The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

Size: px
Start display at page:

Download "The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model"

Transcription

1 Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k= based o the traiig data {x i, y i } i=. We the use a plug-i approach to perform classificatio p(y = k X = x, θ)= π kf (x; k ) j= π jf (x; j ) Eve for simple models, this ca prove difficult; e.g. for LDA, f (x; k )=N (x; µ k, Σ), ad the MLE estimate of Σ is ot full rak for p >. Oe aswer: simplify eve further, e.g. usig axis-aliged covariaces, but this is usually too crude. Aother aswer: regularizatio. The Bayesia Learig Framework Bayes Theorem: Give two radom variables X ad Θ, p(θ X) = p(x Θ)p(Θ) p(x) Likelihood: p(x Θ) Posterior: p(θ X) Prior: p(θ) Margial likelihood: p(x) = p(x Θ)p(Θ)dΘ Treat parameters as radom variables, ad process of learig is just computatio of posterior p(θ X). Summarizig the posterior: Posterior mode: θ MAP = argmax θ p(θ X). Maximum a posteriori. Posterior mea: θ mea = E[Θ X]. Posterior variace: Var[Θ X]. How to make decisios ad predictios? Decisio theory. How to compute posterior? Naïve Bayes Retur to the spam classificatio example with two-class aïve Bayes f (x i ; k )= p j= k xij kj ( kj) xij. The MLE estimates are give by i= (x ij =, y i = k) kj =, π k = k where k = i= I(y i = k). If a word j does ot appear i class k by chace, but it does appear i a documet x, the p(x y = k) = ad so posterior p(y = k x )=. Worse thigs ca happe: e.g., probability of documet uder all classes ca be, so posterior is ill-defied. Simple Example: Coi Tosses A very simple example: We have a coi with probability of comig up heads. Model coi tosses as iid Beroullis, =head, =tail. Lear about give dataset D =(x i ) i= of tosses. with j = i= (x i = j). Maximum likelihood f (D ) = ( ) ˆ ML = Bayesia approach: treat ukow parameter as a radom variable Φ. Simple prior: Φ U[, ]. Posterior distributio: p( D) = Z ( ), Z = Posterior is a Beta( +, + ) distributio. ( ) d = ( + )!!! 58 6

2 Simple Example: Coi Tosses Simple Example: Coi Tosses =, =, = =, =, = =, =4, = =, =65, = =, =686, = =, =74, = Posterior becomes peaked at true value =.7 as dataset grows. What about test data? The posterior predictive distributio is the coditioal distributio of x + give (x i ) i= : p(x + (x i ) i=) = = p(x +, (x i ) i=))p( (x i ) i=))d p(x + )p( (x i ) i=))d =( mea ) x+ ( mea ) x+ We predict o ew data by averagig the predictive distributio over the posterior. Accouts for ucertaity about. 6 6 Simple Example: Coi Tosses Posterior distributio captures all leart iformatio. Posterior mode: MAP = Posterior mea: mea = mea ( mea ) Posterior variace: Asymptotically, for large, variace decreases as / ad is give by the iverse of Fisher s iformatio. Posterior distributio coverges to true parameter as. Simple Example: Coi Tosses Posterior distributio is a kow aalytic form. I fact posterior distributio is i the same beta family as the prior. A example of a cojugate prior. A beta distributio Beta(a, b) with parameters a, b > is a expoetial family distributio with desity p( a, b) = Γ(a + b) Γ(a)Γ(b) a ( ) b where Γ(t) = u t e u du is the gamma fuctio. If the prior is Beta(a, b), the the posterior distributio is so is Beta(a +, b + ). p( D, a, b) = a+ ( ) b+ Hyperparameters a ad b are pseudo-couts, a imagiary iitial sample that reflects our prior beliefs about. 6 64

