Intelligent Systems I 08 SVM

Size: px
Start display at page:

Download "Intelligent Systems I 08 SVM"

Transcription

1 Itelliget Systems I 08 SVM Stefa Harmelig & Philipp Heig 12. December 2013 Max Plack Istitute for Itelliget Systems Dptmt. of Empirical Iferece 1 / 30

2 Your feeback Ejoye most Laplace approximatio gettig away from Bayes ituitio, geometry of SVM explaatios o the boar Ejoye least Laplace approximatio o break too much text o the slies most of it lack of syc with Philipp s explaatios too fast over the ormal/o-ormal stuff of regressio/classificatio 2 / 30

3 Support Vector Machie (1) Classificatio problem: give patters x 1,..., x N R M a class labels y 1,..., y N {+1, 1} fi a rule that preicts the label y of ew patter x. We cosier three cases: 1. Liearly separable case 2. Liearly o-separable case 3. No-liear case (kerel trick) 3 / 30

4 Support Vector Machie (2) separable case Schölkopf/Smola, 1.4 Classificatio problem: give patters x 1,..., x N R M a class labels y 1,..., y N {+1, 1} fi a rule that preicts the label y of ew patter x. Cosier the class of hyperplaes: <w, x>+b = w T x + b = 0 where w R M, b R Decisio fuctios base o the hyperplaes: f(x) = sg(<w, x>+b) = { +1 if <w, x>+b 0 1 otherwise 4 / 30

5 Support Vector Machie (3) separable case Schölkopf/Smola, 1.4, Rasmusse/Williams 6.4 Fuctioal margi of sigle example: γ i = y i (<w, x i >+b) γ i > 0 iff f(x i ) = y i, i.e. correctly classifie sg(<w, x>+b) = sg(c<w, x>+cb) for ay c > 0 i.e. scalig of (w, b) is arbitrary for a separatig (w, b) with γ i > 0, assume a scalig such that mi i γ i = 1 such a scale (w, b) is calle caoical form of the hyperplae Geometrical margi of sigle example: γ i = γ i / w γ i is the istace of x i to the hyperplae 5 / 30

6 Support Vector Machie (4) separable case Schölkopf/Smola, 1.4, Rasmusse/Williams 6.4 Geometrical margi of ataset: γ = mi γ i = mi γ i / w i i for a caoical separatig hyperplae the geometrical margi is 1/ w Fi a caoical separatig hyperplae with maximal margi: miimize 1 2 w 2 over (w, b) subject to y i (<w, x i >+b) 1 for all i replacig 1 with 0 oes ot work, cosier scalig ow (w, b) 1 coul be replace by ay strictly positive umber, it fixes the scalig of (w, b) a costraie optimizatio problem ca apply covex optimizatio, quaratic programmig 6 / 30

7 Support Vector Machie (5) separable case Schölkopf/Smola, 1.4 Costraie optimizatio problem: miimize 1 2 w 2 over (w, b) subject to y i (<w, x i >+b) 1 for all i The Lagragia: N L(w, b, α) = 1 2 w 2 α i (y i (<w, x i >+b) 1) primal variables (w, b), ual variables α 0 (aka Lagrage multipliers) miimize i (w, b) a maximize i α (sale poit) i=1 7 / 30

8 Support Vector Machie (6) separable case Schölkopf/Smola, 1.4 The Lagragia: For the sale poit: N L(w, b, α) = 1 2 w 2 α i (y i (<w, x i >+b) 1) i=1 N w L(w, b, α) = w α i y i x i = 0, i=1 N b L(w, b, α) = α i y i = 0 i=1 Dual problem: maximize N α i 1 N α i α j y i y j <x i, x j > i=1 2 i,j=1 subject to α 0 a N i=1 α i y i = 0 8 / 30

9 Support Vector Machie (7) separable case Schölkopf/Smola, 1.4 SVM algorithm: give traiig ata (x 1, y 1 ),..., (x N, y N ) solve the ual problem to obtai α Decisio fuctio: KKT coitio: N f(x) = sg(<w, x>+b) = sg ( α i y i <x, x i >+b) i=1 α i (y i (<w, x i >+b) 1) = 0 for all i for y i (<w, x i >+b) 1 > 0, we have α i = 0 for y i (<w, x i >+b) 1 = 0, we have α i > 0 (aka support vectors) 9 / 30

