This Week. 5/27/2015 Physics 214 Summer

This Week. 5/27/2015 Physics 214 Summer This Week Circular motion Going round the bend Riding in a ferris wheel, the vomit comet Gravitation Our solar system, satellites (Direct TV) The orbit of the Earth,tides, Dark matter 5/27/2015 Physics

More information

INTRODUCTION: Ptolemy geo-centric theory Nicolas Copernicus Helio-centric theory TychoBrahe Johannes Kepler

INTRODUCTION: Ptolemy geo-centric theory Nicolas Copernicus Helio-centric theory TychoBrahe Johannes Kepler INTRODUCTION: Ptolemy in second century gave geo-centric theory of planetary motion in which the Earth is considered stationary at the centre of the universe and all the stars and the planets including

More information

Chapter 6 Gravitation and Newton s Synthesis

Chapter 6 Gravitation and Newton s Synthesis Chapter 6 Gravitation and Newton s Synthesis If the force of gravity is being exerted on objects on Earth, what is the origin of that force? Newton s realization was that the force must come from the Earth.

More information

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth.

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth. The path of an Earth satellite follows the curvature of the Earth. A stone thrown fast enough to go a horizontal distance of 8 kilometers during the time (1 second) it takes to fall 5 meters, will orbit

More information

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D) A 1500 kg car travels at a constant speed of 22 m/s around a circular track which has a radius of 80 m. Which statement is true concerning this car? A) The velocity of the car is changing. B) The car is

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: Gravity 15-2 1 Current assignments HW#15 due Monday, 12/12 Final Exam, Thursday, Dec. 15 th, 3-5pm in 104N. Two sheets of handwritten notes and a calculator

More information

Chapter 3 Celestial Sphere Movie

Chapter 3 Celestial Sphere Movie Chapter 3 Celestial Sphere Movie Gravity and Motion Projects I moved due-date for Part 1 to 10/21 I added a descriptive webpage about the projects. Preview Ch 1 Ch 2 Galileo Movie Essay 1: Backyard Astronomy

More information

Blueberry Muffin Nov. 29/30, 2016 Period: Names:

Blueberry Muffin Nov. 29/30, 2016 Period: Names: Blueberry Muffin Nov. 9/30, 016 Period: Names: Congratulations! 1. To solve the problems, use your etextbook, physical textbooks, physics websites, your Sketchbooks.. Show your thinking through calculations,

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

Chapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Chapter 7 & 8 Prep Test: Circular Motion and Gravitation

Chapter 7 & 8 Prep Test: Circular Motion and Gravitation Chapter 7 & 8 Prep Test: Circular Motion and Gravitation Multiple Choice Identify the choice that best completes the statement or answers the question. A monkey rides a tricycle in a circular path with

More information

Physics 101 Discussion Week 12 Explanation (2011)

Physics 101 Discussion Week 12 Explanation (2011) Physics 101 Discussion Week 12 Eplanation (2011) D12-1 Horizontal oscillation Q0. This is obviously about a harmonic oscillator. Can you write down Newton s second law in the (horizontal) direction? Let

More information

An object moving in a circle with radius at speed is said to be undergoing.

An object moving in a circle with radius at speed is said to be undergoing. Circular Motion Study Guide North Allegheny High School Mr. Neff An object moving in a circle with radius at speed is said to be undergoing. In this case, the object is because it is constantly changing

More information

Midterm 3 Thursday April 13th

Midterm 3 Thursday April 13th Welcome back to Physics 215 Today s agenda: rolling friction & review Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2017 Lecture 13-1 1 Midterm 3 Thursday April 13th

More information

Version 001 circular and gravitation holland (2383) 1

Version 001 circular and gravitation holland (2383) 1 Version 00 circular and gravitation holland (383) This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. AP B 993 MC

More information

Physics General Physics. Lecture 8 Planetary Motion. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 8 Planetary Motion. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 8 Planetary Motion Fall 2016 Semester Prof. Matthew Jones 1 First Midterm Exam Tuesday, October 4 th, 8:00-9:30 pm Location: PHYS 112 and WTHR 200. Covering material

More information

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Name Class Date. height. Which ball would land first according to Aristotle? Explain. Skills Worksheet Directed Reading A Section: Gravity and Motion 1. Suppose a baseball and a marble are dropped at the same time from the same height. Which ball would land first according to Aristotle?

More information

Circular motion, Center of Gravity, and Rotational Mechanics

Circular motion, Center of Gravity, and Rotational Mechanics Circular motion, Center of Gravity, and Rotational Mechanics Rotation and Revolution Every object moving in a circle turns around an axis. If the axis is internal to the object (inside) then it is called

More information

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Lecture Outline Chapter 13 Gravity Slide 13-1 The plan Lab this week: exam problems will put problems on mastering for chapters without HW; will also go over exam 2 Final coverage: now posted; some sections/chapters

More information

The Acceleration of Gravity (g)

The Acceleration of Gravity (g) The Acceleration of Gravity (g) Galileo demonstrated that g is the same for all objects, regardless of their mass! Confirmed by Apollo astronauts on the Moon, where there is no air resistance. https://www.youtube.com/watch?v=5c5_doeyafk

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information