3 Beta Distributios Dirichlet Distributios (.,.) (.8,.8) (,) (,) (5,5) (,9) (,7) (5,5) (7,) (9,) (A) Support of the Dirichlet desity for =. (B) Dirichlet desity for α k =. (C) Dirichlet desity for α k = Bayesia Iferece for Multiomials Suppose x i {,...,} istead, ad we model (x i ) i= as iid multiomials: p(d π) = π xi = i= k= π k k with k = i= (x i = k) ad π k >, k= π k =. The cojugate prior is the Dirichlet distributio. Dir(α,...,α ) has parameters α k >, ad desity p(π) = Γ( k= α k) k= Γ(α k) k= π αk k o the probability simplex {π : π k >, k= π k = }. The posterior is also Dirichlet, with parameters (α k + k ) k=. Posterior mea is π mea k = α k + k j= α j + j Text Classificatio with (Less) Naïve Bayes Uder the Naïve Bayes model, the joit distributio of labels y i {,...,} ad data vectors x i {, } p is p(x i, y i )= i= = i= k= k= π k π k k p j= p j= kj ( kj) xij xij kj kj ( kj) k kj where k = i= (y i = k), kj = i= (y i = k, x ij = ). (y i=k) For cojugate prior, we ca use Dir((α k ) k= ) for π, ad Beta(a, b) for kj idepedetly. Because the likelihood factorizes, the posterior distributio over π ad ( kj ) also factorizes, ad posterior for π is Dir((α k + k ) k= ), ad for kj is Beta(a + kj, b + k kj )

4 Text Classificatio with (Less) Naïve Bayes For predictio give D =(x i, y i ) i= we ca calculate with Predicted class is p(x, y = k D) =p(y = k D)p(x y = k, D) p(y = k D) = α k + k + l= α l p(x j = y = k, D) = a + kj a + b + k p(y = k x D) = p(y = k D)p(x y = k, D) p(x D) Compared to ML plug-i estimator, pseudocouts help to regularize probabilities away from extreme values. Bayesia Learig Discussio Clear separatio betwee models, which frame learig problems ad ecapsulates prior iformatio, ad algorithms, which computes posteriors ad predictios. Bayesia computatios Most posteriors are itractable, ad algorithms eeded to efficietly approximate posterior: Mote Carlo methods (Markov chai ad sequetial varieties). Variatioal methods (variatioal Bayes, belief propagatio etc). No optimizatio o overfittig (!) but there ca still be model misfit. Tuig parameters Ψ ca be optimized (without eed for cross-validatio). p(x Ψ) = p(x θ)p(θ Ψ)dθ p(ψ X) = p(x Ψ)p(Ψ) p(x) Be Bayesia about Ψ compute posterior. Type II maximum likelihood fid Ψ maximizig p(x Ψ) Bayesia Learig ad Regularizatio Cosider a Bayesia approach to logistic regressio: itroduce a multivariate ormal prior for b, ad uiform (improper) prior for a. The prior desity is: p(a, b) =(πσ ) p e σ b Bayesia Learig Further Readigs The posterior is p(a, b D) exp σ b log( + exp( y i (a + b x i ))) i= Zoubi Ghahramai. Bayesia Learig. Graphical models. Videolectures. Gelma et al. Bayesia Data Aalysis. evi Murphy. Machie Learig: a Probabilistic Perspective. The posterior mode is the parameters maximizig the above, equivalet to miimizig the L -regularized empirical risk. Regularized empirical risk miimizatio is (ofte) equivalet to havig a prior ad fidig the maximum a posteriori (MAP) parameters. L regularizatio - multivariate ormal prior. L regularizatio - multivariate Laplace prior. From a Bayesia perspective, the MAP parameters are just oe way to summarize the posterior distributio. 7 7