10 Support Vector Machie (8) o-separable case Schölkopf/Smola, 1.5 Separable case: miimize 1 2 w 2 over (w, b) subject to y i (<w, x i >+b) 1 for all i No-separable case: miimize 1 2 w 2 + C ξ i over (w, b, ξ) subject to y i (<w, x i >+b) 1 ξ i for all i ξ 0 relax the problem by itroucig slack variables ξ 0 ew hyperparameter C that has to be tue (e.g. by cross valiatio) N i=1 10 / 30

11 Support Vector Machie (9) o-separable case Schölkopf/Smola, 1.5 No-separable case: Dual problem: miimize 1 2 w 2 + C ξ i over (w, b, ξ) N i=1 subject to y i (<w, x i >+b) 1 ξ i for all i maximize ξ 0 N α i 1 N α i α j y i y j <x i, x j > i=1 2 i,j=1 subject to C α 0 a N i=1 α i y i = 0 oly ifferece to separable case: upper bou C o the α i this limits the ifluece of a sigle example 11 / 30

12 Support Vector Machie (10) o-liear case Schölkopf/Smola, 1.5 Liear problem: No-liear problem: maximize N α i 1 N α i α j y i y j <x i, x j > i=1 2 i,j=1 subject to C α 0 a maximize N i=1 α i y i = 0 N α i 1 N α i α j y i y j k(x i, x j ) i=1 2 i,j=1 subject to C α 0 a N i=1 α i y i = 0 replace ier prouct<x i, x j >with a kerel fuctio k(x i, x j ) aka covariace fuctio, aka positive efiite fuctio 12 / 30

13 The kerel trick see also Schölkopf, Mika, Burgers, Kirsch, Müller, Rätsch, Smola, Iput Space vs. Feature Space i Kerel-Base Methos, / 30

14 From iput space to feature space Problem 8.1 Give traiig ata, cosistig of ata poits x 1,..., x X a class labels y 1,..., y Y = {+1, 1}, lear a fuctio f X Y that preicts the label y 0 of a ew test poit x 0 most correctly. Liearly separable: X is calle iput space, e.g. R 2 for liearly separable classes lear a liear fuctio Not liearly separable: f(x) = w, x + b = w T x + b. e.g. class 1 close at the origi, class -1 further away. iea: map the ata to ew features, e.g. their polar cooriates x = [ x 1 x ] [ x 2 2 x 2 arcta(x 2 /x 1 ) ] the polar cooriates is a example of a feature space, where the classes are liearly separable 14 / 30

15 Feature maps a ier proucts Feature map: iput space feature space Φ R 2 R 3 [ x x ] x 2 x x1 x 2 Dot prouct is essetial to compare ata poits: e.g. istace Dot prouct i feature space: x x 2 = x, x + x, x 2 x, x Φ(x), Φ(x ) = Φ(x) T Φ(x ) x 2 T 1 x = x x1 x x x 1 x 2 = x 2 1x x 2 2x x 1 x 2 x 1x 2 = (x T x ) 2 = k(x, x ). 15 / 30

16 Feature maps a kerel fuctios Dot prouct i feature space: Φ(x), Φ(x ) = Φ(x) T Φ(x ) x 2 T 1 x = x x1 x x x 1 x 2 = x 2 1x x 2 2x x 1 x 2 x 1x 2 = (x T x ) 2 = k(x, x ). ot prouct i feature space is a o-liear fuctio k i iput space, calle kerel fuctio ca be calculate without explicitly mappig to the feature space via Φ Φ iuces a kerel fuctio Questio: Ca we avoi efiig Φ a irectly specify k? 16 / 30

17 Kerel fuctios (1) Aswer: Yes! E.g. k(x, x ) = (x T x ) 2 ca be geeralize: k(x, x ) = (x T x ) p calle homogeeous polyomial kerel oe ca show: k(x, x ) = Φ(x) T Φ(x ) with iput space feature space Φ R R D x 1 x p 1 x p 1 1 x 2 x i.e. x is mappe to all the moomials of egree p ote that D kerel fuctio calculates ier prouct i R D without calculatig all moomials which might be computatioally prohibitive 17 / 30