5 Gaussia Processes.5.5 Gaussia Processes The prior p(f) ecodes our prior kowledge about the fuctio. What properties of the fuctio ca we icorporate? Multivariate ormal assumptio: f N (, G).5 Use a kerel fuctio κ to defie G:.5.5 G ij = κ(x i, x j) Suppose we are give a dataset cosistig of iputs x =(x i ) i= ad outputs y =(y i ) i=. Regressio: lear the uderlyig fuctio f (x). 7 f (x) f (x ) Expect regressio fuctios to be smooth: If x ad x are close by, the f (x) ad f (x ) have similar values, i.e. strogly correlated. N, κ(x, x) κ(x, x ) κ(x, x) κ(x, x ) I particular, wat κ(x, x ) κ(x, x) =κ(x, x ) Model: f N (, G) y i f i N (f i, σ ) 75 Gaussia Processes We ca model respose as oisy versio of a uderlyig fuctio f (x): y i f (x i ) N (f (x i ), σ ) Typical approach: parametrize f (x; β), ad lear β, e.g., f (x) = d β d j (x) j= More direct approach: sice f (x) is ukow, we take a Bayesia approach, itroduce a prior over fuctios, ad compute a posterior over fuctios Istead of tryig to work with the whole fuctio, just work with the fuctio values at the iputs f =(f (x ),...,f (x )) Gaussia Processes What does a multivariate ormal prior mea? Imagie x forms a very dese grid of data space. Simulate prior draws f N (, G) Plot f i vs x i for i =,...,. The prior over fuctios is called a Gaussia process (GP)

6 Gaussia Processes Differet kerels lead to differet fuctio characteristics. Gaussia Processes Carl Rasmusse. Tutorial o Gaussia Processes at NIPS Gaussia Processes f x N (, G) y f N (f, σ I) Posterior distributio: f y N (G(G + σ I) y, G G(G + σ I)G) Posterior predictive distributio: Suppose x is a test set. We ca exted our model to iclude the fuctio values f at the test set: f f x, x xx N, xx x x y f N (f, σ I) x x where zz is matrix with ijth etry κ(z i, z j). xx = G. Some maipulatio of multivariate ormals gives: f y N x x( xx + σ I) y, x x x x( xx + σ I) xx 78

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Regression and generalization

Regression and generalization Regressio ad geeralizatio CE-717: Machie Learig Sharif Uiversity of Techology M. Soleymai Fall 2016 Curve fittig: probabilistic perspective Describig ucertaity over value of target variable as a probability

More information

Naïve Bayes. Naïve Bayes

Naïve Bayes. Naïve Bayes Statistical Data Miig ad Machie Learig Hilary Term 206 Dio Sejdiovic Departmet of Statistics Oxford Slides ad other materials available at: http://www.stats.ox.ac.uk/~sejdiov/sdmml : aother plug-i classifier

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Classification with linear models

Classification with linear models Lecture 8 Classificatio with liear models Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square Geerative approach to classificatio Idea:. Represet ad lear the distributio, ). Use it to defie probabilistic

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Elementary manipulations of probabilities

Elementary manipulations of probabilities Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A) " p(a)

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A)  p(a) Outlie L7: Probability Basics CS 344R/393R: Robotics Bejami Kuipers. Bayes Law 2. Probability distributios 3. Decisios uder ucertaity Probability For a propositio A, the probability p(a is your degree

More information

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead)

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead) Lecture 4 Homework Hw 1 ad 2 will be reoped after class for every body. New deadlie 4/20 Hw 3 ad 4 olie (Nima is lead) Pod-cast lecture o-lie Fial projects Nima will register groups ext week. Email/tell

More information

Machine Learning 4771

Machine Learning 4771 Machie Learig 4771 Istructor: Toy Jebara Topic 14 Structurig Probability Fuctios for Storage Structurig Probability Fuctios for Iferece Basic Graphical Models Graphical Models Parameters as Nodes Structurig

More information

Mathematical Statistics Anna Janicka

Mathematical Statistics Anna Janicka Mathematical Statistics Aa Jaicka Lecture XIV, 5.06.07 BAYESIAN STATISTICS Pla for Today. BayesiaStatistics a priori ad a posteriori distributios Bayesia estimatio: Maximum a posteriori probability(map)

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Logit regression Logit regression

Logit regression Logit regression Logit regressio Logit regressio models the probability of Y= as the cumulative stadard logistic distributio fuctio, evaluated at z = β 0 + β X: Pr(Y = X) = F(β 0 + β X) F is the cumulative logistic distributio

More information

CSIE/GINM, NTU 2009/11/30 1

CSIE/GINM, NTU 2009/11/30 1 Itroductio ti to Machie Learig (Part (at1: Statistical Machie Learig Shou de Li CSIE/GINM, NTU sdli@csie.tu.edu.tw 009/11/30 1 Syllabus of a Itro ML course ( Machie Learig, Adrew Ng, Staford, Autum 009