18 Kerel fuctios (2) All kerel fuctios itrouce for GP regressio ca be use! They all factorize, because they are positive efiite: k(x, x ) = Φ(x) T Φ(x ) Aalogously to positive efiite matrices: A = (V Λ 1/2 ) (Λ 1/2 V T ) For each kerel fuctio k there exists a mappig Φ i some possibly ifiite-imesioal feature space. 18 / 30

19 The famous kerel trick Goal: create a oliear versio of a existig liear algorithm Requiremet: the liear algorithm must oly calculate ot proucts of the ata poits Kerelizatio: replace all ot proucts by a kerel fuctio Examples: kerel PCA, kerel LDA, kerel CCA, kerel FDA, kerel ICA, / 30

20 Kerel PCA first itrouce: Schölkopf, Smola, Müller, Noliear compoet aalysis as a kerel eigevalue problem, more etails i: Schölkopf, Smola, Learig with kerels, / 30

21 PCA with ier proucts? PCA: give ata matrix X = [x 1,..., x ] R fi irectio v R of largest variace λ calculate covariace matrix XX T (up to a costat, assume mea zero) λ a v are largest eigevalue a correspoig eigevector of XX T Problem: cov matrix requires outer proucts x i x T j Challege: but ot ier proucts! How ca we formulate PCA solely usig ier proucts? 21 / 30

22 Sigular value ecompositio (SVD) (1) X = USV T U is, a V is, so S is rectagular of size. U a V are uitary, i.e. UU T = I a V V T = I I a I beig a imesioal ietity matrices S is iagoal matrix, etries are calle sigular values (SVs) 22 / 30

23 Sigular value ecompositio graphically Case (i): X = U S V T Case (ii): < X = U S V T 23 / 30

24 Sigular value ecompositio rage a ull space Case (i): V1 T U 1 U 2 V T 2 X = U S V T Case (ii): < V U 1 U 1 2 T V T 2 X = U S V T Null space of X is V 2. Rage of X is U / 30

25 Sigular value ecompositio ecoomy size a rak Case (i): k k k k X = U 1 S V T 1 Case (ii): < k k k k X = U 1 S V T 1 rak of X is k, the umber of o-zero sigular values. 25 / 30

26 From SVD to eigevalue ecompositio (1) Eigevalue ecompositio of square matrix A: A = V ΛV T with eigevalues alog the iagoal of Λ with eigevectors as colums of V compact otatio for Av = λv for all simultaeously (Ecoomy-size) SVD of ata matrix X: Calculate XX T a X T X: X = USV T. XX T = USV T V SU T = US 2 U T = UΛU T X T X = V SU T USV T = V S 2 V T = V ΛV T left sigular vectors U of X are the eigevectors of XX T right sigular vectors V of X are the eigevectors of X T X the square SVs of X are the eigevalues of XX T a of X T X 26 / 30

27 From SVD to eigevalue ecompositio (1) Lemma 8.2 We have the followig formulas to calculate the left sigular vectors from the right oes a vice versa: U = XV Λ 1/2 V = X T UΛ 1/2 Note: if the sigs of Λ 1/2 o ot match S, some of the vectors i U chage their orietatio. However, that is o problem. A similar result hols for the submatrices: U 1 = XV 1 Λ 1/2 1 V 1 = X T U 1 Λ 1/2 1 where U 1 a V 1 cotai the colums of U a V that correspo to large eigevalues i Λ. Proof: Plug SVD of X ito the formulas. 27 / 30

28 PCA base o the Gram matrix Algorithm: calculate eigeecompositio of Gram matrix X T X = V ΛV T ote Λ are also the eigevalues of covariace matrix XX T from above we get formula for U such that XX T = UΛU T U = XV Λ 1/2 similar for U 1 correspoig to the large eigevalues project the ata poits oto the space spae by U 1 Note: we ever calculate XX T Y = U T 1 X = Λ 1/2 1 V T 1 X T X we oly calculate X T X, V 1, Λ 1 a Y 28 / 30

29 PCA base o the Gram matrix with o-zero mea Mea of ata: µ = 1 X1 where 1 is the imesioal oe-vector. Remove the mea: X µ1 T = X 1 X1 1 T = X(I T ) = XH where we efie the Helmert matrix H = I T. ote that H = H T a H = HH (iempotet) Gram matrix for o-zero mea: G = (XH) T XH = HX T XH the rest remais the same! 29 / 30

30 Kerel PCA Steps: (1) replace Gram matrix X T X with a kerel matrix K (2) ceter K by H a fi its eigevalue ecompositio HKH = V ΛV T (3) project cetere ata oto the eigevectors (as above): Y = Λ 1/2 1 V T 1 HKH That s it (for toay)! 30 / 30

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machie Learig (Fall 2014) Drs. Sha & Liu {feisha,yaliu.cs}@usc.edu October 9, 2014 Drs. Sha & Liu ({feisha,yaliu.cs}@usc.edu) CSCI567 Machie Learig (Fall 2014) October 9, 2014 1 / 49 Outlie Admiistratio

More information

Chapter 7. Support Vector Machine

Chapter 7. Support Vector Machine Chapter 7 Support Vector Machie able of Cotet Margi ad support vectors SVM formulatio Slack variables ad hige loss SVM for multiple class SVM ith Kerels Relevace Vector Machie Support Vector Machie (SVM)

More information

Support Vector Machines and Kernel Methods

Support Vector Machines and Kernel Methods Support Vector Machies ad Kerel Methods Daiel Khashabi Fall 202 Last Update: September 26, 206 Itroductio I Support Vector Machies the goal is to fid a separator betwee data which has the largest margi,

More information

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics

BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics BIOINF 585: Machie Learig for Systems Biology & Cliical Iformatics Lecture 14: Dimesio Reductio Jie Wag Departmet of Computatioal Medicie & Bioiformatics Uiversity of Michiga 1 Outlie What is feature reductio?

More information

Machine Learning for Data Science (CS4786) Lecture 9

Machine Learning for Data Science (CS4786) Lecture 9 Machie Learig for Data Sciece (CS4786) Lecture 9 Pricipal Compoet Aalysis Course Webpage : http://www.cs.corell.eu/courses/cs4786/207fa/ DIM REDUCTION: LINEAR TRANSFORMATION x > y > Pick a low imesioal

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 0 Scribe: Ade Forrow Oct. 3, 05 Recall the followig defiitios from last time: Defiitio: A fuctio K : X X R is called a positive symmetric

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Linear Support Vector Machines

Linear Support Vector Machines Liear Support Vector Machies David S. Roseberg The Support Vector Machie For a liear support vector machie (SVM), we use the hypothesis space of affie fuctios F = { f(x) = w T x + b w R d, b R } ad evaluate

More information

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32 Boostig Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machie Learig Algorithms March 1, 2017 1 / 32 Outlie 1 Admiistratio 2 Review of last lecture 3 Boostig Professor Ameet Talwalkar CS260

More information

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice 0//008 Liear Discrimiat Fuctios Jacob Hays Amit Pillay James DeFelice 5.8, 5.9, 5. Miimum Squared Error Previous methods oly worked o liear separable cases, by lookig at misclassified samples to correct

More information

Lecture #3. Math tools covered today

Lecture #3. Math tools covered today Toay s Program:. Review of previous lecture. QM free particle a particle i a bo. 3. Priciple of spectral ecompositio. 4. Fourth Postulate Math tools covere toay Lecture #3. Lear how to solve separable

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machie Learig (Fall 2014) Drs. Sha & Liu {feisha,yaliu.cs}@usc.edu October 14, 2014 Drs. Sha & Liu ({feisha,yaliu.cs}@usc.edu) CSCI567 Machie Learig (Fall 2014) October 14, 2014 1 / 49 Outlie Admiistratio

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

State Space Representation

State Space Representation Optimal Cotrol, Guidace ad Estimatio Lecture 2 Overview of SS Approach ad Matrix heory Prof. Radhakat Padhi Dept. of Aerospace Egieerig Idia Istitute of Sciece - Bagalore State Space Represetatio Prof.