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

5 : Exponential Family and Generalized Linear Models

5 : Exponential Family and Generalized Linear Models 0-708: Probabilistic Graphical Models 0-708, Sprig 206 5 : Expoetial Family ad Geeralized Liear Models Lecturer: Matthew Gormley Scribes: Yua Li, Yichog Xu, Silu Wag Expoetial Family Probability desity

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments LECTURE NOTES 9 Poit Estimatio Uder the hypothesis that the sample was geerated from some parametric statistical model, a atural way to uderstad the uderlyig populatio is by estimatig the parameters of

More information

Lecture 2 October 11

Lecture 2 October 11 Itroductio to probabilistic graphical models 203/204 Lecture 2 October Lecturer: Guillaume Oboziski Scribes: Aymeric Reshef, Claire Verade Course webpage: http://www.di.es.fr/~fbach/courses/fall203/ 2.

More information

Lecture 3: MLE and Regression

Lecture 3: MLE and Regression STAT/Q SCI 403: Itroductio to Resamplig Methods Sprig 207 Istructor: Ye-Chi Che Lecture 3: MLE ad Regressio 3. Parameters ad Distributios Some distributios are idexed by their uderlyig parameters. Thus,

More information

Axis Aligned Ellipsoid

Axis Aligned Ellipsoid Machie Learig for Data Sciece CS 4786) Lecture 6,7 & 8: Ellipsoidal Clusterig, Gaussia Mixture Models ad Geeral Mixture Models The text i black outlies high level ideas. The text i blue provides simple

More information

Probabilistic Unsupervised Learning

Probabilistic Unsupervised Learning HT2015: SC4 Statistical Data Miig ad Machie Learig Dio Sejdiovic Departmet of Statistics Oxford http://www.stats.ox.ac.u/~sejdiov/sdmml.html Probabilistic Methods Algorithmic approach: Data Probabilistic

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts Basics of Iferece Lecture 21: Sta230 / Mth230 Coli Rudel Aril 16, 2014 U util this oit i the class you have almost exclusively bee reseted with roblems where we are usig a robability model where the model

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018) NYU Ceter for Data Sciece: DS-GA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm The Expectatio-Maximizatio (EM) Algorithm Readig Assigmets T. Mitchell, Machie Learig, McGraw-Hill, 997 (sectio 6.2, hard copy). S. Gog et al. Dyamic Visio: From Images to Face Recogitio, Imperial College

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

Lecture 10: Performance Evaluation of ML Methods

Lecture 10: Performance Evaluation of ML Methods CSE57A Machie Learig Sprig 208 Lecture 0: Performace Evaluatio of ML Methods Istructor: Mario Neuma Readig: fcml: 5.4 (Performace); esl: 7.0 (Cross-Validatio); optioal book: Evaluatio Learig Algorithms

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

Probabilistic Unsupervised Learning

Probabilistic Unsupervised Learning Statistical Data Miig ad Machie Learig Hilary Term 2016 Dio Sejdiovic Departmet of Statistics Oxford Slides ad other materials available at: http://www.stats.ox.ac.u/~sejdiov/sdmml Probabilistic Methods

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam Itroductio to Artificial Itelligece CAP 601 Summer 013 Midterm Exam 1. Termiology (7 Poits). Give the followig task eviromets, eter their properties/characteristics. The properties/characteristics of the

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1 MATH88T Maria Camero Cotets Basic cocepts of statistics Estimators, estimates ad samplig distributios 2 Ordiary least squares estimate 3 3 Maximum lielihood estimator 3 4 Bayesia estimatio Refereces 9

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution A Note o Box-Cox Quatile Regressio Estimatio of the Parameters of the Geeralized Pareto Distributio JM va Zyl Abstract: Makig use of the quatile equatio, Box-Cox regressio ad Laplace distributed disturbaces,

More information

Algorithms for Clustering

Algorithms for Clustering CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

More information

4.5 Multiple Imputation

4.5 Multiple Imputation 45 ultiple Imputatio Itroductio Assume a parametric model: y fy x; θ We are iterested i makig iferece about θ I Bayesia approach, we wat to make iferece about θ from fθ x, y = πθfy x, θ πθfy x, θdθ where