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

Questions and answers, kernel part

Questions and answers, kernel part Questios ad aswers, kerel part October 8, 205 Questios. Questio : properties of kerels, PCA, represeter theorem. [2 poits] Let F be a RK defied o some domai X, with feature map φ(x) x X ad reproducig kerel

More information

1 Review and Overview

1 Review and Overview CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #12 Scribe: Garrett Thomas, Pega Liu October 31, 2018 1 Review a Overview Recall the GAN setup: we have iepeet samples x 1,..., x raw

More information

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam Itroductio to Artificial Itelligece CAP 601 Summer 013 Midterm Exam 1. Termiology (7 Poits). Give the followig task eviromets, eter their properties/characteristics. The properties/characteristics of the

More information

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

More information

Expectation maximization

Expectation maximization Motivatio Expectatio maximizatio Subhrasu Maji CMSCI 689: Machie Learig 14 April 015 Suppose you are builig a aive Bayes spam classifier. After your are oe your boss tells you that there is o moey to label

More information

Topics in Eigen-analysis

Topics in Eigen-analysis Topics i Eige-aalysis Li Zajiag 28 July 2014 Cotets 1 Termiology... 2 2 Some Basic Properties ad Results... 2 3 Eige-properties of Hermitia Matrices... 5 3.1 Basic Theorems... 5 3.2 Quadratic Forms & Noegative

More information

Learning Bounds for Support Vector Machines with Learned Kernels

Learning Bounds for Support Vector Machines with Learned Kernels Learig Bouds for Support Vector Machies with Leared Kerels Nati Srebro TTI-Chicago Shai Be-David Uiversity of Waterloo Mostly based o a paper preseted at COLT 06 Kerelized Large-Margi Liear Classificatio

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

Solution of Final Exam : / Machine Learning

Solution of Final Exam : / Machine Learning Solutio of Fial Exam : 10-701/15-781 Machie Learig Fall 2004 Dec. 12th 2004 Your Adrew ID i capital letters: Your full ame: There are 9 questios. Some of them are easy ad some are more difficult. So, if

More information

Representing Functions as Power Series. 3 n ...

Representing Functions as Power Series. 3 n ... Math Fall 7 Lab Represetig Fuctios as Power Series I. Itrouctio I sectio.8 we leare the series c c c c c... () is calle a power series. It is a uctio o whose omai is the set o all or which it coverges.

More information

6.451 Principles of Digital Communication II Wednesday, March 9, 2005 MIT, Spring 2005 Handout #12. Problem Set 5 Solutions

6.451 Principles of Digital Communication II Wednesday, March 9, 2005 MIT, Spring 2005 Handout #12. Problem Set 5 Solutions 6.51 Priciples of Digital Commuicatio II Weesay, March 9, 2005 MIT, Sprig 2005 Haout #12 Problem Set 5 Solutios Problem 5.1 (Eucliea ivisio algorithm). (a) For the set F[x] of polyomials over ay fiel F,

More information

Machine Learning for Data Science (CS4786) Lecture 4

Machine Learning for Data Science (CS4786) Lecture 4 Machie Learig for Data Sciece (CS4786) Lecture 4 Caoical Correlatio Aalysis (CCA) Course Webpage : http://www.cs.corell.edu/courses/cs4786/2016fa/ Aoucemet We are gradig HW0 ad you will be added to cms

More information

6.867 Machine learning, lecture 11 (Jaakkola)

6.867 Machine learning, lecture 11 (Jaakkola) 6.867 Machie learig, lecture 11 (Jaakkola) 1 Lecture topics: moel selectio criteria Miimum escriptio legth (MDL) Feature (subset) selectio Moel selectio criteria: Miimum escriptio legth (MDL) The miimum

More information

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis Lecture 10: Factor Aalysis ad Pricipal Compoet Aalysis Sam Roweis February 9, 2004 Whe we assume that the subspace is liear ad that the uderlyig latet variable has a Gaussia distributio we get a model

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical Last Time EM Clusterig Soft versio of K-meas clusterig Iput: m dimesioal objects X = {

More information

CMSE 820: Math. Foundations of Data Sci.

CMSE 820: Math. Foundations of Data Sci. Lecture 17 8.4 Weighted path graphs Take from [10, Lecture 3] As alluded to at the ed of the previous sectio, we ow aalyze weighted path graphs. To that ed, we prove the followig: Theorem 6 (Fiedler).

More information

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 No-Parametric Techiques Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 Parametric vs. No-Parametric Parametric Based o Fuctios (e.g Normal Distributio) Uimodal Oly oe peak Ulikely real data cofies

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Pattern recognition systems Laboratory 10 Linear Classifiers and the Perceptron Algorithm

Pattern recognition systems Laboratory 10 Linear Classifiers and the Perceptron Algorithm Patter recogitio systems Laboratory 10 Liear Classifiers ad the Perceptro Algorithm 1. Objectives his laboratory sessio presets the perceptro learig algorithm for the liear classifier. We will apply gradiet

More information

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n. CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Distributioal Similarity Models (cot.) Regia Barzilay EECS Departmet MIT October 19, 2004 Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical

More information

STATS 306B: Unsupervised Learning Spring Lecture 8 April 23

STATS 306B: Unsupervised Learning Spring Lecture 8 April 23 STATS 306B: Usupervised Learig Sprig 2014 Lecture 8 April 23 Lecturer: Lester Mackey Scribe: Kexi Nie, Na Bi 8.1 Pricipal Compoet Aalysis Last time we itroduced the mathematical framework uderlyig Pricipal

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Singular value decomposition. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Singular value decomposition. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 11 Sigular value decompositio Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaie V1.2 07/12/2018 1 Sigular value decompositio (SVD) at a glace Motivatio: the image of the uit sphere S

More information

Sparsification using Regular and Weighted. Graphs

Sparsification using Regular and Weighted. Graphs Sparsificatio usig Regular a Weighte 1 Graphs Aly El Gamal ECE Departmet a Cooriate Sciece Laboratory Uiversity of Illiois at Urbaa-Champaig Abstract We review the state of the art results o spectral approximatio

More information

Application of Jordan Canonical Form

Application of Jordan Canonical Form CHAPTER 6 Applicatio of Jorda Caoical Form Notatios R is the set of real umbers C is the set of complex umbers Q is the set of ratioal umbers Z is the set of itegers N is the set of o-egative itegers Z

More information

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

More information

Pattern recognition systems Lab 10 Linear Classifiers and the Perceptron Algorithm

Pattern recognition systems Lab 10 Linear Classifiers and the Perceptron Algorithm Patter recogitio systems Lab 10 Liear Classifiers ad the Perceptro Algorithm 1. Objectives his lab sessio presets the perceptro learig algorithm for the liear classifier. We will apply gradiet descet ad

More information

Machine Learning. Ilya Narsky, Caltech

Machine Learning. Ilya Narsky, Caltech Machie Learig Ilya Narsky, Caltech Lecture 4 Multi-class problems. Multi-class versios of Neural Networks, Decisio Trees, Support Vector Machies ad AdaBoost. Reductio of a multi-class problem to a set

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular.

More information

Lecture 6 Testing Nonlinear Restrictions 1. The previous lectures prepare us for the tests of nonlinear restrictions of the form:

Lecture 6 Testing Nonlinear Restrictions 1. The previous lectures prepare us for the tests of nonlinear restrictions of the form: Eco 75 Lecture 6 Testig Noliear Restrictios The previous lectures prepare us for the tests of oliear restrictios of the form: H 0 : h( 0 ) = 0 versus H : h( 0 ) 6= 0: () I this lecture, we cosier Wal,

More information

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm

Lecture 20. Brief Review of Gram-Schmidt and Gauss s Algorithm 8.409 A Algorithmist s Toolkit Nov. 9, 2009 Lecturer: Joatha Keler Lecture 20 Brief Review of Gram-Schmidt ad Gauss s Algorithm Our mai task of this lecture is to show a polyomial time algorithm which