More information

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis Lecture 10: Factor Aalysis ad Pricipal Compoet Aalysis Sam Roweis February 9, 2004 Whe we assume that the subspace is liear ad that the uderlyig latet variable has a Gaussia distributio we get a model

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classificatio Ucertaity & robability Baye's rule Choosig Hypotheses- Maximum a posteriori Maximum Likelihood - Baye's cocept learig Maximum Likelihood of real valued fuctio Bayes optimal Classifier

More information

Some Examples on Gibbs Sampling and Metropolis-Hastings methods

Some Examples on Gibbs Sampling and Metropolis-Hastings methods Soe Exaples o Gibbs Saplig ad Metropolis-Hastigs ethods S420/620 Itroductio to Statistical Theory, Fall 2012 Gibbs Sapler Saple a ultidiesioal probability distributio fro coditioal desities. Suppose d

More information

Solution of Final Exam : / Machine Learning

Solution of Final Exam : / Machine Learning Solutio of Fial Exam : 10-701/15-781 Machie Learig Fall 2004 Dec. 12th 2004 Your Adrew ID i capital letters: Your full ame: There are 9 questios. Some of them are easy ad some are more difficult. So, if

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Statistical Patter Recogitio Fall 5 Prof. Shih-Fu Chag http://www.ee.columbia.edu/~sfchag Lecture 6 (9/8/5 EE6887-Chag 6- Readig EM for Missig Features Textboo, DHS 3.9 Bayesia Parameter Estimatio

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

Lecture 9: September 19

Lecture 9: September 19 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Lectures on Stochastic System Analysis and Bayesian Updating

Lectures on Stochastic System Analysis and Bayesian Updating Lectures o Stochastic System Aalysis ad Bayesia Updatig Jue 29-July 13 2005 James L. Beck, Califoria Istitute of Techology Jiaye Chig, Natioal Taiwa Uiversity of Sciece & Techology Siu-Kui (Iva) Au, Nayag

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

Dimensionality Reduction vs. Clustering

Dimensionality Reduction vs. Clustering Dimesioality Reductio vs. Clusterig Lecture 9: Cotiuous Latet Variable Models Sam Roweis Traiig such factor models (e.g. FA, PCA, ICA) is called dimesioality reductio. You ca thik of this as (o)liear regressio

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

Machine Learning. Logistic Regression -- generative verses discriminative classifier. Le Song /15-781, Spring 2008

Machine Learning. Logistic Regression -- generative verses discriminative classifier. Le Song /15-781, Spring 2008 Machie Learig 070/578 Srig 008 Logistic Regressio geerative verses discrimiative classifier Le Sog Lecture 5 Setember 4 0 Based o slides from Eric Xig CMU Readig: Cha. 3..34 CB Geerative vs. Discrimiative

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information

Machine Learning.

Machine Learning. 10-701 Machie Learig http://www.cs.cmu.edu/~epxig/class/10701-15f/ Orgaizatioal ifo All up-to-date ifo is o the course web page (follow liks from my page). Istructors - Eric Xig - Ziv Bar-Joseph TAs: See

More information

Overview of Estimation

Overview of Estimation Topic Iferece is the problem of turig data ito kowledge, where kowledge ofte is expressed i terms of etities that are ot preset i the data per se but are preset i models that oe uses to iterpret the data.

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Questions and Answers on Maximum Likelihood

Questions and Answers on Maximum Likelihood Questios ad Aswers o Maximum Likelihood L. Magee Fall, 2008 1. Give: a observatio-specific log likelihood fuctio l i (θ) = l f(y i x i, θ) the log likelihood fuctio l(θ y, X) = l i(θ) a data set (x i,

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

Introduction to Probability I: Expectations, Bayes Theorem, Gaussians, and the Poisson Distribution. 1

Introduction to Probability I: Expectations, Bayes Theorem, Gaussians, and the Poisson Distribution. 1 Itroductio to Probability I: Expectatios, Bayes Theorem, Gaussias, ad the Poisso Distributio. 1 Pakaj Mehta February 25, 2019 1 Read: This will itroduce some elemetary ideas i probability theory that we

More information