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

FMA901F: Machine Learning Lecture 4: Linear Models for Classification. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 4: Linear Models for Classification. Cristian Sminchisescu FMA90F: Machie Learig Lecture 4: Liear Models for Classificatio Cristia Smichisescu Liear Classificatio Classificatio is itrisically o liear because of the traiig costraits that place o idetical iputs

More information

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise) Lecture 22: Review for Exam 2 Basic Model Assumptios (without Gaussia Noise) We model oe cotiuous respose variable Y, as a liear fuctio of p umerical predictors, plus oise: Y = β 0 + β X +... β p X p +

More information

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox Poits: 00+ pts total for the assigmet 36-755, Fall 07 Homework 5 Solutio Due Wed Nov 5 by 5:00pm i Jisu s mailbox We first review some basic relatios with orms ad the sigular value decompositio o matrices

More information

ON THE OPTIMALITY OF A CLASS OF H MATRICES

ON THE OPTIMALITY OF A CLASS OF H MATRICES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY Series A OF THE ROMANIAN ACADEMY Volume 6 Number /5 pp. - ON THE OPTIMALITY OF A CLASS OF H MATRICES by Ricar GABRIEL Hartstraße 6 7685 Karlsrue

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

4. Linear Classification. Kai Yu

4. Linear Classification. Kai Yu 4. Liear Classificatio Kai Y Liear Classifiers A simplest classificatio model Help to derstad oliear models Argably the most sefl classificatio method! 2 Liear Classifiers A simplest classificatio model

More information

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian?

NBHM QUESTION 2007 Section 1 : Algebra Q1. Let G be a group of order n. Which of the following conditions imply that G is abelian? NBHM QUESTION 7 NBHM QUESTION 7 NBHM QUESTION 7 Sectio : Algebra Q Let G be a group of order Which of the followig coditios imply that G is abelia? 5 36 Q Which of the followig subgroups are ecesarily

More information

Perceptron. Inner-product scalar Perceptron. XOR problem. Gradient descent Stochastic Approximation to gradient descent 5/10/10

Perceptron. Inner-product scalar Perceptron. XOR problem. Gradient descent Stochastic Approximation to gradient descent 5/10/10 Perceptro Ier-product scalar Perceptro Perceptro learig rule XOR problem liear separable patters Gradiet descet Stochastic Approximatio to gradiet descet LMS Adalie 1 Ier-product et =< w, x >= w x cos(θ)

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Lecture 2 Clustering Part II

Lecture 2 Clustering Part II COMS 4995: Usupervised Learig (Summer 8) May 24, 208 Lecture 2 Clusterig Part II Istructor: Nakul Verma Scribes: Jie Li, Yadi Rozov Today, we will be talkig about the hardess results for k-meas. More specifically,

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Machine Learning Assignment-1

Machine Learning Assignment-1 Uiversity of Utah, School Of Computig Machie Learig Assigmet-1 Chadramouli, Shridhara sdhara@cs.utah.edu 00873255) Sigla, Sumedha sumedha.sigla@utah.edu 00877456) September 10, 2013 1 Liear Regressio a)

More information

multiplies all measures of center and the standard deviation and range by k, while the variance is multiplied by k 2.

multiplies all measures of center and the standard deviation and range by k, while the variance is multiplied by k 2. Lesso 3- Lesso 3- Scale Chages of Data Vocabulary scale chage of a data set scale factor scale image BIG IDEA Multiplyig every umber i a data set by k multiplies all measures of ceter ad the stadard deviatio

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if Expaer Graphs Graph Theory (Fall 011) Rutgers Uiversity Swastik Kopparty Throughout these otes G is a -regular graph 1 The Spectrum Let A G be the ajacecy matrix of G Let λ 1 λ λ be the eigevalues of A

More information

SVM for Statisticians

SVM for Statisticians SVM for Statisticias Youyi Fog Fred Hutchiso Cacer Research Istitute November 13, 2011 1 / 21 Primal Problem ad Pealized Loss Fuctio Miimize J over b, β ad ξ uder some costraits J = 1 2 β 2 + C ξ i (1)

More information

A REMARK ON A PROBLEM OF KLEE

A REMARK ON A PROBLEM OF KLEE C O L L O Q U I U M M A T H E M A T I C U M VOL. 71 1996 NO. 1 A REMARK ON A PROBLEM OF KLEE BY N. J. K A L T O N (COLUMBIA, MISSOURI) AND N. T. P E C K (URBANA, ILLINOIS) This paper treats a property

More information

k=1 s k (x) (3) and that the corresponding infinite series may also converge; moreover, if it converges, then it defines a function S through its sum

k=1 s k (x) (3) and that the corresponding infinite series may also converge; moreover, if it converges, then it defines a function S through its sum 0. L Hôpital s rule You alreay kow from Lecture 0 that ay sequece {s k } iuces a sequece of fiite sums {S } through S = s k, a that if s k 0 as k the {S } may coverge to the it k= S = s s s 3 s 4 = s k.

More information

CHAPTER 3. GOE and GUE

CHAPTER 3. GOE and GUE CHAPTER 3 GOE ad GUE We quicly recall that a GUE matrix ca be defied i the followig three equivalet ways. We leave it to the reader to mae the three aalogous statemets for GOE. I the previous chapters,

More information

as best you can in any three (3) of a f. [15 = 3 5 each] e. y = sec 2 (arctan(x)) f. y = sin (e x )

as best you can in any three (3) of a f. [15 = 3 5 each] e. y = sec 2 (arctan(x)) f. y = sin (e x ) Mathematics Y Calculus I: Calculus of oe variable Tret Uiversity, Summer Solutios to the Fial Examiatio Time: 9: :, o Weesay, August,. Brought to you by Stefa. Istructios: Show all your work a justify

More information

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones Iteratioal Joural of Algebra, Vol. 2, 2008, o. 4, 197-204 O Nosigularity of Saddle Poit Matrices with Vectors of Oes Tadeusz Ostrowski Istitute of Maagemet The State Vocatioal Uiversity -400 Gorzów, Polad

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

Sigma notation. 2.1 Introduction

Sigma notation. 2.1 Introduction Sigma otatio. Itroductio We use sigma otatio to idicate the summatio process whe we have several (or ifiitely may) terms to add up. You may have see sigma otatio i earlier courses. It is used to idicate

More information

[412] A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION

[412] A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION [412] A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION BY ALAN STUART Divisio of Research Techiques, Lodo School of Ecoomics 1. INTRODUCTION There are several circumstaces

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

A note on equiangular tight frames

A note on equiangular tight frames A ote o equiagular tight frames Thomas Strohmer Departmet of Mathematics, Uiversity of Califoria, Davis, CA 9566, USA Abstract We settle a cojecture of Joseph Rees about the existece a costructio of certai

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 50-004 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Affine Structure from Motion

Affine Structure from Motion Affie Structure from Motio EECS 598-8 Fall 24! Foudatios of Computer Visio!! Istructor: Jaso Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f4!! Readigs: FP 8.2! Date: /5/4!! Materials o these slides

More information

Pattern Classification, Ch4 (Part 1)

Pattern Classification, Ch4 (Part 1) Patter Classificatio All materials i these slides were take from Patter Classificatio (2d ed) by R O Duda, P E Hart ad D G Stork, Joh Wiley & Sos, 2000 with the permissio of the authors ad the publisher

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math E-2b Lecture #8 Notes This week is all about determiats. We ll discuss how to defie them, how to calculate them, lear the allimportat property kow as multiliearity, ad show that a square matrix A

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

Dimensionality Reduction vs. Clustering

Dimensionality Reduction vs. Clustering Dimesioality Reductio vs. Clusterig Lecture 9: Cotiuous Latet Variable Models Sam Roweis Traiig such factor models (e.g. FA, PCA, ICA) is called dimesioality reductio. You ca thik of this as (o)liear regressio

More information

Optimization Methods MIT 2.098/6.255/ Final exam

Optimization Methods MIT 2.098/6.255/ Final exam Optimizatio Methods MIT 2.098/6.255/15.093 Fial exam Date Give: December 19th, 2006 P1. [30 pts] Classify the followig statemets as true or false. All aswers must be well-justified, either through a short

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information